Index: jquant2.c |
diff --git a/jquant2.c b/jquant2.c |
index 9b060e574cd108c2b3c7fe6d4cdaa8800fb5864c..cfbd0f1526a5d14a3c10fbd554b03cbac3fc5a2e 100644 |
--- a/jquant2.c |
+++ b/jquant2.c |
@@ -4,8 +4,9 @@ |
* This file was part of the Independent JPEG Group's software: |
* Copyright (C) 1991-1996, Thomas G. Lane. |
* libjpeg-turbo Modifications: |
- * Copyright (C) 2009, D. R. Commander. |
- * For conditions of distribution and use, see the accompanying README file. |
+ * Copyright (C) 2009, 2014-2015, D. R. Commander. |
+ * For conditions of distribution and use, see the accompanying README.ijg |
+ * file. |
* |
* This file contains 2-pass color quantization (color mapping) routines. |
* These routines provide selection of a custom color map for an image, |
@@ -43,7 +44,7 @@ |
* color space, and repeatedly splits the "largest" remaining box until we |
* have as many boxes as desired colors. Then the mean color in each |
* remaining box becomes one of the possible output colors. |
- * |
+ * |
* The second pass over the image maps each input pixel to the closest output |
* color (optionally after applying a Floyd-Steinberg dithering correction). |
* This mapping is logically trivial, but making it go fast enough requires |
@@ -72,9 +73,9 @@ |
* probably need to change these scale factors. |
*/ |
-#define R_SCALE 2 /* scale R distances by this much */ |
-#define G_SCALE 3 /* scale G distances by this much */ |
-#define B_SCALE 1 /* and B by this much */ |
+#define R_SCALE 2 /* scale R distances by this much */ |
+#define G_SCALE 3 /* scale G distances by this much */ |
+#define B_SCALE 1 /* and B by this much */ |
static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE}; |
#define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]] |
@@ -102,9 +103,7 @@ static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE}; |
* machines, we can't just allocate the histogram in one chunk. Instead |
* of a true 3-D array, we use a row of pointers to 2-D arrays. Each |
* pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and |
- * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that |
- * on 80x86 machines, the pointer row is in near memory but the actual |
- * arrays are in far memory (same arrangement as we use for image arrays). |
+ * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. |
*/ |
#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ |
@@ -112,9 +111,9 @@ static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE}; |
/* These will do the right thing for either R,G,B or B,G,R color order, |
* but you may not like the results for other color orders. |
*/ |
-#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ |
-#define HIST_C1_BITS 6 /* bits of precision in G histogram */ |
-#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ |
+#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ |
+#define HIST_C1_BITS 6 /* bits of precision in G histogram */ |
+#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ |
/* Number of elements along histogram axes. */ |
#define HIST_C0_ELEMS (1<<HIST_C0_BITS) |
@@ -127,13 +126,13 @@ static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE}; |
#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) |
-typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ |
+typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ |
-typedef histcell FAR * histptr; /* for pointers to histogram cells */ |
+typedef histcell *histptr; /* for pointers to histogram cells */ |
typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ |
-typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */ |
-typedef hist2d * hist3d; /* type for top-level pointer */ |
+typedef hist1d *hist2d; /* type for the 2nd-level pointers */ |
+typedef hist2d *hist3d; /* type for top-level pointer */ |
/* Declarations for Floyd-Steinberg dithering. |
@@ -141,8 +140,8 @@ typedef hist2d * hist3d; /* type for top-level pointer */ |
* Errors are accumulated into the array fserrors[], at a resolution of |
* 1/16th of a pixel count. The error at a given pixel is propagated |
* to its not-yet-processed neighbors using the standard F-S fractions, |
- * ... (here) 7/16 |
- * 3/16 5/16 1/16 |
+ * ... (here) 7/16 |
+ * 3/16 5/16 1/16 |
* We work left-to-right on even rows, right-to-left on odd rows. |
* |
* We can get away with a single array (holding one row's worth of errors) |
@@ -155,20 +154,17 @@ typedef hist2d * hist3d; /* type for top-level pointer */ |
* The fserrors[] array has (#columns + 2) entries; the extra entry at |
* each end saves us from special-casing the first and last pixels. |
* Each entry is three values long, one value for each color component. |
- * |
- * Note: on a wide image, we might not have enough room in a PC's near data |
- * segment to hold the error array; so it is allocated with alloc_large. |
*/ |
#if BITS_IN_JSAMPLE == 8 |
-typedef INT16 FSERROR; /* 16 bits should be enough */ |
-typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
+typedef INT16 FSERROR; /* 16 bits should be enough */ |
+typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
#else |
-typedef INT32 FSERROR; /* may need more than 16 bits */ |
-typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ |
+typedef JLONG FSERROR; /* may need more than 16 bits */ |
+typedef JLONG LOCFSERROR; /* be sure calculation temps are big enough */ |
#endif |
-typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ |
+typedef FSERROR *FSERRPTR; /* pointer to error array */ |
/* Private subobject */ |
@@ -177,21 +173,21 @@ typedef struct { |
struct jpeg_color_quantizer pub; /* public fields */ |
/* Space for the eventually created colormap is stashed here */ |
- JSAMPARRAY sv_colormap; /* colormap allocated at init time */ |
- int desired; /* desired # of colors = size of colormap */ |
+ JSAMPARRAY sv_colormap; /* colormap allocated at init time */ |
+ int desired; /* desired # of colors = size of colormap */ |
/* Variables for accumulating image statistics */ |
- hist3d histogram; /* pointer to the histogram */ |
+ hist3d histogram; /* pointer to the histogram */ |
- boolean needs_zeroed; /* TRUE if next pass must zero histogram */ |
+ boolean needs_zeroed; /* TRUE if next pass must zero histogram */ |
/* Variables for Floyd-Steinberg dithering */ |
- FSERRPTR fserrors; /* accumulated errors */ |
- boolean on_odd_row; /* flag to remember which row we are on */ |
- int * error_limiter; /* table for clamping the applied error */ |
+ FSERRPTR fserrors; /* accumulated errors */ |
+ boolean on_odd_row; /* flag to remember which row we are on */ |
+ int *error_limiter; /* table for clamping the applied error */ |
} my_cquantizer; |
-typedef my_cquantizer * my_cquantize_ptr; |
+typedef my_cquantizer *my_cquantize_ptr; |
/* |
@@ -205,7 +201,7 @@ typedef my_cquantizer * my_cquantize_ptr; |
METHODDEF(void) |
prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
- JSAMPARRAY output_buf, int num_rows) |
+ JSAMPARRAY output_buf, int num_rows) |
{ |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
register JSAMPROW ptr; |
@@ -220,11 +216,11 @@ prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
for (col = width; col > 0; col--) { |
/* get pixel value and index into the histogram */ |
histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] |
- [GETJSAMPLE(ptr[1]) >> C1_SHIFT] |
- [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; |
+ [GETJSAMPLE(ptr[1]) >> C1_SHIFT] |
+ [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; |
/* increment, check for overflow and undo increment if so. */ |
if (++(*histp) <= 0) |
- (*histp)--; |
+ (*histp)--; |
ptr += 3; |
} |
} |
@@ -244,12 +240,12 @@ typedef struct { |
int c1min, c1max; |
int c2min, c2max; |
/* The volume (actually 2-norm) of the box */ |
- INT32 volume; |
+ JLONG volume; |
/* The number of nonzero histogram cells within this box */ |
long colorcount; |
} box; |
-typedef box * boxptr; |
+typedef box *boxptr; |
LOCAL(boxptr) |
@@ -261,7 +257,7 @@ find_biggest_color_pop (boxptr boxlist, int numboxes) |
register int i; |
register long maxc = 0; |
boxptr which = NULL; |
- |
+ |
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
if (boxp->colorcount > maxc && boxp->volume > 0) { |
which = boxp; |
@@ -279,9 +275,9 @@ find_biggest_volume (boxptr boxlist, int numboxes) |
{ |
register boxptr boxp; |
register int i; |
- register INT32 maxv = 0; |
+ register JLONG maxv = 0; |
boxptr which = NULL; |
- |
+ |
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
if (boxp->volume > maxv) { |
which = boxp; |
@@ -302,77 +298,77 @@ update_box (j_decompress_ptr cinfo, boxptr boxp) |
histptr histp; |
int c0,c1,c2; |
int c0min,c0max,c1min,c1max,c2min,c2max; |
- INT32 dist0,dist1,dist2; |
+ JLONG dist0,dist1,dist2; |
long ccount; |
- |
+ |
c0min = boxp->c0min; c0max = boxp->c0max; |
c1min = boxp->c1min; c1max = boxp->c1max; |
c2min = boxp->c2min; c2max = boxp->c2max; |
- |
+ |
if (c0max > c0min) |
for (c0 = c0min; c0 <= c0max; c0++) |
for (c1 = c1min; c1 <= c1max; c1++) { |
- histp = & histogram[c0][c1][c2min]; |
- for (c2 = c2min; c2 <= c2max; c2++) |
- if (*histp++ != 0) { |
- boxp->c0min = c0min = c0; |
- goto have_c0min; |
- } |
+ histp = & histogram[c0][c1][c2min]; |
+ for (c2 = c2min; c2 <= c2max; c2++) |
+ if (*histp++ != 0) { |
+ boxp->c0min = c0min = c0; |
+ goto have_c0min; |
+ } |
} |
have_c0min: |
if (c0max > c0min) |
for (c0 = c0max; c0 >= c0min; c0--) |
for (c1 = c1min; c1 <= c1max; c1++) { |
- histp = & histogram[c0][c1][c2min]; |
- for (c2 = c2min; c2 <= c2max; c2++) |
- if (*histp++ != 0) { |
- boxp->c0max = c0max = c0; |
- goto have_c0max; |
- } |
+ histp = & histogram[c0][c1][c2min]; |
+ for (c2 = c2min; c2 <= c2max; c2++) |
+ if (*histp++ != 0) { |
+ boxp->c0max = c0max = c0; |
+ goto have_c0max; |
+ } |
} |
have_c0max: |
if (c1max > c1min) |
for (c1 = c1min; c1 <= c1max; c1++) |
for (c0 = c0min; c0 <= c0max; c0++) { |
- histp = & histogram[c0][c1][c2min]; |
- for (c2 = c2min; c2 <= c2max; c2++) |
- if (*histp++ != 0) { |
- boxp->c1min = c1min = c1; |
- goto have_c1min; |
- } |
+ histp = & histogram[c0][c1][c2min]; |
+ for (c2 = c2min; c2 <= c2max; c2++) |
+ if (*histp++ != 0) { |
+ boxp->c1min = c1min = c1; |
+ goto have_c1min; |
+ } |
} |
have_c1min: |
if (c1max > c1min) |
for (c1 = c1max; c1 >= c1min; c1--) |
for (c0 = c0min; c0 <= c0max; c0++) { |
- histp = & histogram[c0][c1][c2min]; |
- for (c2 = c2min; c2 <= c2max; c2++) |
- if (*histp++ != 0) { |
- boxp->c1max = c1max = c1; |
- goto have_c1max; |
- } |
+ histp = & histogram[c0][c1][c2min]; |
+ for (c2 = c2min; c2 <= c2max; c2++) |
+ if (*histp++ != 0) { |
+ boxp->c1max = c1max = c1; |
+ goto have_c1max; |
+ } |
} |
have_c1max: |
if (c2max > c2min) |
for (c2 = c2min; c2 <= c2max; c2++) |
for (c0 = c0min; c0 <= c0max; c0++) { |
- histp = & histogram[c0][c1min][c2]; |
- for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
- if (*histp != 0) { |
- boxp->c2min = c2min = c2; |
- goto have_c2min; |
- } |
+ histp = & histogram[c0][c1min][c2]; |
+ for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
+ if (*histp != 0) { |
+ boxp->c2min = c2min = c2; |
+ goto have_c2min; |
+ } |
} |
have_c2min: |
if (c2max > c2min) |
for (c2 = c2max; c2 >= c2min; c2--) |
for (c0 = c0min; c0 <= c0max; c0++) { |
- histp = & histogram[c0][c1min][c2]; |
- for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
- if (*histp != 0) { |
- boxp->c2max = c2max = c2; |
- goto have_c2max; |
- } |
+ histp = & histogram[c0][c1min][c2]; |
+ for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
+ if (*histp != 0) { |
+ boxp->c2max = c2max = c2; |
+ goto have_c2max; |
+ } |
} |
have_c2max: |
@@ -388,16 +384,16 @@ update_box (j_decompress_ptr cinfo, boxptr boxp) |
dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; |
dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; |
boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; |
- |
+ |
/* Now scan remaining volume of box and compute population */ |
ccount = 0; |
for (c0 = c0min; c0 <= c0max; c0++) |
for (c1 = c1min; c1 <= c1max; c1++) { |
histp = & histogram[c0][c1][c2min]; |
for (c2 = c2min; c2 <= c2max; c2++, histp++) |
- if (*histp != 0) { |
- ccount++; |
- } |
+ if (*histp != 0) { |
+ ccount++; |
+ } |
} |
boxp->colorcount = ccount; |
} |
@@ -405,7 +401,7 @@ update_box (j_decompress_ptr cinfo, boxptr boxp) |
LOCAL(int) |
median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, |
- int desired_colors) |
+ int desired_colors) |
/* Repeatedly select and split the largest box until we have enough boxes */ |
{ |
int n,lb; |
@@ -421,9 +417,9 @@ median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, |
} else { |
b1 = find_biggest_volume(boxlist, numboxes); |
} |
- if (b1 == NULL) /* no splittable boxes left! */ |
+ if (b1 == NULL) /* no splittable boxes left! */ |
break; |
- b2 = &boxlist[numboxes]; /* where new box will go */ |
+ b2 = &boxlist[numboxes]; /* where new box will go */ |
/* Copy the color bounds to the new box. */ |
b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; |
b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; |
@@ -495,24 +491,24 @@ compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) |
long c0total = 0; |
long c1total = 0; |
long c2total = 0; |
- |
+ |
c0min = boxp->c0min; c0max = boxp->c0max; |
c1min = boxp->c1min; c1max = boxp->c1max; |
c2min = boxp->c2min; c2max = boxp->c2max; |
- |
+ |
for (c0 = c0min; c0 <= c0max; c0++) |
for (c1 = c1min; c1 <= c1max; c1++) { |
histp = & histogram[c0][c1][c2min]; |
for (c2 = c2min; c2 <= c2max; c2++) { |
- if ((count = *histp++) != 0) { |
- total += count; |
- c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; |
- c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; |
- c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; |
- } |
+ if ((count = *histp++) != 0) { |
+ total += count; |
+ c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; |
+ c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; |
+ c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; |
+ } |
} |
} |
- |
+ |
cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); |
cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); |
cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); |
@@ -529,7 +525,7 @@ select_colors (j_decompress_ptr cinfo, int desired_colors) |
/* Allocate workspace for box list */ |
boxlist = (boxptr) (*cinfo->mem->alloc_small) |
- ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); |
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * sizeof(box)); |
/* Initialize one box containing whole space */ |
numboxes = 1; |
boxlist[0].c0min = 0; |
@@ -576,7 +572,7 @@ select_colors (j_decompress_ptr cinfo, int desired_colors) |
* distance from every colormap entry to every histogram cell. Unfortunately, |
* it needs a work array to hold the best-distance-so-far for each histogram |
* cell (because the inner loop has to be over cells, not colormap entries). |
- * The work array elements have to be INT32s, so the work array would need |
+ * The work array elements have to be JLONGs, so the work array would need |
* 256Kb at our recommended precision. This is not feasible in DOS machines. |
* |
* To get around these problems, we apply Thomas' method to compute the |
@@ -628,7 +624,7 @@ select_colors (j_decompress_ptr cinfo, int desired_colors) |
LOCAL(int) |
find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
- JSAMPLE colorlist[]) |
+ JSAMPLE colorlist[]) |
/* Locate the colormap entries close enough to an update box to be candidates |
* for the nearest entry to some cell(s) in the update box. The update box |
* is specified by the center coordinates of its first cell. The number of |
@@ -642,8 +638,8 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
int maxc0, maxc1, maxc2; |
int centerc0, centerc1, centerc2; |
int i, x, ncolors; |
- INT32 minmaxdist, min_dist, max_dist, tdist; |
- INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ |
+ JLONG minmaxdist, min_dist, max_dist, tdist; |
+ JLONG mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ |
/* Compute true coordinates of update box's upper corner and center. |
* Actually we compute the coordinates of the center of the upper-corner |
@@ -685,11 +681,11 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
/* within cell range so no contribution to min_dist */ |
min_dist = 0; |
if (x <= centerc0) { |
- tdist = (x - maxc0) * C0_SCALE; |
- max_dist = tdist*tdist; |
+ tdist = (x - maxc0) * C0_SCALE; |
+ max_dist = tdist*tdist; |
} else { |
- tdist = (x - minc0) * C0_SCALE; |
- max_dist = tdist*tdist; |
+ tdist = (x - minc0) * C0_SCALE; |
+ max_dist = tdist*tdist; |
} |
} |
@@ -707,11 +703,11 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
} else { |
/* within cell range so no contribution to min_dist */ |
if (x <= centerc1) { |
- tdist = (x - maxc1) * C1_SCALE; |
- max_dist += tdist*tdist; |
+ tdist = (x - maxc1) * C1_SCALE; |
+ max_dist += tdist*tdist; |
} else { |
- tdist = (x - minc1) * C1_SCALE; |
- max_dist += tdist*tdist; |
+ tdist = (x - minc1) * C1_SCALE; |
+ max_dist += tdist*tdist; |
} |
} |
@@ -729,15 +725,15 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
} else { |
/* within cell range so no contribution to min_dist */ |
if (x <= centerc2) { |
- tdist = (x - maxc2) * C2_SCALE; |
- max_dist += tdist*tdist; |
+ tdist = (x - maxc2) * C2_SCALE; |
+ max_dist += tdist*tdist; |
} else { |
- tdist = (x - minc2) * C2_SCALE; |
- max_dist += tdist*tdist; |
+ tdist = (x - minc2) * C2_SCALE; |
+ max_dist += tdist*tdist; |
} |
} |
- mindist[i] = min_dist; /* save away the results */ |
+ mindist[i] = min_dist; /* save away the results */ |
if (max_dist < minmaxdist) |
minmaxdist = max_dist; |
} |
@@ -757,7 +753,7 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
LOCAL(void) |
find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
- int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) |
+ int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) |
/* Find the closest colormap entry for each cell in the update box, |
* given the list of candidate colors prepared by find_nearby_colors. |
* Return the indexes of the closest entries in the bestcolor[] array. |
@@ -767,31 +763,31 @@ find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
{ |
int ic0, ic1, ic2; |
int i, icolor; |
- register INT32 * bptr; /* pointer into bestdist[] array */ |
- JSAMPLE * cptr; /* pointer into bestcolor[] array */ |
- INT32 dist0, dist1; /* initial distance values */ |
- register INT32 dist2; /* current distance in inner loop */ |
- INT32 xx0, xx1; /* distance increments */ |
- register INT32 xx2; |
- INT32 inc0, inc1, inc2; /* initial values for increments */ |
+ register JLONG *bptr; /* pointer into bestdist[] array */ |
+ JSAMPLE *cptr; /* pointer into bestcolor[] array */ |
+ JLONG dist0, dist1; /* initial distance values */ |
+ register JLONG dist2; /* current distance in inner loop */ |
+ JLONG xx0, xx1; /* distance increments */ |
+ register JLONG xx2; |
+ JLONG inc0, inc1, inc2; /* initial values for increments */ |
/* This array holds the distance to the nearest-so-far color for each cell */ |
- INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
+ JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
/* Initialize best-distance for each cell of the update box */ |
bptr = bestdist; |
for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) |
*bptr++ = 0x7FFFFFFFL; |
- |
+ |
/* For each color selected by find_nearby_colors, |
* compute its distance to the center of each cell in the box. |
* If that's less than best-so-far, update best distance and color number. |
*/ |
- |
+ |
/* Nominal steps between cell centers ("x" in Thomas article) */ |
#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) |
#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) |
#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) |
- |
+ |
for (i = 0; i < numcolors; i++) { |
icolor = GETJSAMPLE(colorlist[i]); |
/* Compute (square of) distance from minc0/c1/c2 to this color */ |
@@ -813,20 +809,20 @@ find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
dist1 = dist0; |
xx1 = inc1; |
for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { |
- dist2 = dist1; |
- xx2 = inc2; |
- for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { |
- if (dist2 < *bptr) { |
- *bptr = dist2; |
- *cptr = (JSAMPLE) icolor; |
- } |
- dist2 += xx2; |
- xx2 += 2 * STEP_C2 * STEP_C2; |
- bptr++; |
- cptr++; |
- } |
- dist1 += xx1; |
- xx1 += 2 * STEP_C1 * STEP_C1; |
+ dist2 = dist1; |
+ xx2 = inc2; |
+ for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { |
+ if (dist2 < *bptr) { |
+ *bptr = dist2; |
+ *cptr = (JSAMPLE) icolor; |
+ } |
+ dist2 += xx2; |
+ xx2 += 2 * STEP_C2 * STEP_C2; |
+ bptr++; |
+ cptr++; |
+ } |
+ dist1 += xx1; |
+ xx1 += 2 * STEP_C1 * STEP_C1; |
} |
dist0 += xx0; |
xx0 += 2 * STEP_C0 * STEP_C0; |
@@ -843,13 +839,13 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) |
{ |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
hist3d histogram = cquantize->histogram; |
- int minc0, minc1, minc2; /* lower left corner of update box */ |
+ int minc0, minc1, minc2; /* lower left corner of update box */ |
int ic0, ic1, ic2; |
- register JSAMPLE * cptr; /* pointer into bestcolor[] array */ |
- register histptr cachep; /* pointer into main cache array */ |
+ register JSAMPLE *cptr; /* pointer into bestcolor[] array */ |
+ register histptr cachep; /* pointer into main cache array */ |
/* This array lists the candidate colormap indexes. */ |
JSAMPLE colorlist[MAXNUMCOLORS]; |
- int numcolors; /* number of candidate colors */ |
+ int numcolors; /* number of candidate colors */ |
/* This array holds the actually closest colormap index for each cell. */ |
JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
@@ -865,7 +861,7 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) |
minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); |
minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); |
minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); |
- |
+ |
/* Determine which colormap entries are close enough to be candidates |
* for the nearest entry to some cell in the update box. |
*/ |
@@ -873,10 +869,10 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) |
/* Determine the actually nearest colors. */ |
find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, |
- bestcolor); |
+ bestcolor); |
/* Save the best color numbers (plus 1) in the main cache array */ |
- c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ |
+ c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ |
c1 <<= BOX_C1_LOG; |
c2 <<= BOX_C2_LOG; |
cptr = bestcolor; |
@@ -884,7 +880,7 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) |
for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { |
cachep = & histogram[c0+ic0][c1+ic1][c2]; |
for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { |
- *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); |
+ *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); |
} |
} |
} |
@@ -897,7 +893,7 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) |
METHODDEF(void) |
pass2_no_dither (j_decompress_ptr cinfo, |
- JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
+ JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
/* This version performs no dithering */ |
{ |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
@@ -921,7 +917,7 @@ pass2_no_dither (j_decompress_ptr cinfo, |
/* If we have not seen this color before, find nearest colormap entry */ |
/* and update the cache */ |
if (*cachep == 0) |
- fill_inverse_cmap(cinfo, c0,c1,c2); |
+ fill_inverse_cmap(cinfo, c0,c1,c2); |
/* Now emit the colormap index for this cell */ |
*outptr++ = (JSAMPLE) (*cachep - 1); |
} |
@@ -931,20 +927,20 @@ pass2_no_dither (j_decompress_ptr cinfo, |
METHODDEF(void) |
pass2_fs_dither (j_decompress_ptr cinfo, |
- JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
+ JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
/* This version performs Floyd-Steinberg dithering */ |
{ |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
hist3d histogram = cquantize->histogram; |
- register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ |
+ register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ |
LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ |
LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ |
- register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
- JSAMPROW inptr; /* => current input pixel */ |
- JSAMPROW outptr; /* => current output pixel */ |
+ register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
+ JSAMPROW inptr; /* => current input pixel */ |
+ JSAMPROW outptr; /* => current output pixel */ |
histptr cachep; |
- int dir; /* +1 or -1 depending on direction */ |
- int dir3; /* 3*dir, for advancing inptr & errorptr */ |
+ int dir; /* +1 or -1 depending on direction */ |
+ int dir3; /* 3*dir, for advancing inptr & errorptr */ |
int row; |
JDIMENSION col; |
JDIMENSION width = cinfo->output_width; |
@@ -960,7 +956,7 @@ pass2_fs_dither (j_decompress_ptr cinfo, |
outptr = output_buf[row]; |
if (cquantize->on_odd_row) { |
/* work right to left in this row */ |
- inptr += (width-1) * 3; /* so point to rightmost pixel */ |
+ inptr += (width-1) * 3; /* so point to rightmost pixel */ |
outptr += width-1; |
dir = -1; |
dir3 = -3; |
@@ -1012,53 +1008,44 @@ pass2_fs_dither (j_decompress_ptr cinfo, |
/* If we have not seen this color before, find nearest colormap */ |
/* entry and update the cache */ |
if (*cachep == 0) |
- fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); |
+ fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); |
/* Now emit the colormap index for this cell */ |
{ register int pixcode = *cachep - 1; |
- *outptr = (JSAMPLE) pixcode; |
- /* Compute representation error for this pixel */ |
- cur0 -= GETJSAMPLE(colormap0[pixcode]); |
- cur1 -= GETJSAMPLE(colormap1[pixcode]); |
- cur2 -= GETJSAMPLE(colormap2[pixcode]); |
+ *outptr = (JSAMPLE) pixcode; |
+ /* Compute representation error for this pixel */ |
+ cur0 -= GETJSAMPLE(colormap0[pixcode]); |
+ cur1 -= GETJSAMPLE(colormap1[pixcode]); |
+ cur2 -= GETJSAMPLE(colormap2[pixcode]); |
} |
/* Compute error fractions to be propagated to adjacent pixels. |
* Add these into the running sums, and simultaneously shift the |
* next-line error sums left by 1 column. |
*/ |
- { register LOCFSERROR bnexterr, delta; |
- |
- bnexterr = cur0; /* Process component 0 */ |
- delta = cur0 * 2; |
- cur0 += delta; /* form error * 3 */ |
- errorptr[0] = (FSERROR) (bpreverr0 + cur0); |
- cur0 += delta; /* form error * 5 */ |
- bpreverr0 = belowerr0 + cur0; |
- belowerr0 = bnexterr; |
- cur0 += delta; /* form error * 7 */ |
- bnexterr = cur1; /* Process component 1 */ |
- delta = cur1 * 2; |
- cur1 += delta; /* form error * 3 */ |
- errorptr[1] = (FSERROR) (bpreverr1 + cur1); |
- cur1 += delta; /* form error * 5 */ |
- bpreverr1 = belowerr1 + cur1; |
- belowerr1 = bnexterr; |
- cur1 += delta; /* form error * 7 */ |
- bnexterr = cur2; /* Process component 2 */ |
- delta = cur2 * 2; |
- cur2 += delta; /* form error * 3 */ |
- errorptr[2] = (FSERROR) (bpreverr2 + cur2); |
- cur2 += delta; /* form error * 5 */ |
- bpreverr2 = belowerr2 + cur2; |
- belowerr2 = bnexterr; |
- cur2 += delta; /* form error * 7 */ |
+ { register LOCFSERROR bnexterr; |
+ |
+ bnexterr = cur0; /* Process component 0 */ |
+ errorptr[0] = (FSERROR) (bpreverr0 + cur0 * 3); |
+ bpreverr0 = belowerr0 + cur0 * 5; |
+ belowerr0 = bnexterr; |
+ cur0 *= 7; |
+ bnexterr = cur1; /* Process component 1 */ |
+ errorptr[1] = (FSERROR) (bpreverr1 + cur1 * 3); |
+ bpreverr1 = belowerr1 + cur1 * 5; |
+ belowerr1 = bnexterr; |
+ cur1 *= 7; |
+ bnexterr = cur2; /* Process component 2 */ |
+ errorptr[2] = (FSERROR) (bpreverr2 + cur2 * 3); |
+ bpreverr2 = belowerr2 + cur2 * 5; |
+ belowerr2 = bnexterr; |
+ cur2 *= 7; |
} |
/* At this point curN contains the 7/16 error value to be propagated |
* to the next pixel on the current line, and all the errors for the |
* next line have been shifted over. We are therefore ready to move on. |
*/ |
- inptr += dir3; /* Advance pixel pointers to next column */ |
+ inptr += dir3; /* Advance pixel pointers to next column */ |
outptr += dir; |
- errorptr += dir3; /* advance errorptr to current column */ |
+ errorptr += dir3; /* advance errorptr to current column */ |
} |
/* Post-loop cleanup: we must unload the final error values into the |
* final fserrors[] entry. Note we need not unload belowerrN because |
@@ -1093,12 +1080,12 @@ init_error_limit (j_decompress_ptr cinfo) |
/* Allocate and fill in the error_limiter table */ |
{ |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
- int * table; |
+ int *table; |
int in, out; |
table = (int *) (*cinfo->mem->alloc_small) |
- ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); |
- table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ |
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * sizeof(int)); |
+ table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ |
cquantize->error_limiter = table; |
#define STEPSIZE ((MAXJSAMPLE+1)/16) |
@@ -1181,16 +1168,16 @@ start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
if (cinfo->dither_mode == JDITHER_FS) { |
size_t arraysize = (size_t) ((cinfo->output_width + 2) * |
- (3 * SIZEOF(FSERROR))); |
+ (3 * sizeof(FSERROR))); |
/* Allocate Floyd-Steinberg workspace if we didn't already. */ |
if (cquantize->fserrors == NULL) |
- cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) |
- ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
+ cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) |
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
/* Initialize the propagated errors to zero. */ |
- jzero_far((void FAR *) cquantize->fserrors, arraysize); |
+ jzero_far((void *) cquantize->fserrors, arraysize); |
/* Make the error-limit table if we didn't already. */ |
if (cquantize->error_limiter == NULL) |
- init_error_limit(cinfo); |
+ init_error_limit(cinfo); |
cquantize->on_odd_row = FALSE; |
} |
@@ -1198,8 +1185,8 @@ start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
/* Zero the histogram or inverse color map, if necessary */ |
if (cquantize->needs_zeroed) { |
for (i = 0; i < HIST_C0_ELEMS; i++) { |
- jzero_far((void FAR *) histogram[i], |
- HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); |
+ jzero_far((void *) histogram[i], |
+ HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell)); |
} |
cquantize->needs_zeroed = FALSE; |
} |
@@ -1232,11 +1219,11 @@ jinit_2pass_quantizer (j_decompress_ptr cinfo) |
cquantize = (my_cquantize_ptr) |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- SIZEOF(my_cquantizer)); |
+ sizeof(my_cquantizer)); |
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; |
cquantize->pub.start_pass = start_pass_2_quant; |
cquantize->pub.new_color_map = new_color_map_2_quant; |
- cquantize->fserrors = NULL; /* flag optional arrays not allocated */ |
+ cquantize->fserrors = NULL; /* flag optional arrays not allocated */ |
cquantize->error_limiter = NULL; |
/* Make sure jdmaster didn't give me a case I can't handle */ |
@@ -1245,17 +1232,17 @@ jinit_2pass_quantizer (j_decompress_ptr cinfo) |
/* Allocate the histogram/inverse colormap storage */ |
cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) |
- ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); |
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d)); |
for (i = 0; i < HIST_C0_ELEMS; i++) { |
cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) |
((j_common_ptr) cinfo, JPOOL_IMAGE, |
- HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); |
+ HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell)); |
} |
cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ |
/* Allocate storage for the completed colormap, if required. |
- * We do this now since it is FAR storage and may affect |
- * the memory manager's space calculations. |
+ * We do this now since it may affect the memory manager's space |
+ * calculations. |
*/ |
if (cinfo->enable_2pass_quant) { |
/* Make sure color count is acceptable */ |
@@ -1278,14 +1265,15 @@ jinit_2pass_quantizer (j_decompress_ptr cinfo) |
cinfo->dither_mode = JDITHER_FS; |
/* Allocate Floyd-Steinberg workspace if necessary. |
- * This isn't really needed until pass 2, but again it is FAR storage. |
- * Although we will cope with a later change in dither_mode, |
- * we do not promise to honor max_memory_to_use if dither_mode changes. |
+ * This isn't really needed until pass 2, but again it may affect the memory |
+ * manager's space calculations. Although we will cope with a later change |
+ * in dither_mode, we do not promise to honor max_memory_to_use if |
+ * dither_mode changes. |
*/ |
if (cinfo->dither_mode == JDITHER_FS) { |
cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) |
((j_common_ptr) cinfo, JPOOL_IMAGE, |
- (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); |
+ (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR)))); |
/* Might as well create the error-limiting table too. */ |
init_error_limit(cinfo); |
} |