Index: experimental/skpdiff/SkPMetric.cpp |
diff --git a/experimental/skpdiff/SkPMetric.cpp b/experimental/skpdiff/SkPMetric.cpp |
deleted file mode 100644 |
index a19ed826f8f1cd344708a65dd51ade5beb4b6c0d..0000000000000000000000000000000000000000 |
--- a/experimental/skpdiff/SkPMetric.cpp |
+++ /dev/null |
@@ -1,476 +0,0 @@ |
-#include <cmath> |
- |
-#include "SkBitmap.h" |
-#include "skpdiff_util.h" |
-#include "SkPMetric.h" |
-#include "SkPMetricUtil_generated.h" |
- |
-struct RGB { |
- float r, g, b; |
-}; |
- |
-struct LAB { |
- float l, a, b; |
-}; |
- |
-template<class T> |
-struct Image2D { |
- int width; |
- int height; |
- T* image; |
- |
- Image2D(int w, int h) |
- : width(w), |
- height(h) { |
- SkASSERT(w > 0); |
- SkASSERT(h > 0); |
- image = SkNEW_ARRAY(T, w * h); |
- } |
- |
- ~Image2D() { |
- SkDELETE_ARRAY(image); |
- } |
- |
- void readPixel(int x, int y, T* pixel) const { |
- SkASSERT(x >= 0); |
- SkASSERT(y >= 0); |
- SkASSERT(x < width); |
- SkASSERT(y < height); |
- *pixel = image[y * width + x]; |
- } |
- |
- T* getRow(int y) const { |
- return &image[y * width]; |
- } |
- |
- void writePixel(int x, int y, const T& pixel) { |
- SkASSERT(x >= 0); |
- SkASSERT(y >= 0); |
- SkASSERT(x < width); |
- SkASSERT(y < height); |
- image[y * width + x] = pixel; |
- } |
-}; |
- |
-typedef Image2D<float> ImageL; |
-typedef Image2D<RGB> ImageRGB; |
-typedef Image2D<LAB> ImageLAB; |
- |
-template<class T> |
-struct ImageArray |
-{ |
- int slices; |
- Image2D<T>** image; |
- |
- ImageArray(int w, int h, int s) |
- : slices(s) { |
- SkASSERT(s > 0); |
- image = SkNEW_ARRAY(Image2D<T>*, s); |
- for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) { |
- image[sliceIndex] = SkNEW_ARGS(Image2D<T>, (w, h)); |
- } |
- } |
- |
- ~ImageArray() { |
- for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) { |
- SkDELETE(image[sliceIndex]); |
- } |
- SkDELETE_ARRAY(image); |
- } |
- |
- Image2D<T>* getLayer(int z) const { |
- SkASSERT(z >= 0); |
- SkASSERT(z < slices); |
- return image[z]; |
- } |
-}; |
- |
-typedef ImageArray<float> ImageL3D; |
- |
- |
-#define MAT_ROW_MULT(rc,gc,bc) r*rc + g*gc + b*bc |
- |
-static void adobergb_to_cielab(float r, float g, float b, LAB* lab) { |
- // Conversion of Adobe RGB to XYZ taken from from "Adobe RGB (1998) ColorImage Encoding" |
- // URL:http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf |
- // Section: 4.3.5.3 |
- // See Also: http://en.wikipedia.org/wiki/Adobe_rgb |
- float x = MAT_ROW_MULT(0.57667f, 0.18556f, 0.18823f); |
- float y = MAT_ROW_MULT(0.29734f, 0.62736f, 0.07529f); |
- float z = MAT_ROW_MULT(0.02703f, 0.07069f, 0.99134f); |
- |
- // The following is the white point in XYZ, so it's simply the row wise addition of the above |
- // matrix. |
- const float xw = 0.5767f + 0.185556f + 0.188212f; |
- const float yw = 0.297361f + 0.627355f + 0.0752847f; |
- const float zw = 0.0270328f + 0.0706879f + 0.991248f; |
- |
- // This is the XYZ color point relative to the white point |
- float f[3] = { x / xw, y / yw, z / zw }; |
- |
- // Conversion from XYZ to LAB taken from |
- // http://en.wikipedia.org/wiki/CIELAB#Forward_transformation |
- for (int i = 0; i < 3; i++) { |
- if (f[i] >= 0.008856f) { |
- f[i] = SkPMetricUtil::get_cube_root(f[i]); |
- } else { |
- f[i] = 7.787f * f[i] + 4.0f / 29.0f; |
- } |
- } |
- lab->l = 116.0f * f[1] - 16.0f; |
- lab->a = 500.0f * (f[0] - f[1]); |
- lab->b = 200.0f * (f[1] - f[2]); |
-} |
- |
-/// Converts a 8888 bitmap to LAB color space and puts it into the output |
-static void bitmap_to_cielab(const SkBitmap* bitmap, ImageLAB* outImageLAB) { |
- SkASSERT(bitmap->config() == SkBitmap::kARGB_8888_Config); |
- |
- int width = bitmap->width(); |
- int height = bitmap->height(); |
- SkASSERT(outImageLAB->width == width); |
- SkASSERT(outImageLAB->height == height); |
- |
- bitmap->lockPixels(); |
- RGB rgb; |
- LAB lab; |
- for (int y = 0; y < height; y++) { |
- unsigned char* row = (unsigned char*)bitmap->getAddr(0, y); |
- for (int x = 0; x < width; x++) { |
- // Perform gamma correction which is assumed to be 2.2 |
- rgb.r = SkPMetricUtil::get_gamma(row[x * 4 + 2]); |
- rgb.g = SkPMetricUtil::get_gamma(row[x * 4 + 1]); |
- rgb.b = SkPMetricUtil::get_gamma(row[x * 4 + 0]); |
- adobergb_to_cielab(rgb.r, rgb.g, rgb.b, &lab); |
- outImageLAB->writePixel(x, y, lab); |
- } |
- } |
- bitmap->unlockPixels(); |
-} |
- |
-// From Barten SPIE 1989 |
-static float contrast_sensitivity(float cyclesPerDegree, float luminance) { |
- float a = 440.0f * powf(1.0f + 0.7f / luminance, -0.2f); |
- float b = 0.3f * powf(1.0f + 100.0f / luminance, 0.15f); |
- return a * |
- cyclesPerDegree * |
- expf(-b * cyclesPerDegree) * |
- sqrtf(1.0f + 0.06f * expf(b * cyclesPerDegree)); |
-} |
- |
-#if 0 |
-// We're keeping these around for reference and in case the lookup tables are no longer desired. |
-// They are no longer called by any code in this file. |
- |
-// From Daly 1993 |
- static float visual_mask(float contrast) { |
- float x = powf(392.498f * contrast, 0.7f); |
- x = powf(0.0153f * x, 4.0f); |
- return powf(1.0f + x, 0.25f); |
-} |
- |
-// From Ward Larson Siggraph 1997 |
-static float threshold_vs_intensity(float adaptationLuminance) { |
- float logLum = log10f(adaptationLuminance); |
- float x; |
- if (logLum < -3.94f) { |
- x = -2.86f; |
- } else if (logLum < -1.44f) { |
- x = powf(0.405f * logLum + 1.6f, 2.18) - 2.86f; |
- } else if (logLum < -0.0184f) { |
- x = logLum - 0.395f; |
- } else if (logLum < 1.9f) { |
- x = powf(0.249f * logLum + 0.65f, 2.7f) - 0.72f; |
- } else { |
- x = logLum - 1.255f; |
- } |
- return powf(10.0f, x); |
-} |
- |
-#endif |
- |
-/// Simply takes the L channel from the input and puts it into the output |
-static void lab_to_l(const ImageLAB* imageLAB, ImageL* outImageL) { |
- for (int y = 0; y < imageLAB->height; y++) { |
- for (int x = 0; x < imageLAB->width; x++) { |
- LAB lab; |
- imageLAB->readPixel(x, y, &lab); |
- outImageL->writePixel(x, y, lab.l); |
- } |
- } |
-} |
- |
-/// Convolves an image with the given filter in one direction and saves it to the output image |
-static void convolve(const ImageL* imageL, bool vertical, ImageL* outImageL) { |
- SkASSERT(imageL->width == outImageL->width); |
- SkASSERT(imageL->height == outImageL->height); |
- |
- const float matrix[] = { 0.05f, 0.25f, 0.4f, 0.25f, 0.05f }; |
- const int matrixCount = sizeof(matrix) / sizeof(float); |
- const int radius = matrixCount / 2; |
- |
- // Keep track of what rows are being operated on for quick access. |
- float* rowPtrs[matrixCount]; // Because matrixCount is constant, this won't create a VLA |
- for (int y = radius; y < matrixCount; y++) { |
- rowPtrs[y] = imageL->getRow(y - radius); |
- } |
- float* writeRow = outImageL->getRow(0); |
- |
- for (int y = 0; y < imageL->height; y++) { |
- for (int x = 0; x < imageL->width; x++) { |
- float lSum = 0.0f; |
- for (int xx = -radius; xx <= radius; xx++) { |
- int nx = x; |
- int ny = y; |
- |
- // We mirror at edges so that edge pixels that the filter weighting still makes |
- // sense. |
- if (vertical) { |
- ny += xx; |
- if (ny < 0) { |
- ny = -ny; |
- } |
- if (ny >= imageL->height) { |
- ny = imageL->height + (imageL->height - ny - 1); |
- } |
- } else { |
- nx += xx; |
- if (nx < 0) { |
- nx = -nx; |
- } |
- if (nx >= imageL->width) { |
- nx = imageL->width + (imageL->width - nx - 1); |
- } |
- } |
- |
- float weight = matrix[xx + radius]; |
- lSum += rowPtrs[ny - y + radius][nx] * weight; |
- } |
- writeRow[x] = lSum; |
- } |
- // As we move down, scroll the row pointers down with us |
- for (int y = 0; y < matrixCount - 1; y++) |
- { |
- rowPtrs[y] = rowPtrs[y + 1]; |
- } |
- rowPtrs[matrixCount - 1] += imageL->width; |
- writeRow += imageL->width; |
- } |
-} |
- |
-static double pmetric(const ImageLAB* baselineLAB, const ImageLAB* testLAB, SkTDArray<SkIPoint>* poi) { |
- int width = baselineLAB->width; |
- int height = baselineLAB->height; |
- int maxLevels = 0; |
- |
- // Calculates how many levels to make by how many times the image can be divided in two |
- int smallerDimension = width < height ? width : height; |
- for ( ; smallerDimension > 1; smallerDimension /= 2) { |
- maxLevels++; |
- } |
- |
- const float fov = SK_ScalarPI / 180.0f * 45.0f; |
- float contrastSensitivityMax = contrast_sensitivity(3.248f, 100.0f); |
- float pixelsPerDegree = width / (2.0f * tanf(fov * 0.5f) * 180.0f / SK_ScalarPI); |
- |
- ImageL3D baselineL(width, height, maxLevels); |
- ImageL3D testL(width, height, maxLevels); |
- ImageL scratchImageL(width, height); |
- float* cyclesPerDegree = SkNEW_ARRAY(float, maxLevels); |
- float* thresholdFactorFrequency = SkNEW_ARRAY(float, maxLevels - 2); |
- float* contrast = SkNEW_ARRAY(float, maxLevels - 2); |
- |
- lab_to_l(baselineLAB, baselineL.getLayer(0)); |
- lab_to_l(testLAB, testL.getLayer(0)); |
- |
- // Compute cpd - Cycles per degree on the pyramid |
- cyclesPerDegree[0] = 0.5f * pixelsPerDegree; |
- for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) { |
- cyclesPerDegree[levelIndex] = cyclesPerDegree[levelIndex - 1] * 0.5f; |
- } |
- |
- // Contrast sensitivity is based on image dimensions. Therefore it cannot be statically |
- // generated. |
- float* contrastSensitivityTable = SkNEW_ARRAY(float, maxLevels * 1000); |
- for (int levelIndex = 0; levelIndex < maxLevels; levelIndex++) { |
- for (int csLum = 0; csLum < 1000; csLum++) { |
- contrastSensitivityTable[levelIndex * 1000 + csLum] = |
- contrast_sensitivity(cyclesPerDegree[levelIndex], (float)csLum / 10.0f + 1e-5f); |
- } |
- } |
- |
- // Compute G - The convolved lum for the baseline |
- for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) { |
- convolve(baselineL.getLayer(levelIndex - 1), false, &scratchImageL); |
- convolve(&scratchImageL, true, baselineL.getLayer(levelIndex)); |
- } |
- for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) { |
- convolve(testL.getLayer(levelIndex - 1), false, &scratchImageL); |
- convolve(&scratchImageL, true, testL.getLayer(levelIndex)); |
- } |
- |
- // Compute F_freq - The elevation f |
- for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) { |
- float cpd = cyclesPerDegree[levelIndex]; |
- thresholdFactorFrequency[levelIndex] = contrastSensitivityMax / |
- contrast_sensitivity(cpd, 100.0f); |
- } |
- |
- int failures = 0; |
- // Calculate F |
- for (int y = 0; y < height; y++) { |
- for (int x = 0; x < width; x++) { |
- float lBaseline; |
- float lTest; |
- baselineL.getLayer(0)->readPixel(x, y, &lBaseline); |
- testL.getLayer(0)->readPixel(x, y, &lTest); |
- |
- float avgLBaseline; |
- float avgLTest; |
- baselineL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLBaseline); |
- testL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLTest); |
- |
- float lAdapt = 0.5f * (avgLBaseline + avgLTest); |
- if (lAdapt < 1e-5f) { |
- lAdapt = 1e-5f; |
- } |
- |
- float contrastSum = 0.0f; |
- for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) { |
- float baselineL0, baselineL1, baselineL2; |
- float testL0, testL1, testL2; |
- baselineL.getLayer(levelIndex + 0)->readPixel(x, y, &baselineL0); |
- testL. getLayer(levelIndex + 0)->readPixel(x, y, &testL0); |
- baselineL.getLayer(levelIndex + 1)->readPixel(x, y, &baselineL1); |
- testL. getLayer(levelIndex + 1)->readPixel(x, y, &testL1); |
- baselineL.getLayer(levelIndex + 2)->readPixel(x, y, &baselineL2); |
- testL. getLayer(levelIndex + 2)->readPixel(x, y, &testL2); |
- |
- float baselineContrast1 = fabsf(baselineL0 - baselineL1); |
- float testContrast1 = fabsf(testL0 - testL1); |
- float numerator = (baselineContrast1 > testContrast1) ? |
- baselineContrast1 : testContrast1; |
- |
- float baselineContrast2 = fabsf(baselineL2); |
- float testContrast2 = fabsf(testL2); |
- float denominator = (baselineContrast2 > testContrast2) ? |
- baselineContrast2 : testContrast2; |
- |
- // Avoid divides by close to zero |
- if (denominator < 1e-5f) { |
- denominator = 1e-5f; |
- } |
- contrast[levelIndex] = numerator / denominator; |
- contrastSum += contrast[levelIndex]; |
- } |
- |
- if (contrastSum < 1e-5f) { |
- contrastSum = 1e-5f; |
- } |
- |
- float F = 0.0f; |
- for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) { |
- float contrastSensitivity = contrastSensitivityTable[levelIndex * 1000 + |
- (int)(lAdapt * 10.0)]; |
- float mask = SkPMetricUtil::get_visual_mask(contrast[levelIndex] * |
- contrastSensitivity); |
- |
- F += contrast[levelIndex] + |
- thresholdFactorFrequency[levelIndex] * mask / contrastSum; |
- } |
- |
- if (F < 1.0f) { |
- F = 1.0f; |
- } |
- |
- if (F > 10.0f) { |
- F = 10.0f; |
- } |
- |
- |
- bool isFailure = false; |
- if (fabsf(lBaseline - lTest) > F * SkPMetricUtil::get_threshold_vs_intensity(lAdapt)) { |
- isFailure = true; |
- } else { |
- LAB baselineColor; |
- LAB testColor; |
- baselineLAB->readPixel(x, y, &baselineColor); |
- testLAB->readPixel(x, y, &testColor); |
- float contrastA = baselineColor.a - testColor.a; |
- float contrastB = baselineColor.b - testColor.b; |
- float colorScale = 1.0f; |
- if (lAdapt < 10.0f) { |
- colorScale = lAdapt / 10.0f; |
- } |
- colorScale *= colorScale; |
- |
- if ((contrastA * contrastA + contrastB * contrastB) * colorScale > F) |
- { |
- isFailure = true; |
- } |
- } |
- |
- if (isFailure) { |
- failures++; |
- poi->push()->set(x, y); |
- } |
- } |
- } |
- |
- SkDELETE_ARRAY(cyclesPerDegree); |
- SkDELETE_ARRAY(contrast); |
- SkDELETE_ARRAY(thresholdFactorFrequency); |
- SkDELETE_ARRAY(contrastSensitivityTable); |
- return 1.0 - (double)failures / (width * height); |
-} |
- |
-const char* SkPMetric::getName() { |
- return "perceptual"; |
-} |
- |
-int SkPMetric::queueDiff(SkBitmap* baseline, SkBitmap* test) { |
- double startTime = get_seconds(); |
- int diffID = fQueuedDiffs.count(); |
- QueuedDiff& diff = fQueuedDiffs.push_back(); |
- diff.result = 0.0; |
- |
- // Ensure the images are comparable |
- if (baseline->width() != test->width() || baseline->height() != test->height() || |
- baseline->width() <= 0 || baseline->height() <= 0) { |
- diff.finished = true; |
- return diffID; |
- } |
- |
- ImageLAB baselineLAB(baseline->width(), baseline->height()); |
- ImageLAB testLAB(baseline->width(), baseline->height()); |
- |
- bitmap_to_cielab(baseline, &baselineLAB); |
- bitmap_to_cielab(test, &testLAB); |
- |
- diff.result = pmetric(&baselineLAB, &testLAB, &diff.poi); |
- |
- SkDebugf("Time: %f\n", (get_seconds() - startTime)); |
- |
- return diffID; |
-} |
- |
- |
-void SkPMetric::deleteDiff(int id) { |
- |
-} |
- |
-bool SkPMetric::isFinished(int id) { |
- return fQueuedDiffs[id].finished; |
-} |
- |
-double SkPMetric::getResult(int id) { |
- return fQueuedDiffs[id].result; |
-} |
- |
-int SkPMetric::getPointsOfInterestCount(int id) { |
- return fQueuedDiffs[id].poi.count(); |
-} |
- |
-SkIPoint* SkPMetric::getPointsOfInterest(int id) { |
- return fQueuedDiffs[id].poi.begin(); |
-} |