Index: jcdctmgr.c |
diff --git a/jcdctmgr.c b/jcdctmgr.c |
index 3234a01aa14ca91421f133b2f6ed62881e85aca9..aef8517f9c5c292e713cfdb61e6cae55b2ee7223 100644 |
--- a/jcdctmgr.c |
+++ b/jcdctmgr.c |
@@ -6,8 +6,9 @@ |
* libjpeg-turbo Modifications: |
* Copyright (C) 1999-2006, MIYASAKA Masaru. |
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
- * Copyright (C) 2011 D. R. Commander |
- * For conditions of distribution and use, see the accompanying README file. |
+ * Copyright (C) 2011, 2014-2015, D. R. Commander. |
+ * For conditions of distribution and use, see the accompanying README.ijg |
+ * file. |
* |
* This file contains the forward-DCT management logic. |
* This code selects a particular DCT implementation to be used, |
@@ -18,33 +19,32 @@ |
#define JPEG_INTERNALS |
#include "jinclude.h" |
#include "jpeglib.h" |
-#include "jdct.h" /* Private declarations for DCT subsystem */ |
+#include "jdct.h" /* Private declarations for DCT subsystem */ |
#include "jsimddct.h" |
/* Private subobject for this module */ |
-typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data)); |
-typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data)); |
+typedef void (*forward_DCT_method_ptr) (DCTELEM *data); |
+typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data); |
-typedef JMETHOD(void, convsamp_method_ptr, |
- (JSAMPARRAY sample_data, JDIMENSION start_col, |
- DCTELEM * workspace)); |
-typedef JMETHOD(void, float_convsamp_method_ptr, |
- (JSAMPARRAY sample_data, JDIMENSION start_col, |
- FAST_FLOAT *workspace)); |
+typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data, |
+ JDIMENSION start_col, |
+ DCTELEM *workspace); |
+typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data, |
+ JDIMENSION start_col, |
+ FAST_FLOAT *workspace); |
-typedef JMETHOD(void, quantize_method_ptr, |
- (JCOEFPTR coef_block, DCTELEM * divisors, |
- DCTELEM * workspace)); |
-typedef JMETHOD(void, float_quantize_method_ptr, |
- (JCOEFPTR coef_block, FAST_FLOAT * divisors, |
- FAST_FLOAT * workspace)); |
+typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors, |
+ DCTELEM *workspace); |
+typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block, |
+ FAST_FLOAT *divisors, |
+ FAST_FLOAT *workspace); |
METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *); |
typedef struct { |
- struct jpeg_forward_dct pub; /* public fields */ |
+ struct jpeg_forward_dct pub; /* public fields */ |
/* Pointer to the DCT routine actually in use */ |
forward_DCT_method_ptr dct; |
@@ -55,27 +55,30 @@ typedef struct { |
* entries, because of scaling (especially for an unnormalized DCT). |
* Each table is given in normal array order. |
*/ |
- DCTELEM * divisors[NUM_QUANT_TBLS]; |
+ DCTELEM *divisors[NUM_QUANT_TBLS]; |
/* work area for FDCT subroutine */ |
- DCTELEM * workspace; |
+ DCTELEM *workspace; |
#ifdef DCT_FLOAT_SUPPORTED |
/* Same as above for the floating-point case. */ |
float_DCT_method_ptr float_dct; |
float_convsamp_method_ptr float_convsamp; |
float_quantize_method_ptr float_quantize; |
- FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; |
- FAST_FLOAT * float_workspace; |
+ FAST_FLOAT *float_divisors[NUM_QUANT_TBLS]; |
+ FAST_FLOAT *float_workspace; |
#endif |
} my_fdct_controller; |
-typedef my_fdct_controller * my_fdct_ptr; |
+typedef my_fdct_controller *my_fdct_ptr; |
+#if BITS_IN_JSAMPLE == 8 |
+ |
/* |
* Find the highest bit in an integer through binary search. |
*/ |
+ |
LOCAL(int) |
flss (UINT16 val) |
{ |
@@ -106,6 +109,7 @@ flss (UINT16 val) |
return bit; |
} |
+ |
/* |
* Compute values to do a division using reciprocal. |
* |
@@ -147,7 +151,7 @@ flss (UINT16 val) |
* |
* In order to allow SIMD implementations we also tweak the values to |
* allow the same calculation to be made at all times: |
- * |
+ * |
* dctbl[0] = f rounded to nearest integer |
* dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) |
* dctbl[2] = 1 << ((word size) * 2 - r) |
@@ -164,13 +168,27 @@ flss (UINT16 val) |
* of in a consecutive manner, yet again in order to allow SIMD |
* routines. |
*/ |
+ |
LOCAL(int) |
-compute_reciprocal (UINT16 divisor, DCTELEM * dtbl) |
+compute_reciprocal (UINT16 divisor, DCTELEM *dtbl) |
{ |
UDCTELEM2 fq, fr; |
UDCTELEM c; |
int b, r; |
+ if (divisor == 1) { |
+ /* divisor == 1 means unquantized, so these reciprocal/correction/shift |
+ * values will cause the C quantization algorithm to act like the |
+ * identity function. Since only the C quantization algorithm is used in |
+ * these cases, the scale value is irrelevant. |
+ */ |
+ dtbl[DCTSIZE2 * 0] = (DCTELEM) 1; /* reciprocal */ |
+ dtbl[DCTSIZE2 * 1] = (DCTELEM) 0; /* correction */ |
+ dtbl[DCTSIZE2 * 2] = (DCTELEM) 1; /* scale */ |
+ dtbl[DCTSIZE2 * 3] = -(DCTELEM) (sizeof(DCTELEM) * 8); /* shift */ |
+ return 0; |
+ } |
+ |
b = flss(divisor) - 1; |
r = sizeof(DCTELEM) * 8 + b; |
@@ -191,13 +209,20 @@ compute_reciprocal (UINT16 divisor, DCTELEM * dtbl) |
dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */ |
dtbl[DCTSIZE2 * 1] = (DCTELEM) c; /* correction + roundfactor */ |
+#ifdef WITH_SIMD |
dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r)); /* scale */ |
+#else |
+ dtbl[DCTSIZE2 * 2] = 1; |
+#endif |
dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */ |
if(r <= 16) return 0; |
else return 1; |
} |
+#endif |
+ |
+ |
/* |
* Initialize for a processing pass. |
* Verify that all referenced Q-tables are present, and set up |
@@ -213,15 +238,15 @@ start_pass_fdctmgr (j_compress_ptr cinfo) |
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
int ci, qtblno, i; |
jpeg_component_info *compptr; |
- JQUANT_TBL * qtbl; |
- DCTELEM * dtbl; |
+ JQUANT_TBL *qtbl; |
+ DCTELEM *dtbl; |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
ci++, compptr++) { |
qtblno = compptr->quant_tbl_no; |
/* Make sure specified quantization table is present */ |
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
- cinfo->quant_tbl_ptrs[qtblno] == NULL) |
+ cinfo->quant_tbl_ptrs[qtblno] == NULL) |
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
/* Compute divisors for this quant table */ |
@@ -233,91 +258,102 @@ start_pass_fdctmgr (j_compress_ptr cinfo) |
* coefficients multiplied by 8 (to counteract scaling). |
*/ |
if (fdct->divisors[qtblno] == NULL) { |
- fdct->divisors[qtblno] = (DCTELEM *) |
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- (DCTSIZE2 * 4) * SIZEOF(DCTELEM)); |
+ fdct->divisors[qtblno] = (DCTELEM *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ (DCTSIZE2 * 4) * sizeof(DCTELEM)); |
} |
dtbl = fdct->divisors[qtblno]; |
for (i = 0; i < DCTSIZE2; i++) { |
- if(!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) |
- && fdct->quantize == jsimd_quantize) |
- fdct->quantize = quantize; |
+#if BITS_IN_JSAMPLE == 8 |
+ if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) && |
+ fdct->quantize == jsimd_quantize) |
+ fdct->quantize = quantize; |
+#else |
+ dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; |
+#endif |
} |
break; |
#endif |
#ifdef DCT_IFAST_SUPPORTED |
case JDCT_IFAST: |
{ |
- /* For AA&N IDCT method, divisors are equal to quantization |
- * coefficients scaled by scalefactor[row]*scalefactor[col], where |
- * scalefactor[0] = 1 |
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
- * We apply a further scale factor of 8. |
- */ |
+ /* For AA&N IDCT method, divisors are equal to quantization |
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where |
+ * scalefactor[0] = 1 |
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
+ * We apply a further scale factor of 8. |
+ */ |
#define CONST_BITS 14 |
- static const INT16 aanscales[DCTSIZE2] = { |
- /* precomputed values scaled up by 14 bits */ |
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
- 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
- 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
- 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
- 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
- 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
- 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
- }; |
- SHIFT_TEMPS |
- |
- if (fdct->divisors[qtblno] == NULL) { |
- fdct->divisors[qtblno] = (DCTELEM *) |
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- (DCTSIZE2 * 4) * SIZEOF(DCTELEM)); |
- } |
- dtbl = fdct->divisors[qtblno]; |
- for (i = 0; i < DCTSIZE2; i++) { |
- if(!compute_reciprocal( |
- DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
- (INT32) aanscales[i]), |
- CONST_BITS-3), &dtbl[i]) |
- && fdct->quantize == jsimd_quantize) |
- fdct->quantize = quantize; |
- } |
+ static const INT16 aanscales[DCTSIZE2] = { |
+ /* precomputed values scaled up by 14 bits */ |
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
+ 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
+ 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
+ 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
+ 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
+ 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
+ 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
+ }; |
+ SHIFT_TEMPS |
+ |
+ if (fdct->divisors[qtblno] == NULL) { |
+ fdct->divisors[qtblno] = (DCTELEM *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ (DCTSIZE2 * 4) * sizeof(DCTELEM)); |
+ } |
+ dtbl = fdct->divisors[qtblno]; |
+ for (i = 0; i < DCTSIZE2; i++) { |
+#if BITS_IN_JSAMPLE == 8 |
+ if (!compute_reciprocal( |
+ DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i], |
+ (JLONG) aanscales[i]), |
+ CONST_BITS-3), &dtbl[i]) && |
+ fdct->quantize == jsimd_quantize) |
+ fdct->quantize = quantize; |
+#else |
+ dtbl[i] = (DCTELEM) |
+ DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i], |
+ (JLONG) aanscales[i]), |
+ CONST_BITS-3); |
+#endif |
+ } |
} |
break; |
#endif |
#ifdef DCT_FLOAT_SUPPORTED |
case JDCT_FLOAT: |
{ |
- /* For float AA&N IDCT method, divisors are equal to quantization |
- * coefficients scaled by scalefactor[row]*scalefactor[col], where |
- * scalefactor[0] = 1 |
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
- * We apply a further scale factor of 8. |
- * What's actually stored is 1/divisor so that the inner loop can |
- * use a multiplication rather than a division. |
- */ |
- FAST_FLOAT * fdtbl; |
- int row, col; |
- static const double aanscalefactor[DCTSIZE] = { |
- 1.0, 1.387039845, 1.306562965, 1.175875602, |
- 1.0, 0.785694958, 0.541196100, 0.275899379 |
- }; |
- |
- if (fdct->float_divisors[qtblno] == NULL) { |
- fdct->float_divisors[qtblno] = (FAST_FLOAT *) |
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- DCTSIZE2 * SIZEOF(FAST_FLOAT)); |
- } |
- fdtbl = fdct->float_divisors[qtblno]; |
- i = 0; |
- for (row = 0; row < DCTSIZE; row++) { |
- for (col = 0; col < DCTSIZE; col++) { |
- fdtbl[i] = (FAST_FLOAT) |
- (1.0 / (((double) qtbl->quantval[i] * |
- aanscalefactor[row] * aanscalefactor[col] * 8.0))); |
- i++; |
- } |
- } |
+ /* For float AA&N IDCT method, divisors are equal to quantization |
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where |
+ * scalefactor[0] = 1 |
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
+ * We apply a further scale factor of 8. |
+ * What's actually stored is 1/divisor so that the inner loop can |
+ * use a multiplication rather than a division. |
+ */ |
+ FAST_FLOAT *fdtbl; |
+ int row, col; |
+ static const double aanscalefactor[DCTSIZE] = { |
+ 1.0, 1.387039845, 1.306562965, 1.175875602, |
+ 1.0, 0.785694958, 0.541196100, 0.275899379 |
+ }; |
+ |
+ if (fdct->float_divisors[qtblno] == NULL) { |
+ fdct->float_divisors[qtblno] = (FAST_FLOAT *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ DCTSIZE2 * sizeof(FAST_FLOAT)); |
+ } |
+ fdtbl = fdct->float_divisors[qtblno]; |
+ i = 0; |
+ for (row = 0; row < DCTSIZE; row++) { |
+ for (col = 0; col < DCTSIZE; col++) { |
+ fdtbl[i] = (FAST_FLOAT) |
+ (1.0 / (((double) qtbl->quantval[i] * |
+ aanscalefactor[row] * aanscalefactor[col] * 8.0))); |
+ i++; |
+ } |
+ } |
} |
break; |
#endif |
@@ -334,7 +370,7 @@ start_pass_fdctmgr (j_compress_ptr cinfo) |
*/ |
METHODDEF(void) |
-convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) |
+convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) |
{ |
register DCTELEM *workspaceptr; |
register JSAMPROW elemptr; |
@@ -344,7 +380,7 @@ convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) |
for (elemr = 0; elemr < DCTSIZE; elemr++) { |
elemptr = sample_data[elemr] + start_col; |
-#if DCTSIZE == 8 /* unroll the inner loop */ |
+#if DCTSIZE == 8 /* unroll the inner loop */ |
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
@@ -369,14 +405,18 @@ convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) |
*/ |
METHODDEF(void) |
-quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) |
+quantize (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) |
{ |
int i; |
DCTELEM temp; |
- UDCTELEM recip, corr, shift; |
- UDCTELEM2 product; |
JCOEFPTR output_ptr = coef_block; |
+#if BITS_IN_JSAMPLE == 8 |
+ |
+ UDCTELEM recip, corr; |
+ int shift; |
+ UDCTELEM2 product; |
+ |
for (i = 0; i < DCTSIZE2; i++) { |
temp = workspace[i]; |
recip = divisors[i + DCTSIZE2 * 0]; |
@@ -387,16 +427,54 @@ quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) |
temp = -temp; |
product = (UDCTELEM2)(temp + corr) * recip; |
product >>= shift + sizeof(DCTELEM)*8; |
- temp = product; |
+ temp = (DCTELEM)product; |
temp = -temp; |
} else { |
product = (UDCTELEM2)(temp + corr) * recip; |
product >>= shift + sizeof(DCTELEM)*8; |
- temp = product; |
+ temp = (DCTELEM)product; |
} |
+ output_ptr[i] = (JCOEF) temp; |
+ } |
+ |
+#else |
+ |
+ register DCTELEM qval; |
+ for (i = 0; i < DCTSIZE2; i++) { |
+ qval = divisors[i]; |
+ temp = workspace[i]; |
+ /* Divide the coefficient value by qval, ensuring proper rounding. |
+ * Since C does not specify the direction of rounding for negative |
+ * quotients, we have to force the dividend positive for portability. |
+ * |
+ * In most files, at least half of the output values will be zero |
+ * (at default quantization settings, more like three-quarters...) |
+ * so we should ensure that this case is fast. On many machines, |
+ * a comparison is enough cheaper than a divide to make a special test |
+ * a win. Since both inputs will be nonnegative, we need only test |
+ * for a < b to discover whether a/b is 0. |
+ * If your machine's division is fast enough, define FAST_DIVIDE. |
+ */ |
+#ifdef FAST_DIVIDE |
+#define DIVIDE_BY(a,b) a /= b |
+#else |
+#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 |
+#endif |
+ if (temp < 0) { |
+ temp = -temp; |
+ temp += qval>>1; /* for rounding */ |
+ DIVIDE_BY(temp, qval); |
+ temp = -temp; |
+ } else { |
+ temp += qval>>1; /* for rounding */ |
+ DIVIDE_BY(temp, qval); |
+ } |
output_ptr[i] = (JCOEF) temp; |
} |
+ |
+#endif |
+ |
} |
@@ -409,16 +487,16 @@ quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) |
*/ |
METHODDEF(void) |
-forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, |
- JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
- JDIMENSION start_row, JDIMENSION start_col, |
- JDIMENSION num_blocks) |
+forward_DCT (j_compress_ptr cinfo, jpeg_component_info *compptr, |
+ JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
+ JDIMENSION start_row, JDIMENSION start_col, |
+ JDIMENSION num_blocks) |
/* This version is used for integer DCT implementations. */ |
{ |
/* This routine is heavily used, so it's worth coding it tightly. */ |
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
- DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; |
- DCTELEM * workspace; |
+ DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no]; |
+ DCTELEM *workspace; |
JDIMENSION bi; |
/* Make sure the compiler doesn't look up these every pass */ |
@@ -427,7 +505,7 @@ forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, |
quantize_method_ptr do_quantize = fdct->quantize; |
workspace = fdct->workspace; |
- sample_data += start_row; /* fold in the vertical offset once */ |
+ sample_data += start_row; /* fold in the vertical offset once */ |
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
/* Load data into workspace, applying unsigned->signed conversion */ |
@@ -446,7 +524,7 @@ forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, |
METHODDEF(void) |
-convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace) |
+convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace) |
{ |
register FAST_FLOAT *workspaceptr; |
register JSAMPROW elemptr; |
@@ -455,7 +533,7 @@ convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * works |
workspaceptr = workspace; |
for (elemr = 0; elemr < DCTSIZE; elemr++) { |
elemptr = sample_data[elemr] + start_col; |
-#if DCTSIZE == 8 /* unroll the inner loop */ |
+#if DCTSIZE == 8 /* unroll the inner loop */ |
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
@@ -477,7 +555,7 @@ convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * works |
METHODDEF(void) |
-quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace) |
+quantize_float (JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace) |
{ |
register FAST_FLOAT temp; |
register int i; |
@@ -499,16 +577,16 @@ quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspa |
METHODDEF(void) |
-forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, |
- JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
- JDIMENSION start_row, JDIMENSION start_col, |
- JDIMENSION num_blocks) |
+forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info *compptr, |
+ JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
+ JDIMENSION start_row, JDIMENSION start_col, |
+ JDIMENSION num_blocks) |
/* This version is used for floating-point DCT implementations. */ |
{ |
/* This routine is heavily used, so it's worth coding it tightly. */ |
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
- FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; |
- FAST_FLOAT * workspace; |
+ FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no]; |
+ FAST_FLOAT *workspace; |
JDIMENSION bi; |
@@ -518,7 +596,7 @@ forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, |
float_quantize_method_ptr do_quantize = fdct->float_quantize; |
workspace = fdct->float_workspace; |
- sample_data += start_row; /* fold in the vertical offset once */ |
+ sample_data += start_row; /* fold in the vertical offset once */ |
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
/* Load data into workspace, applying unsigned->signed conversion */ |
@@ -547,7 +625,7 @@ jinit_forward_dct (j_compress_ptr cinfo) |
fdct = (my_fdct_ptr) |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- SIZEOF(my_fdct_controller)); |
+ sizeof(my_fdct_controller)); |
cinfo->fdct = (struct jpeg_forward_dct *) fdct; |
fdct->pub.start_pass = start_pass_fdctmgr; |
@@ -626,12 +704,12 @@ jinit_forward_dct (j_compress_ptr cinfo) |
if (cinfo->dct_method == JDCT_FLOAT) |
fdct->float_workspace = (FAST_FLOAT *) |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- SIZEOF(FAST_FLOAT) * DCTSIZE2); |
+ sizeof(FAST_FLOAT) * DCTSIZE2); |
else |
#endif |
fdct->workspace = (DCTELEM *) |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- SIZEOF(DCTELEM) * DCTSIZE2); |
+ sizeof(DCTELEM) * DCTSIZE2); |
/* Mark divisor tables unallocated */ |
for (i = 0; i < NUM_QUANT_TBLS; i++) { |