Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(37)

Unified Diff: jquant2.c

Issue 1953443002: Update to libjpeg_turbo 1.4.90 (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/libjpeg_turbo.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « jquant1.c ('k') | jsimd.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: jquant2.c
diff --git a/jquant2.c b/jquant2.c
index 9b060e574cd108c2b3c7fe6d4cdaa8800fb5864c..cfbd0f1526a5d14a3c10fbd554b03cbac3fc5a2e 100644
--- a/jquant2.c
+++ b/jquant2.c
@@ -4,8 +4,9 @@
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1996, Thomas G. Lane.
* libjpeg-turbo Modifications:
- * Copyright (C) 2009, D. R. Commander.
- * For conditions of distribution and use, see the accompanying README file.
+ * Copyright (C) 2009, 2014-2015, D. R. Commander.
+ * For conditions of distribution and use, see the accompanying README.ijg
+ * file.
*
* This file contains 2-pass color quantization (color mapping) routines.
* These routines provide selection of a custom color map for an image,
@@ -43,7 +44,7 @@
* color space, and repeatedly splits the "largest" remaining box until we
* have as many boxes as desired colors. Then the mean color in each
* remaining box becomes one of the possible output colors.
- *
+ *
* The second pass over the image maps each input pixel to the closest output
* color (optionally after applying a Floyd-Steinberg dithering correction).
* This mapping is logically trivial, but making it go fast enough requires
@@ -72,9 +73,9 @@
* probably need to change these scale factors.
*/
-#define R_SCALE 2 /* scale R distances by this much */
-#define G_SCALE 3 /* scale G distances by this much */
-#define B_SCALE 1 /* and B by this much */
+#define R_SCALE 2 /* scale R distances by this much */
+#define G_SCALE 3 /* scale G distances by this much */
+#define B_SCALE 1 /* and B by this much */
static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
#define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]]
@@ -102,9 +103,7 @@ static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
* machines, we can't just allocate the histogram in one chunk. Instead
* of a true 3-D array, we use a row of pointers to 2-D arrays. Each
* pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
- * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
- * on 80x86 machines, the pointer row is in near memory but the actual
- * arrays are in far memory (same arrangement as we use for image arrays).
+ * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.
*/
#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
@@ -112,9 +111,9 @@ static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
/* These will do the right thing for either R,G,B or B,G,R color order,
* but you may not like the results for other color orders.
*/
-#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
-#define HIST_C1_BITS 6 /* bits of precision in G histogram */
-#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
+#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
+#define HIST_C1_BITS 6 /* bits of precision in G histogram */
+#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
/* Number of elements along histogram axes. */
#define HIST_C0_ELEMS (1<<HIST_C0_BITS)
@@ -127,13 +126,13 @@ static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
-typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
+typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
-typedef histcell FAR * histptr; /* for pointers to histogram cells */
+typedef histcell *histptr; /* for pointers to histogram cells */
typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
-typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
-typedef hist2d * hist3d; /* type for top-level pointer */
+typedef hist1d *hist2d; /* type for the 2nd-level pointers */
+typedef hist2d *hist3d; /* type for top-level pointer */
/* Declarations for Floyd-Steinberg dithering.
@@ -141,8 +140,8 @@ typedef hist2d * hist3d; /* type for top-level pointer */
* Errors are accumulated into the array fserrors[], at a resolution of
* 1/16th of a pixel count. The error at a given pixel is propagated
* to its not-yet-processed neighbors using the standard F-S fractions,
- * ... (here) 7/16
- * 3/16 5/16 1/16
+ * ... (here) 7/16
+ * 3/16 5/16 1/16
* We work left-to-right on even rows, right-to-left on odd rows.
*
* We can get away with a single array (holding one row's worth of errors)
@@ -155,20 +154,17 @@ typedef hist2d * hist3d; /* type for top-level pointer */
* The fserrors[] array has (#columns + 2) entries; the extra entry at
* each end saves us from special-casing the first and last pixels.
* Each entry is three values long, one value for each color component.
- *
- * Note: on a wide image, we might not have enough room in a PC's near data
- * segment to hold the error array; so it is allocated with alloc_large.
*/
#if BITS_IN_JSAMPLE == 8
-typedef INT16 FSERROR; /* 16 bits should be enough */
-typedef int LOCFSERROR; /* use 'int' for calculation temps */
+typedef INT16 FSERROR; /* 16 bits should be enough */
+typedef int LOCFSERROR; /* use 'int' for calculation temps */
#else
-typedef INT32 FSERROR; /* may need more than 16 bits */
-typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
+typedef JLONG FSERROR; /* may need more than 16 bits */
+typedef JLONG LOCFSERROR; /* be sure calculation temps are big enough */
#endif
-typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
+typedef FSERROR *FSERRPTR; /* pointer to error array */
/* Private subobject */
@@ -177,21 +173,21 @@ typedef struct {
struct jpeg_color_quantizer pub; /* public fields */
/* Space for the eventually created colormap is stashed here */
- JSAMPARRAY sv_colormap; /* colormap allocated at init time */
- int desired; /* desired # of colors = size of colormap */
+ JSAMPARRAY sv_colormap; /* colormap allocated at init time */
+ int desired; /* desired # of colors = size of colormap */
/* Variables for accumulating image statistics */
- hist3d histogram; /* pointer to the histogram */
+ hist3d histogram; /* pointer to the histogram */
- boolean needs_zeroed; /* TRUE if next pass must zero histogram */
+ boolean needs_zeroed; /* TRUE if next pass must zero histogram */
/* Variables for Floyd-Steinberg dithering */
- FSERRPTR fserrors; /* accumulated errors */
- boolean on_odd_row; /* flag to remember which row we are on */
- int * error_limiter; /* table for clamping the applied error */
+ FSERRPTR fserrors; /* accumulated errors */
+ boolean on_odd_row; /* flag to remember which row we are on */
+ int *error_limiter; /* table for clamping the applied error */
} my_cquantizer;
-typedef my_cquantizer * my_cquantize_ptr;
+typedef my_cquantizer *my_cquantize_ptr;
/*
@@ -205,7 +201,7 @@ typedef my_cquantizer * my_cquantize_ptr;
METHODDEF(void)
prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
- JSAMPARRAY output_buf, int num_rows)
+ JSAMPARRAY output_buf, int num_rows)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
register JSAMPROW ptr;
@@ -220,11 +216,11 @@ prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
for (col = width; col > 0; col--) {
/* get pixel value and index into the histogram */
histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
- [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
- [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
+ [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
+ [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
/* increment, check for overflow and undo increment if so. */
if (++(*histp) <= 0)
- (*histp)--;
+ (*histp)--;
ptr += 3;
}
}
@@ -244,12 +240,12 @@ typedef struct {
int c1min, c1max;
int c2min, c2max;
/* The volume (actually 2-norm) of the box */
- INT32 volume;
+ JLONG volume;
/* The number of nonzero histogram cells within this box */
long colorcount;
} box;
-typedef box * boxptr;
+typedef box *boxptr;
LOCAL(boxptr)
@@ -261,7 +257,7 @@ find_biggest_color_pop (boxptr boxlist, int numboxes)
register int i;
register long maxc = 0;
boxptr which = NULL;
-
+
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
if (boxp->colorcount > maxc && boxp->volume > 0) {
which = boxp;
@@ -279,9 +275,9 @@ find_biggest_volume (boxptr boxlist, int numboxes)
{
register boxptr boxp;
register int i;
- register INT32 maxv = 0;
+ register JLONG maxv = 0;
boxptr which = NULL;
-
+
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
if (boxp->volume > maxv) {
which = boxp;
@@ -302,77 +298,77 @@ update_box (j_decompress_ptr cinfo, boxptr boxp)
histptr histp;
int c0,c1,c2;
int c0min,c0max,c1min,c1max,c2min,c2max;
- INT32 dist0,dist1,dist2;
+ JLONG dist0,dist1,dist2;
long ccount;
-
+
c0min = boxp->c0min; c0max = boxp->c0max;
c1min = boxp->c1min; c1max = boxp->c1max;
c2min = boxp->c2min; c2max = boxp->c2max;
-
+
if (c0max > c0min)
for (c0 = c0min; c0 <= c0max; c0++)
for (c1 = c1min; c1 <= c1max; c1++) {
- histp = & histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++)
- if (*histp++ != 0) {
- boxp->c0min = c0min = c0;
- goto have_c0min;
- }
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c0min = c0min = c0;
+ goto have_c0min;
+ }
}
have_c0min:
if (c0max > c0min)
for (c0 = c0max; c0 >= c0min; c0--)
for (c1 = c1min; c1 <= c1max; c1++) {
- histp = & histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++)
- if (*histp++ != 0) {
- boxp->c0max = c0max = c0;
- goto have_c0max;
- }
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c0max = c0max = c0;
+ goto have_c0max;
+ }
}
have_c0max:
if (c1max > c1min)
for (c1 = c1min; c1 <= c1max; c1++)
for (c0 = c0min; c0 <= c0max; c0++) {
- histp = & histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++)
- if (*histp++ != 0) {
- boxp->c1min = c1min = c1;
- goto have_c1min;
- }
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c1min = c1min = c1;
+ goto have_c1min;
+ }
}
have_c1min:
if (c1max > c1min)
for (c1 = c1max; c1 >= c1min; c1--)
for (c0 = c0min; c0 <= c0max; c0++) {
- histp = & histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++)
- if (*histp++ != 0) {
- boxp->c1max = c1max = c1;
- goto have_c1max;
- }
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c1max = c1max = c1;
+ goto have_c1max;
+ }
}
have_c1max:
if (c2max > c2min)
for (c2 = c2min; c2 <= c2max; c2++)
for (c0 = c0min; c0 <= c0max; c0++) {
- histp = & histogram[c0][c1min][c2];
- for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
- if (*histp != 0) {
- boxp->c2min = c2min = c2;
- goto have_c2min;
- }
+ histp = & histogram[c0][c1min][c2];
+ for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
+ if (*histp != 0) {
+ boxp->c2min = c2min = c2;
+ goto have_c2min;
+ }
}
have_c2min:
if (c2max > c2min)
for (c2 = c2max; c2 >= c2min; c2--)
for (c0 = c0min; c0 <= c0max; c0++) {
- histp = & histogram[c0][c1min][c2];
- for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
- if (*histp != 0) {
- boxp->c2max = c2max = c2;
- goto have_c2max;
- }
+ histp = & histogram[c0][c1min][c2];
+ for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
+ if (*histp != 0) {
+ boxp->c2max = c2max = c2;
+ goto have_c2max;
+ }
}
have_c2max:
@@ -388,16 +384,16 @@ update_box (j_decompress_ptr cinfo, boxptr boxp)
dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
-
+
/* Now scan remaining volume of box and compute population */
ccount = 0;
for (c0 = c0min; c0 <= c0max; c0++)
for (c1 = c1min; c1 <= c1max; c1++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++, histp++)
- if (*histp != 0) {
- ccount++;
- }
+ if (*histp != 0) {
+ ccount++;
+ }
}
boxp->colorcount = ccount;
}
@@ -405,7 +401,7 @@ update_box (j_decompress_ptr cinfo, boxptr boxp)
LOCAL(int)
median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
- int desired_colors)
+ int desired_colors)
/* Repeatedly select and split the largest box until we have enough boxes */
{
int n,lb;
@@ -421,9 +417,9 @@ median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
} else {
b1 = find_biggest_volume(boxlist, numboxes);
}
- if (b1 == NULL) /* no splittable boxes left! */
+ if (b1 == NULL) /* no splittable boxes left! */
break;
- b2 = &boxlist[numboxes]; /* where new box will go */
+ b2 = &boxlist[numboxes]; /* where new box will go */
/* Copy the color bounds to the new box. */
b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
@@ -495,24 +491,24 @@ compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
long c0total = 0;
long c1total = 0;
long c2total = 0;
-
+
c0min = boxp->c0min; c0max = boxp->c0max;
c1min = boxp->c1min; c1max = boxp->c1max;
c2min = boxp->c2min; c2max = boxp->c2max;
-
+
for (c0 = c0min; c0 <= c0max; c0++)
for (c1 = c1min; c1 <= c1max; c1++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++) {
- if ((count = *histp++) != 0) {
- total += count;
- c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
- c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
- c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
- }
+ if ((count = *histp++) != 0) {
+ total += count;
+ c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
+ c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
+ c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
+ }
}
}
-
+
cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
@@ -529,7 +525,7 @@ select_colors (j_decompress_ptr cinfo, int desired_colors)
/* Allocate workspace for box list */
boxlist = (boxptr) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * sizeof(box));
/* Initialize one box containing whole space */
numboxes = 1;
boxlist[0].c0min = 0;
@@ -576,7 +572,7 @@ select_colors (j_decompress_ptr cinfo, int desired_colors)
* distance from every colormap entry to every histogram cell. Unfortunately,
* it needs a work array to hold the best-distance-so-far for each histogram
* cell (because the inner loop has to be over cells, not colormap entries).
- * The work array elements have to be INT32s, so the work array would need
+ * The work array elements have to be JLONGs, so the work array would need
* 256Kb at our recommended precision. This is not feasible in DOS machines.
*
* To get around these problems, we apply Thomas' method to compute the
@@ -628,7 +624,7 @@ select_colors (j_decompress_ptr cinfo, int desired_colors)
LOCAL(int)
find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
- JSAMPLE colorlist[])
+ JSAMPLE colorlist[])
/* Locate the colormap entries close enough to an update box to be candidates
* for the nearest entry to some cell(s) in the update box. The update box
* is specified by the center coordinates of its first cell. The number of
@@ -642,8 +638,8 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
int maxc0, maxc1, maxc2;
int centerc0, centerc1, centerc2;
int i, x, ncolors;
- INT32 minmaxdist, min_dist, max_dist, tdist;
- INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
+ JLONG minmaxdist, min_dist, max_dist, tdist;
+ JLONG mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
/* Compute true coordinates of update box's upper corner and center.
* Actually we compute the coordinates of the center of the upper-corner
@@ -685,11 +681,11 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
/* within cell range so no contribution to min_dist */
min_dist = 0;
if (x <= centerc0) {
- tdist = (x - maxc0) * C0_SCALE;
- max_dist = tdist*tdist;
+ tdist = (x - maxc0) * C0_SCALE;
+ max_dist = tdist*tdist;
} else {
- tdist = (x - minc0) * C0_SCALE;
- max_dist = tdist*tdist;
+ tdist = (x - minc0) * C0_SCALE;
+ max_dist = tdist*tdist;
}
}
@@ -707,11 +703,11 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
} else {
/* within cell range so no contribution to min_dist */
if (x <= centerc1) {
- tdist = (x - maxc1) * C1_SCALE;
- max_dist += tdist*tdist;
+ tdist = (x - maxc1) * C1_SCALE;
+ max_dist += tdist*tdist;
} else {
- tdist = (x - minc1) * C1_SCALE;
- max_dist += tdist*tdist;
+ tdist = (x - minc1) * C1_SCALE;
+ max_dist += tdist*tdist;
}
}
@@ -729,15 +725,15 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
} else {
/* within cell range so no contribution to min_dist */
if (x <= centerc2) {
- tdist = (x - maxc2) * C2_SCALE;
- max_dist += tdist*tdist;
+ tdist = (x - maxc2) * C2_SCALE;
+ max_dist += tdist*tdist;
} else {
- tdist = (x - minc2) * C2_SCALE;
- max_dist += tdist*tdist;
+ tdist = (x - minc2) * C2_SCALE;
+ max_dist += tdist*tdist;
}
}
- mindist[i] = min_dist; /* save away the results */
+ mindist[i] = min_dist; /* save away the results */
if (max_dist < minmaxdist)
minmaxdist = max_dist;
}
@@ -757,7 +753,7 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
LOCAL(void)
find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
- int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
+ int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
/* Find the closest colormap entry for each cell in the update box,
* given the list of candidate colors prepared by find_nearby_colors.
* Return the indexes of the closest entries in the bestcolor[] array.
@@ -767,31 +763,31 @@ find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
{
int ic0, ic1, ic2;
int i, icolor;
- register INT32 * bptr; /* pointer into bestdist[] array */
- JSAMPLE * cptr; /* pointer into bestcolor[] array */
- INT32 dist0, dist1; /* initial distance values */
- register INT32 dist2; /* current distance in inner loop */
- INT32 xx0, xx1; /* distance increments */
- register INT32 xx2;
- INT32 inc0, inc1, inc2; /* initial values for increments */
+ register JLONG *bptr; /* pointer into bestdist[] array */
+ JSAMPLE *cptr; /* pointer into bestcolor[] array */
+ JLONG dist0, dist1; /* initial distance values */
+ register JLONG dist2; /* current distance in inner loop */
+ JLONG xx0, xx1; /* distance increments */
+ register JLONG xx2;
+ JLONG inc0, inc1, inc2; /* initial values for increments */
/* This array holds the distance to the nearest-so-far color for each cell */
- INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
+ JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
/* Initialize best-distance for each cell of the update box */
bptr = bestdist;
for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
*bptr++ = 0x7FFFFFFFL;
-
+
/* For each color selected by find_nearby_colors,
* compute its distance to the center of each cell in the box.
* If that's less than best-so-far, update best distance and color number.
*/
-
+
/* Nominal steps between cell centers ("x" in Thomas article) */
#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
-
+
for (i = 0; i < numcolors; i++) {
icolor = GETJSAMPLE(colorlist[i]);
/* Compute (square of) distance from minc0/c1/c2 to this color */
@@ -813,20 +809,20 @@ find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
dist1 = dist0;
xx1 = inc1;
for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
- dist2 = dist1;
- xx2 = inc2;
- for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
- if (dist2 < *bptr) {
- *bptr = dist2;
- *cptr = (JSAMPLE) icolor;
- }
- dist2 += xx2;
- xx2 += 2 * STEP_C2 * STEP_C2;
- bptr++;
- cptr++;
- }
- dist1 += xx1;
- xx1 += 2 * STEP_C1 * STEP_C1;
+ dist2 = dist1;
+ xx2 = inc2;
+ for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
+ if (dist2 < *bptr) {
+ *bptr = dist2;
+ *cptr = (JSAMPLE) icolor;
+ }
+ dist2 += xx2;
+ xx2 += 2 * STEP_C2 * STEP_C2;
+ bptr++;
+ cptr++;
+ }
+ dist1 += xx1;
+ xx1 += 2 * STEP_C1 * STEP_C1;
}
dist0 += xx0;
xx0 += 2 * STEP_C0 * STEP_C0;
@@ -843,13 +839,13 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
hist3d histogram = cquantize->histogram;
- int minc0, minc1, minc2; /* lower left corner of update box */
+ int minc0, minc1, minc2; /* lower left corner of update box */
int ic0, ic1, ic2;
- register JSAMPLE * cptr; /* pointer into bestcolor[] array */
- register histptr cachep; /* pointer into main cache array */
+ register JSAMPLE *cptr; /* pointer into bestcolor[] array */
+ register histptr cachep; /* pointer into main cache array */
/* This array lists the candidate colormap indexes. */
JSAMPLE colorlist[MAXNUMCOLORS];
- int numcolors; /* number of candidate colors */
+ int numcolors; /* number of candidate colors */
/* This array holds the actually closest colormap index for each cell. */
JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
@@ -865,7 +861,7 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
-
+
/* Determine which colormap entries are close enough to be candidates
* for the nearest entry to some cell in the update box.
*/
@@ -873,10 +869,10 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
/* Determine the actually nearest colors. */
find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
- bestcolor);
+ bestcolor);
/* Save the best color numbers (plus 1) in the main cache array */
- c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
+ c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
c1 <<= BOX_C1_LOG;
c2 <<= BOX_C2_LOG;
cptr = bestcolor;
@@ -884,7 +880,7 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
cachep = & histogram[c0+ic0][c1+ic1][c2];
for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
- *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
+ *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
}
}
}
@@ -897,7 +893,7 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
METHODDEF(void)
pass2_no_dither (j_decompress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
+ JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
/* This version performs no dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
@@ -921,7 +917,7 @@ pass2_no_dither (j_decompress_ptr cinfo,
/* If we have not seen this color before, find nearest colormap entry */
/* and update the cache */
if (*cachep == 0)
- fill_inverse_cmap(cinfo, c0,c1,c2);
+ fill_inverse_cmap(cinfo, c0,c1,c2);
/* Now emit the colormap index for this cell */
*outptr++ = (JSAMPLE) (*cachep - 1);
}
@@ -931,20 +927,20 @@ pass2_no_dither (j_decompress_ptr cinfo,
METHODDEF(void)
pass2_fs_dither (j_decompress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
+ JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
/* This version performs Floyd-Steinberg dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
hist3d histogram = cquantize->histogram;
- register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
+ register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
- register FSERRPTR errorptr; /* => fserrors[] at column before current */
- JSAMPROW inptr; /* => current input pixel */
- JSAMPROW outptr; /* => current output pixel */
+ register FSERRPTR errorptr; /* => fserrors[] at column before current */
+ JSAMPROW inptr; /* => current input pixel */
+ JSAMPROW outptr; /* => current output pixel */
histptr cachep;
- int dir; /* +1 or -1 depending on direction */
- int dir3; /* 3*dir, for advancing inptr & errorptr */
+ int dir; /* +1 or -1 depending on direction */
+ int dir3; /* 3*dir, for advancing inptr & errorptr */
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
@@ -960,7 +956,7 @@ pass2_fs_dither (j_decompress_ptr cinfo,
outptr = output_buf[row];
if (cquantize->on_odd_row) {
/* work right to left in this row */
- inptr += (width-1) * 3; /* so point to rightmost pixel */
+ inptr += (width-1) * 3; /* so point to rightmost pixel */
outptr += width-1;
dir = -1;
dir3 = -3;
@@ -1012,53 +1008,44 @@ pass2_fs_dither (j_decompress_ptr cinfo,
/* If we have not seen this color before, find nearest colormap */
/* entry and update the cache */
if (*cachep == 0)
- fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
+ fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
/* Now emit the colormap index for this cell */
{ register int pixcode = *cachep - 1;
- *outptr = (JSAMPLE) pixcode;
- /* Compute representation error for this pixel */
- cur0 -= GETJSAMPLE(colormap0[pixcode]);
- cur1 -= GETJSAMPLE(colormap1[pixcode]);
- cur2 -= GETJSAMPLE(colormap2[pixcode]);
+ *outptr = (JSAMPLE) pixcode;
+ /* Compute representation error for this pixel */
+ cur0 -= GETJSAMPLE(colormap0[pixcode]);
+ cur1 -= GETJSAMPLE(colormap1[pixcode]);
+ cur2 -= GETJSAMPLE(colormap2[pixcode]);
}
/* Compute error fractions to be propagated to adjacent pixels.
* Add these into the running sums, and simultaneously shift the
* next-line error sums left by 1 column.
*/
- { register LOCFSERROR bnexterr, delta;
-
- bnexterr = cur0; /* Process component 0 */
- delta = cur0 * 2;
- cur0 += delta; /* form error * 3 */
- errorptr[0] = (FSERROR) (bpreverr0 + cur0);
- cur0 += delta; /* form error * 5 */
- bpreverr0 = belowerr0 + cur0;
- belowerr0 = bnexterr;
- cur0 += delta; /* form error * 7 */
- bnexterr = cur1; /* Process component 1 */
- delta = cur1 * 2;
- cur1 += delta; /* form error * 3 */
- errorptr[1] = (FSERROR) (bpreverr1 + cur1);
- cur1 += delta; /* form error * 5 */
- bpreverr1 = belowerr1 + cur1;
- belowerr1 = bnexterr;
- cur1 += delta; /* form error * 7 */
- bnexterr = cur2; /* Process component 2 */
- delta = cur2 * 2;
- cur2 += delta; /* form error * 3 */
- errorptr[2] = (FSERROR) (bpreverr2 + cur2);
- cur2 += delta; /* form error * 5 */
- bpreverr2 = belowerr2 + cur2;
- belowerr2 = bnexterr;
- cur2 += delta; /* form error * 7 */
+ { register LOCFSERROR bnexterr;
+
+ bnexterr = cur0; /* Process component 0 */
+ errorptr[0] = (FSERROR) (bpreverr0 + cur0 * 3);
+ bpreverr0 = belowerr0 + cur0 * 5;
+ belowerr0 = bnexterr;
+ cur0 *= 7;
+ bnexterr = cur1; /* Process component 1 */
+ errorptr[1] = (FSERROR) (bpreverr1 + cur1 * 3);
+ bpreverr1 = belowerr1 + cur1 * 5;
+ belowerr1 = bnexterr;
+ cur1 *= 7;
+ bnexterr = cur2; /* Process component 2 */
+ errorptr[2] = (FSERROR) (bpreverr2 + cur2 * 3);
+ bpreverr2 = belowerr2 + cur2 * 5;
+ belowerr2 = bnexterr;
+ cur2 *= 7;
}
/* At this point curN contains the 7/16 error value to be propagated
* to the next pixel on the current line, and all the errors for the
* next line have been shifted over. We are therefore ready to move on.
*/
- inptr += dir3; /* Advance pixel pointers to next column */
+ inptr += dir3; /* Advance pixel pointers to next column */
outptr += dir;
- errorptr += dir3; /* advance errorptr to current column */
+ errorptr += dir3; /* advance errorptr to current column */
}
/* Post-loop cleanup: we must unload the final error values into the
* final fserrors[] entry. Note we need not unload belowerrN because
@@ -1093,12 +1080,12 @@ init_error_limit (j_decompress_ptr cinfo)
/* Allocate and fill in the error_limiter table */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- int * table;
+ int *table;
int in, out;
table = (int *) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
- table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * sizeof(int));
+ table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
cquantize->error_limiter = table;
#define STEPSIZE ((MAXJSAMPLE+1)/16)
@@ -1181,16 +1168,16 @@ start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
if (cinfo->dither_mode == JDITHER_FS) {
size_t arraysize = (size_t) ((cinfo->output_width + 2) *
- (3 * SIZEOF(FSERROR)));
+ (3 * sizeof(FSERROR)));
/* Allocate Floyd-Steinberg workspace if we didn't already. */
if (cquantize->fserrors == NULL)
- cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
+ cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
/* Initialize the propagated errors to zero. */
- jzero_far((void FAR *) cquantize->fserrors, arraysize);
+ jzero_far((void *) cquantize->fserrors, arraysize);
/* Make the error-limit table if we didn't already. */
if (cquantize->error_limiter == NULL)
- init_error_limit(cinfo);
+ init_error_limit(cinfo);
cquantize->on_odd_row = FALSE;
}
@@ -1198,8 +1185,8 @@ start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
/* Zero the histogram or inverse color map, if necessary */
if (cquantize->needs_zeroed) {
for (i = 0; i < HIST_C0_ELEMS; i++) {
- jzero_far((void FAR *) histogram[i],
- HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
+ jzero_far((void *) histogram[i],
+ HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
}
cquantize->needs_zeroed = FALSE;
}
@@ -1232,11 +1219,11 @@ jinit_2pass_quantizer (j_decompress_ptr cinfo)
cquantize = (my_cquantize_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_cquantizer));
+ sizeof(my_cquantizer));
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
cquantize->pub.start_pass = start_pass_2_quant;
cquantize->pub.new_color_map = new_color_map_2_quant;
- cquantize->fserrors = NULL; /* flag optional arrays not allocated */
+ cquantize->fserrors = NULL; /* flag optional arrays not allocated */
cquantize->error_limiter = NULL;
/* Make sure jdmaster didn't give me a case I can't handle */
@@ -1245,17 +1232,17 @@ jinit_2pass_quantizer (j_decompress_ptr cinfo)
/* Allocate the histogram/inverse colormap storage */
cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d));
for (i = 0; i < HIST_C0_ELEMS; i++) {
cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
((j_common_ptr) cinfo, JPOOL_IMAGE,
- HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
+ HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
}
cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
/* Allocate storage for the completed colormap, if required.
- * We do this now since it is FAR storage and may affect
- * the memory manager's space calculations.
+ * We do this now since it may affect the memory manager's space
+ * calculations.
*/
if (cinfo->enable_2pass_quant) {
/* Make sure color count is acceptable */
@@ -1278,14 +1265,15 @@ jinit_2pass_quantizer (j_decompress_ptr cinfo)
cinfo->dither_mode = JDITHER_FS;
/* Allocate Floyd-Steinberg workspace if necessary.
- * This isn't really needed until pass 2, but again it is FAR storage.
- * Although we will cope with a later change in dither_mode,
- * we do not promise to honor max_memory_to_use if dither_mode changes.
+ * This isn't really needed until pass 2, but again it may affect the memory
+ * manager's space calculations. Although we will cope with a later change
+ * in dither_mode, we do not promise to honor max_memory_to_use if
+ * dither_mode changes.
*/
if (cinfo->dither_mode == JDITHER_FS) {
cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
((j_common_ptr) cinfo, JPOOL_IMAGE,
- (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
+ (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
/* Might as well create the error-limiting table too. */
init_error_limit(cinfo);
}
« no previous file with comments | « jquant1.c ('k') | jsimd.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698