Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(759)

Side by Side Diff: simd/jidctfst-sse2.asm

Issue 1953443002: Update to libjpeg_turbo 1.4.90 (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/libjpeg_turbo.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « simd/jidctfst-mmx.asm ('k') | simd/jidctfst-sse2-64.asm » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 ;
2 ; jidctfst.asm - fast integer IDCT (SSE2)
3 ;
4 ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
5 ;
6 ; Based on
7 ; x86 SIMD extension for IJG JPEG library
8 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
9 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
10 ;
11 ; This file should be assembled with NASM (Netwide Assembler),
12 ; can *not* be assembled with Microsoft's MASM or any compatible
13 ; assembler (including Borland's Turbo Assembler).
14 ; NASM is available from http://nasm.sourceforge.net/ or
15 ; http://sourceforge.net/project/showfiles.php?group_id=6208
16 ;
17 ; This file contains a fast, not so accurate integer implementation of
18 ; the inverse DCT (Discrete Cosine Transform). The following code is
19 ; based directly on the IJG's original jidctfst.c; see the jidctfst.c
20 ; for more details.
21 ;
22 ; [TAB8]
23
24 %include "jsimdext.inc"
25 %include "jdct.inc"
26
27 ; --------------------------------------------------------------------------
28
29 %define CONST_BITS 8 ; 14 is also OK.
30 %define PASS1_BITS 2
31
32 %if IFAST_SCALE_BITS != PASS1_BITS
33 %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'."
34 %endif
35
36 %if CONST_BITS == 8
37 F_1_082 equ 277 ; FIX(1.082392200)
38 F_1_414 equ 362 ; FIX(1.414213562)
39 F_1_847 equ 473 ; FIX(1.847759065)
40 F_2_613 equ 669 ; FIX(2.613125930)
41 F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1)
42 %else
43 ; NASM cannot do compile-time arithmetic on floating-point constants.
44 %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n))
45 F_1_082 equ DESCALE(1162209775,30-CONST_BITS) ; FIX(1.082392200)
46 F_1_414 equ DESCALE(1518500249,30-CONST_BITS) ; FIX(1.414213562)
47 F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065)
48 F_2_613 equ DESCALE(2805822602,30-CONST_BITS) ; FIX(2.613125930)
49 F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1)
50 %endif
51
52 ; --------------------------------------------------------------------------
53 SECTION SEG_CONST
54
55 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
56 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
57
58 %define PRE_MULTIPLY_SCALE_BITS 2
59 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
60
61 alignz 16
62 global EXTN(jconst_idct_ifast_sse2)
63
64 EXTN(jconst_idct_ifast_sse2):
65
66 PW_F1414 times 8 dw F_1_414 << CONST_SHIFT
67 PW_F1847 times 8 dw F_1_847 << CONST_SHIFT
68 PW_MF1613 times 8 dw -F_1_613 << CONST_SHIFT
69 PW_F1082 times 8 dw F_1_082 << CONST_SHIFT
70 PB_CENTERJSAMP times 16 db CENTERJSAMPLE
71
72 alignz 16
73
74 ; --------------------------------------------------------------------------
75 SECTION SEG_TEXT
76 BITS 32
77 ;
78 ; Perform dequantization and inverse DCT on one block of coefficients.
79 ;
80 ; GLOBAL(void)
81 ; jsimd_idct_ifast_sse2 (void *dct_table, JCOEFPTR coef_block,
82 ; JSAMPARRAY output_buf, JDIMENSION output_col)
83 ;
84
85 %define dct_table(b) (b)+8 ; jpeg_component_info *compptr
86 %define coef_block(b) (b)+12 ; JCOEFPTR coef_block
87 %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf
88 %define output_col(b) (b)+20 ; JDIMENSION output_col
89
90 %define original_ebp ebp+0
91 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM]
92 %define WK_NUM 2
93
94 align 16
95 global EXTN(jsimd_idct_ifast_sse2)
96
97 EXTN(jsimd_idct_ifast_sse2):
98 push ebp
99 mov eax,esp ; eax = original ebp
100 sub esp, byte 4
101 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
102 mov [esp],eax
103 mov ebp,esp ; ebp = aligned ebp
104 lea esp, [wk(0)]
105 pushpic ebx
106 ; push ecx ; unused
107 ; push edx ; need not be preserved
108 push esi
109 push edi
110
111 get_GOT ebx ; get GOT address
112
113 ; ---- Pass 1: process columns from input.
114
115 ; mov eax, [original_ebp]
116 mov edx, POINTER [dct_table(eax)] ; quantptr
117 mov esi, JCOEFPTR [coef_block(eax)] ; inptr
118
119 %ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2
120 mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)]
121 or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)]
122 jnz near .columnDCT
123
124 movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)]
125 movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)]
126 por xmm0, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)]
127 por xmm1, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)]
128 por xmm0, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)]
129 por xmm1, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)]
130 por xmm0, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)]
131 por xmm1,xmm0
132 packsswb xmm1,xmm1
133 packsswb xmm1,xmm1
134 movd eax,xmm1
135 test eax,eax
136 jnz short .columnDCT
137
138 ; -- AC terms all zero
139
140 movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)]
141 pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
142
143 movdqa xmm7,xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07)
144 punpcklwd xmm0,xmm0 ; xmm0=(00 00 01 01 02 02 03 03)
145 punpckhwd xmm7,xmm7 ; xmm7=(04 04 05 05 06 06 07 07)
146
147 pshufd xmm6,xmm0,0x00 ; xmm6=col0=(00 00 00 00 00 00 00 00)
148 pshufd xmm2,xmm0,0x55 ; xmm2=col1=(01 01 01 01 01 01 01 01)
149 pshufd xmm5,xmm0,0xAA ; xmm5=col2=(02 02 02 02 02 02 02 02)
150 pshufd xmm0,xmm0,0xFF ; xmm0=col3=(03 03 03 03 03 03 03 03)
151 pshufd xmm1,xmm7,0x00 ; xmm1=col4=(04 04 04 04 04 04 04 04)
152 pshufd xmm4,xmm7,0x55 ; xmm4=col5=(05 05 05 05 05 05 05 05)
153 pshufd xmm3,xmm7,0xAA ; xmm3=col6=(06 06 06 06 06 06 06 06)
154 pshufd xmm7,xmm7,0xFF ; xmm7=col7=(07 07 07 07 07 07 07 07)
155
156 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=col1
157 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=col3
158 jmp near .column_end
159 alignx 16,7
160 %endif
161 .columnDCT:
162
163 ; -- Even part
164
165 movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)]
166 movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)]
167 pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)]
168 pmullw xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)]
169 movdqa xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)]
170 movdqa xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)]
171 pmullw xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)]
172 pmullw xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)]
173
174 movdqa xmm4,xmm0
175 movdqa xmm5,xmm1
176 psubw xmm0,xmm2 ; xmm0=tmp11
177 psubw xmm1,xmm3
178 paddw xmm4,xmm2 ; xmm4=tmp10
179 paddw xmm5,xmm3 ; xmm5=tmp13
180
181 psllw xmm1,PRE_MULTIPLY_SCALE_BITS
182 pmulhw xmm1,[GOTOFF(ebx,PW_F1414)]
183 psubw xmm1,xmm5 ; xmm1=tmp12
184
185 movdqa xmm6,xmm4
186 movdqa xmm7,xmm0
187 psubw xmm4,xmm5 ; xmm4=tmp3
188 psubw xmm0,xmm1 ; xmm0=tmp2
189 paddw xmm6,xmm5 ; xmm6=tmp0
190 paddw xmm7,xmm1 ; xmm7=tmp1
191
192 movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=tmp3
193 movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=tmp2
194
195 ; -- Odd part
196
197 movdqa xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)]
198 movdqa xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)]
199 pmullw xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)]
200 pmullw xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)]
201 movdqa xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)]
202 movdqa xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)]
203 pmullw xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)]
204 pmullw xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)]
205
206 movdqa xmm4,xmm2
207 movdqa xmm0,xmm5
208 psubw xmm2,xmm1 ; xmm2=z12
209 psubw xmm5,xmm3 ; xmm5=z10
210 paddw xmm4,xmm1 ; xmm4=z11
211 paddw xmm0,xmm3 ; xmm0=z13
212
213 movdqa xmm1,xmm5 ; xmm1=z10(unscaled)
214 psllw xmm2,PRE_MULTIPLY_SCALE_BITS
215 psllw xmm5,PRE_MULTIPLY_SCALE_BITS
216
217 movdqa xmm3,xmm4
218 psubw xmm4,xmm0
219 paddw xmm3,xmm0 ; xmm3=tmp7
220
221 psllw xmm4,PRE_MULTIPLY_SCALE_BITS
222 pmulhw xmm4,[GOTOFF(ebx,PW_F1414)] ; xmm4=tmp11
223
224 ; To avoid overflow...
225 ;
226 ; (Original)
227 ; tmp12 = -2.613125930 * z10 + z5;
228 ;
229 ; (This implementation)
230 ; tmp12 = (-1.613125930 - 1) * z10 + z5;
231 ; = -1.613125930 * z10 - z10 + z5;
232
233 movdqa xmm0,xmm5
234 paddw xmm5,xmm2
235 pmulhw xmm5,[GOTOFF(ebx,PW_F1847)] ; xmm5=z5
236 pmulhw xmm0,[GOTOFF(ebx,PW_MF1613)]
237 pmulhw xmm2,[GOTOFF(ebx,PW_F1082)]
238 psubw xmm0,xmm1
239 psubw xmm2,xmm5 ; xmm2=tmp10
240 paddw xmm0,xmm5 ; xmm0=tmp12
241
242 ; -- Final output stage
243
244 psubw xmm0,xmm3 ; xmm0=tmp6
245 movdqa xmm1,xmm6
246 movdqa xmm5,xmm7
247 paddw xmm6,xmm3 ; xmm6=data0=(00 01 02 03 04 05 06 07)
248 paddw xmm7,xmm0 ; xmm7=data1=(10 11 12 13 14 15 16 17)
249 psubw xmm1,xmm3 ; xmm1=data7=(70 71 72 73 74 75 76 77)
250 psubw xmm5,xmm0 ; xmm5=data6=(60 61 62 63 64 65 66 67)
251 psubw xmm4,xmm0 ; xmm4=tmp5
252
253 movdqa xmm3,xmm6 ; transpose coefficients(phase 1)
254 punpcklwd xmm6,xmm7 ; xmm6=(00 10 01 11 02 12 03 13)
255 punpckhwd xmm3,xmm7 ; xmm3=(04 14 05 15 06 16 07 17)
256 movdqa xmm0,xmm5 ; transpose coefficients(phase 1)
257 punpcklwd xmm5,xmm1 ; xmm5=(60 70 61 71 62 72 63 73)
258 punpckhwd xmm0,xmm1 ; xmm0=(64 74 65 75 66 76 67 77)
259
260 movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp2
261 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp3
262
263 movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(60 70 61 71 62 72 63 73)
264 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(64 74 65 75 66 76 67 77)
265
266 paddw xmm2,xmm4 ; xmm2=tmp4
267 movdqa xmm5,xmm7
268 movdqa xmm0,xmm1
269 paddw xmm7,xmm4 ; xmm7=data2=(20 21 22 23 24 25 26 27)
270 paddw xmm1,xmm2 ; xmm1=data4=(40 41 42 43 44 45 46 47)
271 psubw xmm5,xmm4 ; xmm5=data5=(50 51 52 53 54 55 56 57)
272 psubw xmm0,xmm2 ; xmm0=data3=(30 31 32 33 34 35 36 37)
273
274 movdqa xmm4,xmm7 ; transpose coefficients(phase 1)
275 punpcklwd xmm7,xmm0 ; xmm7=(20 30 21 31 22 32 23 33)
276 punpckhwd xmm4,xmm0 ; xmm4=(24 34 25 35 26 36 27 37)
277 movdqa xmm2,xmm1 ; transpose coefficients(phase 1)
278 punpcklwd xmm1,xmm5 ; xmm1=(40 50 41 51 42 52 43 53)
279 punpckhwd xmm2,xmm5 ; xmm2=(44 54 45 55 46 56 47 57)
280
281 movdqa xmm0,xmm3 ; transpose coefficients(phase 2)
282 punpckldq xmm3,xmm4 ; xmm3=(04 14 24 34 05 15 25 35)
283 punpckhdq xmm0,xmm4 ; xmm0=(06 16 26 36 07 17 27 37)
284 movdqa xmm5,xmm6 ; transpose coefficients(phase 2)
285 punpckldq xmm6,xmm7 ; xmm6=(00 10 20 30 01 11 21 31)
286 punpckhdq xmm5,xmm7 ; xmm5=(02 12 22 32 03 13 23 33)
287
288 movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(60 70 61 71 62 72 63 73)
289 movdqa xmm7, XMMWORD [wk(1)] ; xmm7=(64 74 65 75 66 76 67 77)
290
291 movdqa XMMWORD [wk(0)], xmm3 ; wk(0)=(04 14 24 34 05 15 25 35)
292 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(06 16 26 36 07 17 27 37)
293
294 movdqa xmm3,xmm1 ; transpose coefficients(phase 2)
295 punpckldq xmm1,xmm4 ; xmm1=(40 50 60 70 41 51 61 71)
296 punpckhdq xmm3,xmm4 ; xmm3=(42 52 62 72 43 53 63 73)
297 movdqa xmm0,xmm2 ; transpose coefficients(phase 2)
298 punpckldq xmm2,xmm7 ; xmm2=(44 54 64 74 45 55 65 75)
299 punpckhdq xmm0,xmm7 ; xmm0=(46 56 66 76 47 57 67 77)
300
301 movdqa xmm4,xmm6 ; transpose coefficients(phase 3)
302 punpcklqdq xmm6,xmm1 ; xmm6=col0=(00 10 20 30 40 50 60 70)
303 punpckhqdq xmm4,xmm1 ; xmm4=col1=(01 11 21 31 41 51 61 71)
304 movdqa xmm7,xmm5 ; transpose coefficients(phase 3)
305 punpcklqdq xmm5,xmm3 ; xmm5=col2=(02 12 22 32 42 52 62 72)
306 punpckhqdq xmm7,xmm3 ; xmm7=col3=(03 13 23 33 43 53 63 73)
307
308 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(04 14 24 34 05 15 25 35)
309 movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(06 16 26 36 07 17 27 37)
310
311 movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=col1
312 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=col3
313
314 movdqa xmm4,xmm1 ; transpose coefficients(phase 3)
315 punpcklqdq xmm1,xmm2 ; xmm1=col4=(04 14 24 34 44 54 64 74)
316 punpckhqdq xmm4,xmm2 ; xmm4=col5=(05 15 25 35 45 55 65 75)
317 movdqa xmm7,xmm3 ; transpose coefficients(phase 3)
318 punpcklqdq xmm3,xmm0 ; xmm3=col6=(06 16 26 36 46 56 66 76)
319 punpckhqdq xmm7,xmm0 ; xmm7=col7=(07 17 27 37 47 57 67 77)
320 .column_end:
321
322 ; -- Prefetch the next coefficient block
323
324 prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32]
325 prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32]
326 prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32]
327 prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32]
328
329 ; ---- Pass 2: process rows from work array, store into output array.
330
331 mov eax, [original_ebp]
332 mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *)
333 mov eax, JDIMENSION [output_col(eax)]
334
335 ; -- Even part
336
337 ; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6
338
339 movdqa xmm2,xmm6
340 movdqa xmm0,xmm5
341 psubw xmm6,xmm1 ; xmm6=tmp11
342 psubw xmm5,xmm3
343 paddw xmm2,xmm1 ; xmm2=tmp10
344 paddw xmm0,xmm3 ; xmm0=tmp13
345
346 psllw xmm5,PRE_MULTIPLY_SCALE_BITS
347 pmulhw xmm5,[GOTOFF(ebx,PW_F1414)]
348 psubw xmm5,xmm0 ; xmm5=tmp12
349
350 movdqa xmm1,xmm2
351 movdqa xmm3,xmm6
352 psubw xmm2,xmm0 ; xmm2=tmp3
353 psubw xmm6,xmm5 ; xmm6=tmp2
354 paddw xmm1,xmm0 ; xmm1=tmp0
355 paddw xmm3,xmm5 ; xmm3=tmp1
356
357 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=col1
358 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=col3
359
360 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp3
361 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp2
362
363 ; -- Odd part
364
365 ; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7
366
367 movdqa xmm2,xmm0
368 movdqa xmm6,xmm4
369 psubw xmm0,xmm7 ; xmm0=z12
370 psubw xmm4,xmm5 ; xmm4=z10
371 paddw xmm2,xmm7 ; xmm2=z11
372 paddw xmm6,xmm5 ; xmm6=z13
373
374 movdqa xmm7,xmm4 ; xmm7=z10(unscaled)
375 psllw xmm0,PRE_MULTIPLY_SCALE_BITS
376 psllw xmm4,PRE_MULTIPLY_SCALE_BITS
377
378 movdqa xmm5,xmm2
379 psubw xmm2,xmm6
380 paddw xmm5,xmm6 ; xmm5=tmp7
381
382 psllw xmm2,PRE_MULTIPLY_SCALE_BITS
383 pmulhw xmm2,[GOTOFF(ebx,PW_F1414)] ; xmm2=tmp11
384
385 ; To avoid overflow...
386 ;
387 ; (Original)
388 ; tmp12 = -2.613125930 * z10 + z5;
389 ;
390 ; (This implementation)
391 ; tmp12 = (-1.613125930 - 1) * z10 + z5;
392 ; = -1.613125930 * z10 - z10 + z5;
393
394 movdqa xmm6,xmm4
395 paddw xmm4,xmm0
396 pmulhw xmm4,[GOTOFF(ebx,PW_F1847)] ; xmm4=z5
397 pmulhw xmm6,[GOTOFF(ebx,PW_MF1613)]
398 pmulhw xmm0,[GOTOFF(ebx,PW_F1082)]
399 psubw xmm6,xmm7
400 psubw xmm0,xmm4 ; xmm0=tmp10
401 paddw xmm6,xmm4 ; xmm6=tmp12
402
403 ; -- Final output stage
404
405 psubw xmm6,xmm5 ; xmm6=tmp6
406 movdqa xmm7,xmm1
407 movdqa xmm4,xmm3
408 paddw xmm1,xmm5 ; xmm1=data0=(00 10 20 30 40 50 60 70)
409 paddw xmm3,xmm6 ; xmm3=data1=(01 11 21 31 41 51 61 71)
410 psraw xmm1,(PASS1_BITS+3) ; descale
411 psraw xmm3,(PASS1_BITS+3) ; descale
412 psubw xmm7,xmm5 ; xmm7=data7=(07 17 27 37 47 57 67 77)
413 psubw xmm4,xmm6 ; xmm4=data6=(06 16 26 36 46 56 66 76)
414 psraw xmm7,(PASS1_BITS+3) ; descale
415 psraw xmm4,(PASS1_BITS+3) ; descale
416 psubw xmm2,xmm6 ; xmm2=tmp5
417
418 packsswb xmm1,xmm4 ; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 5 6 66 76)
419 packsswb xmm3,xmm7 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 5 7 67 77)
420
421 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp2
422 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=tmp3
423
424 paddw xmm0,xmm2 ; xmm0=tmp4
425 movdqa xmm4,xmm5
426 movdqa xmm7,xmm6
427 paddw xmm5,xmm2 ; xmm5=data2=(02 12 22 32 42 52 62 72)
428 paddw xmm6,xmm0 ; xmm6=data4=(04 14 24 34 44 54 64 74)
429 psraw xmm5,(PASS1_BITS+3) ; descale
430 psraw xmm6,(PASS1_BITS+3) ; descale
431 psubw xmm4,xmm2 ; xmm4=data5=(05 15 25 35 45 55 65 75)
432 psubw xmm7,xmm0 ; xmm7=data3=(03 13 23 33 43 53 63 73)
433 psraw xmm4,(PASS1_BITS+3) ; descale
434 psraw xmm7,(PASS1_BITS+3) ; descale
435
436 movdqa xmm2,[GOTOFF(ebx,PB_CENTERJSAMP)] ; xmm2=[PB_CENTERJSAMP]
437
438 packsswb xmm5,xmm6 ; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 5 4 64 74)
439 packsswb xmm7,xmm4 ; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 5 5 65 75)
440
441 paddb xmm1,xmm2
442 paddb xmm3,xmm2
443 paddb xmm5,xmm2
444 paddb xmm7,xmm2
445
446 movdqa xmm0,xmm1 ; transpose coefficients(phase 1)
447 punpcklbw xmm1,xmm3 ; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 6 1 70 71)
448 punpckhbw xmm0,xmm3 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 6 7 76 77)
449 movdqa xmm6,xmm5 ; transpose coefficients(phase 1)
450 punpcklbw xmm5,xmm7 ; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 6 3 72 73)
451 punpckhbw xmm6,xmm7 ; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 6 5 74 75)
452
453 movdqa xmm4,xmm1 ; transpose coefficients(phase 2)
454 punpcklwd xmm1,xmm5 ; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 3 1 32 33)
455 punpckhwd xmm4,xmm5 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 7 1 72 73)
456 movdqa xmm2,xmm6 ; transpose coefficients(phase 2)
457 punpcklwd xmm6,xmm0 ; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 3 5 36 37)
458 punpckhwd xmm2,xmm0 ; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 7 5 76 77)
459
460 movdqa xmm3,xmm1 ; transpose coefficients(phase 3)
461 punpckldq xmm1,xmm6 ; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 1 5 16 17)
462 punpckhdq xmm3,xmm6 ; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 3 5 36 37)
463 movdqa xmm7,xmm4 ; transpose coefficients(phase 3)
464 punpckldq xmm4,xmm2 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 5 5 56 57)
465 punpckhdq xmm7,xmm2 ; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 7 5 76 77)
466
467 pshufd xmm5,xmm1,0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 0 5 06 07)
468 pshufd xmm0,xmm3,0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 2 5 26 27)
469 pshufd xmm6,xmm4,0x4E ; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 4 5 46 47)
470 pshufd xmm2,xmm7,0x4E ; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 6 5 66 67)
471
472 mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW]
473 mov esi, JSAMPROW [edi+2*SIZEOF_JSAMPROW]
474 movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm1
475 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm3
476 mov edx, JSAMPROW [edi+4*SIZEOF_JSAMPROW]
477 mov esi, JSAMPROW [edi+6*SIZEOF_JSAMPROW]
478 movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm4
479 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm7
480
481 mov edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW]
482 mov esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW]
483 movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm5
484 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm0
485 mov edx, JSAMPROW [edi+5*SIZEOF_JSAMPROW]
486 mov esi, JSAMPROW [edi+7*SIZEOF_JSAMPROW]
487 movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6
488 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm2
489
490 pop edi
491 pop esi
492 ; pop edx ; need not be preserved
493 ; pop ecx ; unused
494 poppic ebx
495 mov esp,ebp ; esp <- aligned ebp
496 pop esp ; esp <- original ebp
497 pop ebp
498 ret
499
500 ; For some reason, the OS X linker does not honor the request to align the
501 ; segment unless we do this.
502 align 16
OLDNEW
« no previous file with comments | « simd/jidctfst-mmx.asm ('k') | simd/jidctfst-sse2-64.asm » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698