Index: simd/jchuff-sse2-64.asm |
diff --git a/simd/jchuff-sse2-64.asm b/simd/jchuff-sse2-64.asm |
new file mode 100644 |
index 0000000000000000000000000000000000000000..84eaeebf097964b2675110c8bc944a1df416f596 |
--- /dev/null |
+++ b/simd/jchuff-sse2-64.asm |
@@ -0,0 +1,361 @@ |
+; |
+; jchuff-sse2-64.asm - Huffman entropy encoding (64-bit SSE2) |
+; |
+; Copyright 2009-2011, 2014-2016 D. R. Commander. |
+; Copyright 2015 Matthieu Darbois |
+; |
+; Based on |
+; x86 SIMD extension for IJG JPEG library |
+; Copyright (C) 1999-2006, MIYASAKA Masaru. |
+; For conditions of distribution and use, see copyright notice in jsimdext.inc |
+; |
+; This file should be assembled with NASM (Netwide Assembler), |
+; can *not* be assembled with Microsoft's MASM or any compatible |
+; assembler (including Borland's Turbo Assembler). |
+; NASM is available from http://nasm.sourceforge.net/ or |
+; http://sourceforge.net/project/showfiles.php?group_id=6208 |
+; |
+; This file contains an SSE2 implementation for Huffman coding of one block. |
+; The following code is based directly on jchuff.c; see jchuff.c for more |
+; details. |
+; |
+; [TAB8] |
+ |
+%include "jsimdext.inc" |
+ |
+; -------------------------------------------------------------------------- |
+ SECTION SEG_CONST |
+ |
+ alignz 16 |
+ global EXTN(jconst_huff_encode_one_block) |
+ |
+EXTN(jconst_huff_encode_one_block): |
+ |
+%include "jpeg_nbits_table.inc" |
+ |
+ alignz 16 |
+ |
+; -------------------------------------------------------------------------- |
+ SECTION SEG_TEXT |
+ BITS 64 |
+ |
+; These macros perform the same task as the emit_bits() function in the |
+; original libjpeg code. In addition to reducing overhead by explicitly |
+; inlining the code, additional performance is achieved by taking into |
+; account the size of the bit buffer and waiting until it is almost full |
+; before emptying it. This mostly benefits 64-bit platforms, since 6 |
+; bytes can be stored in a 64-bit bit buffer before it has to be emptied. |
+ |
+%macro EMIT_BYTE 0 |
+ sub put_bits, 8 ; put_bits -= 8; |
+ mov rdx, put_buffer |
+ mov ecx, put_bits |
+ shr rdx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits); |
+ mov byte [buffer], dl ; *buffer++ = c; |
+ add buffer, 1 |
+ cmp dl, 0xFF ; need to stuff a zero byte? |
+ jne %%.EMIT_BYTE_END |
+ mov byte [buffer], 0 ; *buffer++ = 0; |
+ add buffer, 1 |
+%%.EMIT_BYTE_END: |
+%endmacro |
+ |
+%macro PUT_BITS 1 |
+ add put_bits, ecx ; put_bits += size; |
+ shl put_buffer, cl ; put_buffer = (put_buffer << size); |
+ or put_buffer, %1 |
+%endmacro |
+ |
+%macro CHECKBUF31 0 |
+ cmp put_bits, 32 ; if (put_bits > 31) { |
+ jl %%.CHECKBUF31_END |
+ EMIT_BYTE |
+ EMIT_BYTE |
+ EMIT_BYTE |
+ EMIT_BYTE |
+%%.CHECKBUF31_END: |
+%endmacro |
+ |
+%macro CHECKBUF47 0 |
+ cmp put_bits, 48 ; if (put_bits > 47) { |
+ jl %%.CHECKBUF47_END |
+ EMIT_BYTE |
+ EMIT_BYTE |
+ EMIT_BYTE |
+ EMIT_BYTE |
+ EMIT_BYTE |
+ EMIT_BYTE |
+%%.CHECKBUF47_END: |
+%endmacro |
+ |
+%macro EMIT_BITS 2 |
+ CHECKBUF47 |
+ mov ecx, %2 |
+ PUT_BITS %1 |
+%endmacro |
+ |
+%macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3) |
+ pxor xmm8, xmm8 ; __m128i neg = _mm_setzero_si128(); |
+ pxor xmm9, xmm9 ; __m128i neg = _mm_setzero_si128(); |
+ pxor xmm10, xmm10 ; __m128i neg = _mm_setzero_si128(); |
+ pxor xmm11, xmm11 ; __m128i neg = _mm_setzero_si128(); |
+ pinsrw %34, word [r12 + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0]; |
+ pinsrw %35, word [r12 + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8]; |
+ pinsrw %36, word [r12 + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16]; |
+ pinsrw %37, word [r12 + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24]; |
+ pinsrw %34, word [r12 + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1]; |
+ pinsrw %35, word [r12 + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9]; |
+ pinsrw %36, word [r12 + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17]; |
+ pinsrw %37, word [r12 + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25]; |
+ pinsrw %34, word [r12 + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2]; |
+ pinsrw %35, word [r12 + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10]; |
+ pinsrw %36, word [r12 + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18]; |
+ pinsrw %37, word [r12 + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26]; |
+ pinsrw %34, word [r12 + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3]; |
+ pinsrw %35, word [r12 + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11]; |
+ pinsrw %36, word [r12 + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19]; |
+ pinsrw %37, word [r12 + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27]; |
+ pinsrw %34, word [r12 + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4]; |
+ pinsrw %35, word [r12 + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12]; |
+ pinsrw %36, word [r12 + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20]; |
+ pinsrw %37, word [r12 + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28]; |
+ pinsrw %34, word [r12 + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5]; |
+ pinsrw %35, word [r12 + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13]; |
+ pinsrw %36, word [r12 + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21]; |
+ pinsrw %37, word [r12 + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29]; |
+ pinsrw %34, word [r12 + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6]; |
+ pinsrw %35, word [r12 + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14]; |
+ pinsrw %36, word [r12 + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22]; |
+ pinsrw %37, word [r12 + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30]; |
+ pinsrw %34, word [r12 + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7]; |
+ pinsrw %35, word [r12 + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15]; |
+ pinsrw %36, word [r12 + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23]; |
+%if %1 != 32 |
+ pinsrw %37, word [r12 + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31]; |
+%else |
+ pinsrw %37, ebx, 7 ; xmm_shadow[31] = block[jno31]; |
+%endif |
+ pcmpgtw xmm8, %34 ; neg = _mm_cmpgt_epi16(neg, x1); |
+ pcmpgtw xmm9, %35 ; neg = _mm_cmpgt_epi16(neg, x1); |
+ pcmpgtw xmm10, %36 ; neg = _mm_cmpgt_epi16(neg, x1); |
+ pcmpgtw xmm11, %37 ; neg = _mm_cmpgt_epi16(neg, x1); |
+ paddw %34, xmm8 ; x1 = _mm_add_epi16(x1, neg); |
+ paddw %35, xmm9 ; x1 = _mm_add_epi16(x1, neg); |
+ paddw %36, xmm10 ; x1 = _mm_add_epi16(x1, neg); |
+ paddw %37, xmm11 ; x1 = _mm_add_epi16(x1, neg); |
+ pxor %34, xmm8 ; x1 = _mm_xor_si128(x1, neg); |
+ pxor %35, xmm9 ; x1 = _mm_xor_si128(x1, neg); |
+ pxor %36, xmm10 ; x1 = _mm_xor_si128(x1, neg); |
+ pxor %37, xmm11 ; x1 = _mm_xor_si128(x1, neg); |
+ pxor xmm8, %34 ; neg = _mm_xor_si128(neg, x1); |
+ pxor xmm9, %35 ; neg = _mm_xor_si128(neg, x1); |
+ pxor xmm10, %36 ; neg = _mm_xor_si128(neg, x1); |
+ pxor xmm11, %37 ; neg = _mm_xor_si128(neg, x1); |
+ movdqa XMMWORD [t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1); |
+ movdqa XMMWORD [t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1); |
+ movdqa XMMWORD [t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1); |
+ movdqa XMMWORD [t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1); |
+ movdqa XMMWORD [t2 + %1 * SIZEOF_WORD], xmm8 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg); |
+ movdqa XMMWORD [t2 + (%1 + 8) * SIZEOF_WORD], xmm9 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg); |
+ movdqa XMMWORD [t2 + (%1 + 16) * SIZEOF_WORD], xmm10 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg); |
+ movdqa XMMWORD [t2 + (%1 + 24) * SIZEOF_WORD], xmm11 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg); |
+%endmacro |
+ |
+; |
+; Encode a single block's worth of coefficients. |
+; |
+; GLOBAL(JOCTET*) |
+; jsimd_huff_encode_one_block_sse2 (working_state *state, JOCTET *buffer, |
+; JCOEFPTR block, int last_dc_val, |
+; c_derived_tbl *dctbl, c_derived_tbl *actbl) |
+; |
+ |
+; r10 = working_state *state |
+; r11 = JOCTET *buffer |
+; r12 = JCOEFPTR block |
+; r13 = int last_dc_val |
+; r14 = c_derived_tbl *dctbl |
+; r15 = c_derived_tbl *actbl |
+ |
+%define t1 rbp-(DCTSIZE2*SIZEOF_WORD) |
+%define t2 t1-(DCTSIZE2*SIZEOF_WORD) |
+%define put_buffer r8 |
+%define put_bits r9d |
+%define buffer rax |
+ |
+ align 16 |
+ global EXTN(jsimd_huff_encode_one_block_sse2) |
+ |
+EXTN(jsimd_huff_encode_one_block_sse2): |
+ push rbp |
+ mov rax,rsp ; rax = original rbp |
+ sub rsp, byte 4 |
+ and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits |
+ mov [rsp],rax |
+ mov rbp,rsp ; rbp = aligned rbp |
+ lea rsp, [t2] |
+ collect_args |
+%ifdef WIN64 |
+ movaps XMMWORD [rsp-1*SIZEOF_XMMWORD], xmm8 |
+ movaps XMMWORD [rsp-2*SIZEOF_XMMWORD], xmm9 |
+ movaps XMMWORD [rsp-3*SIZEOF_XMMWORD], xmm10 |
+ movaps XMMWORD [rsp-4*SIZEOF_XMMWORD], xmm11 |
+ sub rsp, 4*SIZEOF_XMMWORD |
+%endif |
+ push rbx |
+ |
+ mov buffer, r11 ; r11 is now sratch |
+ |
+ mov put_buffer, MMWORD [r10+16] ; put_buffer = state->cur.put_buffer; |
+ mov put_bits, DWORD [r10+24] ; put_bits = state->cur.put_bits; |
+ push r10 ; r10 is now scratch |
+ |
+ ; Encode the DC coefficient difference per section F.1.2.1 |
+ movsx edi, word [r12] ; temp = temp2 = block[0] - last_dc_val; |
+ sub edi, r13d ; r13 is not used anymore |
+ mov ebx, edi |
+ |
+ ; This is a well-known technique for obtaining the absolute value |
+ ; without a branch. It is derived from an assembly language technique |
+ ; presented in "How to Optimize for the Pentium Processors", |
+ ; Copyright (c) 1996, 1997 by Agner Fog. |
+ mov esi, edi |
+ sar esi, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); |
+ xor edi, esi ; temp ^= temp3; |
+ sub edi, esi ; temp -= temp3; |
+ |
+ ; For a negative input, want temp2 = bitwise complement of abs(input) |
+ ; This code assumes we are on a two's complement machine |
+ add ebx, esi ; temp2 += temp3; |
+ |
+ ; Find the number of bits needed for the magnitude of the coefficient |
+ lea r11, [rel jpeg_nbits_table] |
+ movzx rdi, byte [r11 + rdi] ; nbits = JPEG_NBITS(temp); |
+ ; Emit the Huffman-coded symbol for the number of bits |
+ mov r11d, INT [r14 + rdi * 4] ; code = dctbl->ehufco[nbits]; |
+ movzx esi, byte [r14 + rdi + 1024] ; size = dctbl->ehufsi[nbits]; |
+ EMIT_BITS r11, esi ; EMIT_BITS(code, size) |
+ |
+ ; Mask off any extra bits in code |
+ mov esi, 1 |
+ mov ecx, edi |
+ shl esi, cl |
+ dec esi |
+ and ebx, esi ; temp2 &= (((JLONG) 1)<<nbits) - 1; |
+ |
+ ; Emit that number of bits of the value, if positive, |
+ ; or the complement of its magnitude, if negative. |
+ EMIT_BITS rbx, edi ; EMIT_BITS(temp2, nbits) |
+ |
+ ; Prepare data |
+ xor ebx, ebx |
+ kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \ |
+ 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \ |
+ 27, 20, 13, 6, 7, 14, 21, 28, 35, \ |
+ xmm0, xmm1, xmm2, xmm3 |
+ kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \ |
+ 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \ |
+ 53, 60, 61, 54, 47, 55, 62, 63, 63, \ |
+ xmm4, xmm5, xmm6, xmm7 |
+ |
+ pxor xmm8, xmm8 |
+ pcmpeqw xmm0, xmm8 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero); |
+ pcmpeqw xmm1, xmm8 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero); |
+ pcmpeqw xmm2, xmm8 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero); |
+ pcmpeqw xmm3, xmm8 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero); |
+ pcmpeqw xmm4, xmm8 ; tmp4 = _mm_cmpeq_epi16(tmp4, zero); |
+ pcmpeqw xmm5, xmm8 ; tmp5 = _mm_cmpeq_epi16(tmp5, zero); |
+ pcmpeqw xmm6, xmm8 ; tmp6 = _mm_cmpeq_epi16(tmp6, zero); |
+ pcmpeqw xmm7, xmm8 ; tmp7 = _mm_cmpeq_epi16(tmp7, zero); |
+ packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1); |
+ packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3); |
+ packsswb xmm4, xmm5 ; tmp4 = _mm_packs_epi16(tmp4, tmp5); |
+ packsswb xmm6, xmm7 ; tmp6 = _mm_packs_epi16(tmp6, tmp7); |
+ pmovmskb r11d, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0; |
+ pmovmskb r12d, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16; |
+ pmovmskb r13d, xmm4 ; index = ((uint64_t)_mm_movemask_epi8(tmp4)) << 32; |
+ pmovmskb r14d, xmm6 ; index = ((uint64_t)_mm_movemask_epi8(tmp6)) << 48; |
+ shl r12, 16 |
+ shl r14, 16 |
+ or r11, r12 |
+ or r13, r14 |
+ shl r13, 32 |
+ or r11, r13 |
+ not r11 ; index = ~index; |
+ |
+ ;mov MMWORD [ t1 + DCTSIZE2 * SIZEOF_WORD ], r11 |
+ ;jmp .EFN |
+ |
+ mov r13d, INT [r15 + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0]; |
+ movzx r14d, byte [r15 + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0]; |
+ lea rsi, [t1] |
+.BLOOP: |
+ bsf r12, r11 ; r = __builtin_ctzl(index); |
+ jz .ELOOP |
+ mov rcx, r12 |
+ lea rsi, [rsi+r12*2] ; k += r; |
+ shr r11, cl ; index >>= r; |
+ movzx rdi, word [rsi] ; temp = t1[k]; |
+ lea rbx, [rel jpeg_nbits_table] |
+ movzx rdi, byte [rbx + rdi] ; nbits = JPEG_NBITS(temp); |
+.BRLOOP: |
+ cmp r12, 16 ; while (r > 15) { |
+ jl .ERLOOP |
+ EMIT_BITS r13, r14d ; EMIT_BITS(code_0xf0, size_0xf0) |
+ sub r12, 16 ; r -= 16; |
+ jmp .BRLOOP |
+.ERLOOP: |
+ ; Emit Huffman symbol for run length / number of bits |
+ CHECKBUF31 ; uses rcx, rdx |
+ |
+ shl r12, 4 ; temp3 = (r << 4) + nbits; |
+ add r12, rdi |
+ mov ebx, INT [r15 + r12 * 4] ; code = actbl->ehufco[temp3]; |
+ movzx ecx, byte [r15 + r12 + 1024] ; size = actbl->ehufsi[temp3]; |
+ PUT_BITS rbx |
+ |
+ ;EMIT_CODE(code, size) |
+ |
+ movsx ebx, word [rsi-DCTSIZE2*2] ; temp2 = t2[k]; |
+ ; Mask off any extra bits in code |
+ mov rcx, rdi |
+ mov rdx, 1 |
+ shl rdx, cl |
+ dec rdx |
+ and rbx, rdx ; temp2 &= (((JLONG) 1)<<nbits) - 1; |
+ PUT_BITS rbx ; PUT_BITS(temp2, nbits) |
+ |
+ shr r11, 1 ; index >>= 1; |
+ add rsi, 2 ; ++k; |
+ jmp .BLOOP |
+.ELOOP: |
+ ; If the last coef(s) were zero, emit an end-of-block code |
+ lea rdi, [t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k; |
+ cmp rdi, rsi ; if (r > 0) { |
+ je .EFN |
+ mov ebx, INT [r15] ; code = actbl->ehufco[0]; |
+ movzx r12d, byte [r15 + 1024] ; size = actbl->ehufsi[0]; |
+ EMIT_BITS rbx, r12d |
+.EFN: |
+ pop r10 |
+ ; Save put_buffer & put_bits |
+ mov MMWORD [r10+16], put_buffer ; state->cur.put_buffer = put_buffer; |
+ mov DWORD [r10+24], put_bits ; state->cur.put_bits = put_bits; |
+ |
+ pop rbx |
+%ifdef WIN64 |
+ movaps xmm11, XMMWORD [rsp+0*SIZEOF_XMMWORD] |
+ movaps xmm10, XMMWORD [rsp+1*SIZEOF_XMMWORD] |
+ movaps xmm9, XMMWORD [rsp+2*SIZEOF_XMMWORD] |
+ movaps xmm8, XMMWORD [rsp+3*SIZEOF_XMMWORD] |
+ add rsp, 4*SIZEOF_XMMWORD |
+%endif |
+ uncollect_args |
+ mov rsp,rbp ; rsp <- aligned rbp |
+ pop rsp ; rsp <- original rbp |
+ pop rbp |
+ ret |
+ |
+; For some reason, the OS X linker does not honor the request to align the |
+; segment unless we do this. |
+ align 16 |