| Index: tests/MatrixTest.cpp
|
| diff --git a/tests/MatrixTest.cpp b/tests/MatrixTest.cpp
|
| index 5dface74d82d0e79f7389212ac650dba54035bbc..4977971627e377c15811d0a1c47bc7b660c94946 100644
|
| --- a/tests/MatrixTest.cpp
|
| +++ b/tests/MatrixTest.cpp
|
| @@ -345,6 +345,190 @@ static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
|
| REPORTER_ASSERT(reporter, mat.isSimilarity());
|
| }
|
|
|
| +static void test_matrix_decomposition(skiatest::Reporter* reporter) {
|
| + SkMatrix mat;//, rotate0, rotate1, uniformScale, anisoScale;
|
| + SkScalar rotation0, scaleX, scaleY, rotation1;
|
| +
|
| + const float kRotation0 = 15.5f;
|
| + const float kRotation1 = -50.f;
|
| + const float kScale0 = 2000.f;
|
| + const float kScale1 = 0.001f;
|
| +
|
| + // identity
|
| + mat.reset();
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| + // make sure it doesn't crash if we pass in NULLs
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(NULL, NULL, NULL, NULL));
|
| +
|
| + // rotation only
|
| + mat.setRotate(kRotation0);
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // uniform scale only
|
| + mat.setScale(kScale0, kScale0);
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // anisotropic scale only
|
| + mat.setScale(kScale0, kScale1);
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // rotation then uniform scale
|
| + mat.setRotate(kRotation1);
|
| + mat.postScale(kScale0, kScale0);
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // uniform scale then rotation
|
| + mat.setScale(kScale0, kScale0);
|
| + mat.postRotate(kRotation1);
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // rotation then uniform scale+reflection
|
| + mat.setRotate(kRotation0);
|
| + mat.postScale(kScale1, -kScale1);
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // uniform scale+reflection, then rotate
|
| + mat.setScale(kScale0, -kScale0);
|
| + mat.postRotate(kRotation1);
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(-kRotation1)));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // rotation then anisotropic scale
|
| + mat.setRotate(kRotation1);
|
| + mat.postScale(kScale1, kScale0);
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + // because of the shear/skew we won't get the same results, so we need to multiply it out
|
| + SkMatrix mat2;
|
| + mat2.setRotate(rotation0*(180.f/SK_ScalarPI));
|
| + mat2.postScale(scaleX, scaleY);
|
| + mat2.postRotate(rotation1*(180.f/SK_ScalarPI));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMScaleX],
|
| + mat2[SkMatrix::kMScaleX]));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMSkewX],
|
| + mat2[SkMatrix::kMSkewX]));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMSkewY],
|
| + mat2[SkMatrix::kMSkewY]));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMScaleY],
|
| + mat2[SkMatrix::kMScaleY]));
|
| +
|
| + // anisotropic scale then rotation
|
| + mat.setScale(kScale0, kScale1);
|
| + mat.postRotate(kRotation0);
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation1, SkDegreesToRadians(kRotation0)));
|
| +
|
| + // rotation, uniform scale, then different rotation
|
| + mat.setRotate(kRotation1);
|
| + mat.postScale(kScale0, kScale0);
|
| + mat.postRotate(kRotation0);
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0,
|
| + SkDegreesToRadians(kRotation0 + kRotation1)));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // rotation, anisotropic scale, then different rotation
|
| + mat.setRotate(kRotation0);
|
| + mat.postScale(kScale1, kScale0);
|
| + mat.postRotate(kRotation1);
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + // because of the shear/skew we won't get the same results, so we need to multiply it out
|
| + mat2.setRotate(rotation0*(180.f/SK_ScalarPI));
|
| + mat2.postScale(scaleX, scaleY);
|
| + mat2.postRotate(rotation1*(180.f/SK_ScalarPI));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMScaleX],
|
| + mat2[SkMatrix::kMScaleX]));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMSkewX],
|
| + mat2[SkMatrix::kMSkewX]));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMSkewY],
|
| + mat2[SkMatrix::kMSkewY]));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMScaleY],
|
| + mat2[SkMatrix::kMScaleY]));
|
| +
|
| + // translation shouldn't affect this
|
| + mat.postTranslate(-1000.f, 1000.f);
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + // because of the shear/skew we won't get the same results, so we need to multiply it out
|
| + mat2.setRotate(rotation0*(180.f/SK_ScalarPI));
|
| + mat2.postScale(scaleX, scaleY);
|
| + mat2.postRotate(rotation1*(180.f/SK_ScalarPI));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMScaleX],
|
| + mat2[SkMatrix::kMScaleX]));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMSkewX],
|
| + mat2[SkMatrix::kMSkewX]));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMSkewY],
|
| + mat2[SkMatrix::kMSkewY]));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMScaleY],
|
| + mat2[SkMatrix::kMScaleY]));
|
| +
|
| + // perspective shouldn't affect this
|
| + mat[SkMatrix::kMPersp0] = 12.0;
|
| + mat[SkMatrix::kMPersp1] = 4.0;
|
| + mat[SkMatrix::kMPersp2] = 1872.0;
|
| + REPORTER_ASSERT(reporter, mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + // because of the shear/skew we won't get the same results, so we need to multiply it out
|
| + mat2.setRotate(rotation0*(180.f/SK_ScalarPI));
|
| + mat2.postScale(scaleX, scaleY);
|
| + mat2.postRotate(rotation1*(180.f/SK_ScalarPI));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMScaleX],
|
| + mat2[SkMatrix::kMScaleX]));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMSkewX],
|
| + mat2[SkMatrix::kMSkewX]));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMSkewY],
|
| + mat2[SkMatrix::kMSkewY]));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(mat[SkMatrix::kMScaleY],
|
| + mat2[SkMatrix::kMScaleY]));
|
| +
|
| + // degenerate matrices
|
| + mat.reset();
|
| + mat[SkMatrix::kMScaleX] = 0.f;
|
| + REPORTER_ASSERT(reporter, !mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + mat.reset();
|
| + mat[SkMatrix::kMScaleY] = 0.f;
|
| + REPORTER_ASSERT(reporter, !mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| + mat.reset();
|
| + mat[SkMatrix::kMScaleX] = 1.f;
|
| + mat[SkMatrix::kMSkewX] = 2.f;
|
| + mat[SkMatrix::kMSkewY] = 4.f;
|
| + mat[SkMatrix::kMScaleY] = 8.f; // who do we appreciate?
|
| + REPORTER_ASSERT(reporter, !mat.decomposeUpper2x2(&rotation0, &scaleX, &scaleY, &rotation1));
|
| +}
|
| +
|
| static void TestMatrix(skiatest::Reporter* reporter) {
|
| SkMatrix mat, inverse, iden1, iden2;
|
|
|
| @@ -465,6 +649,7 @@ static void TestMatrix(skiatest::Reporter* reporter) {
|
| test_matrix_max_stretch(reporter);
|
| test_matrix_is_similarity(reporter);
|
| test_matrix_recttorect(reporter);
|
| + test_matrix_decomposition(reporter);
|
| }
|
|
|
| #include "TestClassDef.h"
|
|
|