Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(66)

Side by Side Diff: simd/jfss2fst.asm

Issue 1953443002: Update to libjpeg_turbo 1.4.90 (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/libjpeg_turbo.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « simd/jfmmxint.asm ('k') | simd/jfss2fst-64.asm » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 ;
2 ; jfss2fst.asm - fast integer FDCT (SSE2)
3 ;
4 ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
5 ;
6 ; Based on
7 ; x86 SIMD extension for IJG JPEG library
8 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
9 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
10 ;
11 ; This file should be assembled with NASM (Netwide Assembler),
12 ; can *not* be assembled with Microsoft's MASM or any compatible
13 ; assembler (including Borland's Turbo Assembler).
14 ; NASM is available from http://nasm.sourceforge.net/ or
15 ; http://sourceforge.net/project/showfiles.php?group_id=6208
16 ;
17 ; This file contains a fast, not so accurate integer implementation of
18 ; the forward DCT (Discrete Cosine Transform). The following code is
19 ; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c
20 ; for more details.
21 ;
22 ; [TAB8]
23
24 %include "jsimdext.inc"
25 %include "jdct.inc"
26
27 ; --------------------------------------------------------------------------
28
29 %define CONST_BITS 8 ; 14 is also OK.
30
31 %if CONST_BITS == 8
32 F_0_382 equ 98 ; FIX(0.382683433)
33 F_0_541 equ 139 ; FIX(0.541196100)
34 F_0_707 equ 181 ; FIX(0.707106781)
35 F_1_306 equ 334 ; FIX(1.306562965)
36 %else
37 ; NASM cannot do compile-time arithmetic on floating-point constants.
38 %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n))
39 F_0_382 equ DESCALE( 410903207,30-CONST_BITS) ; FIX(0.382683433)
40 F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100)
41 F_0_707 equ DESCALE( 759250124,30-CONST_BITS) ; FIX(0.707106781)
42 F_1_306 equ DESCALE(1402911301,30-CONST_BITS) ; FIX(1.306562965)
43 %endif
44
45 ; --------------------------------------------------------------------------
46 SECTION SEG_CONST
47
48 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
49 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
50
51 %define PRE_MULTIPLY_SCALE_BITS 2
52 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
53
54 alignz 16
55 global EXTN(jconst_fdct_ifast_sse2) PRIVATE
56
57 EXTN(jconst_fdct_ifast_sse2):
58
59 PW_F0707 times 8 dw F_0_707 << CONST_SHIFT
60 PW_F0382 times 8 dw F_0_382 << CONST_SHIFT
61 PW_F0541 times 8 dw F_0_541 << CONST_SHIFT
62 PW_F1306 times 8 dw F_1_306 << CONST_SHIFT
63
64 alignz 16
65
66 ; --------------------------------------------------------------------------
67 SECTION SEG_TEXT
68 BITS 32
69 ;
70 ; Perform the forward DCT on one block of samples.
71 ;
72 ; GLOBAL(void)
73 ; jsimd_fdct_ifast_sse2 (DCTELEM * data)
74 ;
75
76 %define data(b) (b)+8 ; DCTELEM * data
77
78 %define original_ebp ebp+0
79 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM]
80 %define WK_NUM 2
81
82 align 16
83 global EXTN(jsimd_fdct_ifast_sse2) PRIVATE
84
85 EXTN(jsimd_fdct_ifast_sse2):
86 push ebp
87 mov eax,esp ; eax = original ebp
88 sub esp, byte 4
89 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
90 mov [esp],eax
91 mov ebp,esp ; ebp = aligned ebp
92 lea esp, [wk(0)]
93 pushpic ebx
94 ; push ecx ; unused
95 ; push edx ; need not be preserved
96 ; push esi ; unused
97 ; push edi ; unused
98
99 get_GOT ebx ; get GOT address
100
101 ; ---- Pass 1: process rows.
102
103 mov edx, POINTER [data(eax)] ; (DCTELEM *)
104
105 movdqa xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)]
106 movdqa xmm1, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)]
107 movdqa xmm2, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)]
108 movdqa xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)]
109
110 ; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27)
111 ; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37)
112
113 movdqa xmm4,xmm0 ; transpose coefficients(phase 1)
114 punpcklwd xmm0,xmm1 ; xmm0=(00 10 01 11 02 12 03 13)
115 punpckhwd xmm4,xmm1 ; xmm4=(04 14 05 15 06 16 07 17)
116 movdqa xmm5,xmm2 ; transpose coefficients(phase 1)
117 punpcklwd xmm2,xmm3 ; xmm2=(20 30 21 31 22 32 23 33)
118 punpckhwd xmm5,xmm3 ; xmm5=(24 34 25 35 26 36 27 37)
119
120 movdqa xmm6, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)]
121 movdqa xmm7, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)]
122 movdqa xmm1, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)]
123 movdqa xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)]
124
125 ; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62)
126 ; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63)
127
128 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33)
129 movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37)
130
131 movdqa xmm2,xmm6 ; transpose coefficients(phase 1)
132 punpcklwd xmm6,xmm7 ; xmm6=(40 50 41 51 42 52 43 53)
133 punpckhwd xmm2,xmm7 ; xmm2=(44 54 45 55 46 56 47 57)
134 movdqa xmm5,xmm1 ; transpose coefficients(phase 1)
135 punpcklwd xmm1,xmm3 ; xmm1=(60 70 61 71 62 72 63 73)
136 punpckhwd xmm5,xmm3 ; xmm5=(64 74 65 75 66 76 67 77)
137
138 movdqa xmm7,xmm6 ; transpose coefficients(phase 2)
139 punpckldq xmm6,xmm1 ; xmm6=(40 50 60 70 41 51 61 71)
140 punpckhdq xmm7,xmm1 ; xmm7=(42 52 62 72 43 53 63 73)
141 movdqa xmm3,xmm2 ; transpose coefficients(phase 2)
142 punpckldq xmm2,xmm5 ; xmm2=(44 54 64 74 45 55 65 75)
143 punpckhdq xmm3,xmm5 ; xmm3=(46 56 66 76 47 57 67 77)
144
145 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33)
146 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37)
147 movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(42 52 62 72 43 53 63 73)
148 movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=(44 54 64 74 45 55 65 75)
149
150 movdqa xmm7,xmm0 ; transpose coefficients(phase 2)
151 punpckldq xmm0,xmm1 ; xmm0=(00 10 20 30 01 11 21 31)
152 punpckhdq xmm7,xmm1 ; xmm7=(02 12 22 32 03 13 23 33)
153 movdqa xmm2,xmm4 ; transpose coefficients(phase 2)
154 punpckldq xmm4,xmm5 ; xmm4=(04 14 24 34 05 15 25 35)
155 punpckhdq xmm2,xmm5 ; xmm2=(06 16 26 36 07 17 27 37)
156
157 movdqa xmm1,xmm0 ; transpose coefficients(phase 3)
158 punpcklqdq xmm0,xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0
159 punpckhqdq xmm1,xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1
160 movdqa xmm5,xmm2 ; transpose coefficients(phase 3)
161 punpcklqdq xmm2,xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6
162 punpckhqdq xmm5,xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7
163
164 movdqa xmm6,xmm1
165 movdqa xmm3,xmm0
166 psubw xmm1,xmm2 ; xmm1=data1-data6=tmp6
167 psubw xmm0,xmm5 ; xmm0=data0-data7=tmp7
168 paddw xmm6,xmm2 ; xmm6=data1+data6=tmp1
169 paddw xmm3,xmm5 ; xmm3=data0+data7=tmp0
170
171 movdqa xmm2, XMMWORD [wk(0)] ; xmm2=(42 52 62 72 43 53 63 73)
172 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(44 54 64 74 45 55 65 75)
173 movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6
174 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7
175
176 movdqa xmm1,xmm7 ; transpose coefficients(phase 3)
177 punpcklqdq xmm7,xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2
178 punpckhqdq xmm1,xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3
179 movdqa xmm0,xmm4 ; transpose coefficients(phase 3)
180 punpcklqdq xmm4,xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4
181 punpckhqdq xmm0,xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5
182
183 movdqa xmm2,xmm1
184 movdqa xmm5,xmm7
185 paddw xmm1,xmm4 ; xmm1=data3+data4=tmp3
186 paddw xmm7,xmm0 ; xmm7=data2+data5=tmp2
187 psubw xmm2,xmm4 ; xmm2=data3-data4=tmp4
188 psubw xmm5,xmm0 ; xmm5=data2-data5=tmp5
189
190 ; -- Even part
191
192 movdqa xmm4,xmm3
193 movdqa xmm0,xmm6
194 psubw xmm3,xmm1 ; xmm3=tmp13
195 psubw xmm6,xmm7 ; xmm6=tmp12
196 paddw xmm4,xmm1 ; xmm4=tmp10
197 paddw xmm0,xmm7 ; xmm0=tmp11
198
199 paddw xmm6,xmm3
200 psllw xmm6,PRE_MULTIPLY_SCALE_BITS
201 pmulhw xmm6,[GOTOFF(ebx,PW_F0707)] ; xmm6=z1
202
203 movdqa xmm1,xmm4
204 movdqa xmm7,xmm3
205 psubw xmm4,xmm0 ; xmm4=data4
206 psubw xmm3,xmm6 ; xmm3=data6
207 paddw xmm1,xmm0 ; xmm1=data0
208 paddw xmm7,xmm6 ; xmm7=data2
209
210 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=tmp6
211 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp7
212 movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=data4
213 movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=data6
214
215 ; -- Odd part
216
217 paddw xmm2,xmm5 ; xmm2=tmp10
218 paddw xmm5,xmm0 ; xmm5=tmp11
219 paddw xmm0,xmm6 ; xmm0=tmp12, xmm6=tmp7
220
221 psllw xmm2,PRE_MULTIPLY_SCALE_BITS
222 psllw xmm0,PRE_MULTIPLY_SCALE_BITS
223
224 psllw xmm5,PRE_MULTIPLY_SCALE_BITS
225 pmulhw xmm5,[GOTOFF(ebx,PW_F0707)] ; xmm5=z3
226
227 movdqa xmm4,xmm2 ; xmm4=tmp10
228 psubw xmm2,xmm0
229 pmulhw xmm2,[GOTOFF(ebx,PW_F0382)] ; xmm2=z5
230 pmulhw xmm4,[GOTOFF(ebx,PW_F0541)] ; xmm4=MULTIPLY(tmp10,FIX_0_541196)
231 pmulhw xmm0,[GOTOFF(ebx,PW_F1306)] ; xmm0=MULTIPLY(tmp12,FIX_1_306562)
232 paddw xmm4,xmm2 ; xmm4=z2
233 paddw xmm0,xmm2 ; xmm0=z4
234
235 movdqa xmm3,xmm6
236 psubw xmm6,xmm5 ; xmm6=z13
237 paddw xmm3,xmm5 ; xmm3=z11
238
239 movdqa xmm2,xmm6
240 movdqa xmm5,xmm3
241 psubw xmm6,xmm4 ; xmm6=data3
242 psubw xmm3,xmm0 ; xmm3=data7
243 paddw xmm2,xmm4 ; xmm2=data5
244 paddw xmm5,xmm0 ; xmm5=data1
245
246 ; ---- Pass 2: process columns.
247
248 ; mov edx, POINTER [data(eax)] ; (DCTELEM *)
249
250 ; xmm1=(00 10 20 30 40 50 60 70), xmm7=(02 12 22 32 42 52 62 72)
251 ; xmm5=(01 11 21 31 41 51 61 71), xmm6=(03 13 23 33 43 53 63 73)
252
253 movdqa xmm4,xmm1 ; transpose coefficients(phase 1)
254 punpcklwd xmm1,xmm5 ; xmm1=(00 01 10 11 20 21 30 31)
255 punpckhwd xmm4,xmm5 ; xmm4=(40 41 50 51 60 61 70 71)
256 movdqa xmm0,xmm7 ; transpose coefficients(phase 1)
257 punpcklwd xmm7,xmm6 ; xmm7=(02 03 12 13 22 23 32 33)
258 punpckhwd xmm0,xmm6 ; xmm0=(42 43 52 53 62 63 72 73)
259
260 movdqa xmm5, XMMWORD [wk(0)] ; xmm5=col4
261 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=col6
262
263 ; xmm5=(04 14 24 34 44 54 64 74), xmm6=(06 16 26 36 46 56 66 76)
264 ; xmm2=(05 15 25 35 45 55 65 75), xmm3=(07 17 27 37 47 57 67 77)
265
266 movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(02 03 12 13 22 23 32 33)
267 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(42 43 52 53 62 63 72 73)
268
269 movdqa xmm7,xmm5 ; transpose coefficients(phase 1)
270 punpcklwd xmm5,xmm2 ; xmm5=(04 05 14 15 24 25 34 35)
271 punpckhwd xmm7,xmm2 ; xmm7=(44 45 54 55 64 65 74 75)
272 movdqa xmm0,xmm6 ; transpose coefficients(phase 1)
273 punpcklwd xmm6,xmm3 ; xmm6=(06 07 16 17 26 27 36 37)
274 punpckhwd xmm0,xmm3 ; xmm0=(46 47 56 57 66 67 76 77)
275
276 movdqa xmm2,xmm5 ; transpose coefficients(phase 2)
277 punpckldq xmm5,xmm6 ; xmm5=(04 05 06 07 14 15 16 17)
278 punpckhdq xmm2,xmm6 ; xmm2=(24 25 26 27 34 35 36 37)
279 movdqa xmm3,xmm7 ; transpose coefficients(phase 2)
280 punpckldq xmm7,xmm0 ; xmm7=(44 45 46 47 54 55 56 57)
281 punpckhdq xmm3,xmm0 ; xmm3=(64 65 66 67 74 75 76 77)
282
283 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=(02 03 12 13 22 23 32 33)
284 movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(42 43 52 53 62 63 72 73)
285 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(24 25 26 27 34 35 36 37)
286 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(44 45 46 47 54 55 56 57)
287
288 movdqa xmm2,xmm1 ; transpose coefficients(phase 2)
289 punpckldq xmm1,xmm6 ; xmm1=(00 01 02 03 10 11 12 13)
290 punpckhdq xmm2,xmm6 ; xmm2=(20 21 22 23 30 31 32 33)
291 movdqa xmm7,xmm4 ; transpose coefficients(phase 2)
292 punpckldq xmm4,xmm0 ; xmm4=(40 41 42 43 50 51 52 53)
293 punpckhdq xmm7,xmm0 ; xmm7=(60 61 62 63 70 71 72 73)
294
295 movdqa xmm6,xmm1 ; transpose coefficients(phase 3)
296 punpcklqdq xmm1,xmm5 ; xmm1=(00 01 02 03 04 05 06 07)=data0
297 punpckhqdq xmm6,xmm5 ; xmm6=(10 11 12 13 14 15 16 17)=data1
298 movdqa xmm0,xmm7 ; transpose coefficients(phase 3)
299 punpcklqdq xmm7,xmm3 ; xmm7=(60 61 62 63 64 65 66 67)=data6
300 punpckhqdq xmm0,xmm3 ; xmm0=(70 71 72 73 74 75 76 77)=data7
301
302 movdqa xmm5,xmm6
303 movdqa xmm3,xmm1
304 psubw xmm6,xmm7 ; xmm6=data1-data6=tmp6
305 psubw xmm1,xmm0 ; xmm1=data0-data7=tmp7
306 paddw xmm5,xmm7 ; xmm5=data1+data6=tmp1
307 paddw xmm3,xmm0 ; xmm3=data0+data7=tmp0
308
309 movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(24 25 26 27 34 35 36 37)
310 movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(44 45 46 47 54 55 56 57)
311 movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=tmp6
312 movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=tmp7
313
314 movdqa xmm6,xmm2 ; transpose coefficients(phase 3)
315 punpcklqdq xmm2,xmm7 ; xmm2=(20 21 22 23 24 25 26 27)=data2
316 punpckhqdq xmm6,xmm7 ; xmm6=(30 31 32 33 34 35 36 37)=data3
317 movdqa xmm1,xmm4 ; transpose coefficients(phase 3)
318 punpcklqdq xmm4,xmm0 ; xmm4=(40 41 42 43 44 45 46 47)=data4
319 punpckhqdq xmm1,xmm0 ; xmm1=(50 51 52 53 54 55 56 57)=data5
320
321 movdqa xmm7,xmm6
322 movdqa xmm0,xmm2
323 paddw xmm6,xmm4 ; xmm6=data3+data4=tmp3
324 paddw xmm2,xmm1 ; xmm2=data2+data5=tmp2
325 psubw xmm7,xmm4 ; xmm7=data3-data4=tmp4
326 psubw xmm0,xmm1 ; xmm0=data2-data5=tmp5
327
328 ; -- Even part
329
330 movdqa xmm4,xmm3
331 movdqa xmm1,xmm5
332 psubw xmm3,xmm6 ; xmm3=tmp13
333 psubw xmm5,xmm2 ; xmm5=tmp12
334 paddw xmm4,xmm6 ; xmm4=tmp10
335 paddw xmm1,xmm2 ; xmm1=tmp11
336
337 paddw xmm5,xmm3
338 psllw xmm5,PRE_MULTIPLY_SCALE_BITS
339 pmulhw xmm5,[GOTOFF(ebx,PW_F0707)] ; xmm5=z1
340
341 movdqa xmm6,xmm4
342 movdqa xmm2,xmm3
343 psubw xmm4,xmm1 ; xmm4=data4
344 psubw xmm3,xmm5 ; xmm3=data6
345 paddw xmm6,xmm1 ; xmm6=data0
346 paddw xmm2,xmm5 ; xmm2=data2
347
348 movdqa XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)], xmm4
349 movdqa XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)], xmm3
350 movdqa XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)], xmm6
351 movdqa XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)], xmm2
352
353 ; -- Odd part
354
355 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=tmp6
356 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7
357
358 paddw xmm7,xmm0 ; xmm7=tmp10
359 paddw xmm0,xmm1 ; xmm0=tmp11
360 paddw xmm1,xmm5 ; xmm1=tmp12, xmm5=tmp7
361
362 psllw xmm7,PRE_MULTIPLY_SCALE_BITS
363 psllw xmm1,PRE_MULTIPLY_SCALE_BITS
364
365 psllw xmm0,PRE_MULTIPLY_SCALE_BITS
366 pmulhw xmm0,[GOTOFF(ebx,PW_F0707)] ; xmm0=z3
367
368 movdqa xmm4,xmm7 ; xmm4=tmp10
369 psubw xmm7,xmm1
370 pmulhw xmm7,[GOTOFF(ebx,PW_F0382)] ; xmm7=z5
371 pmulhw xmm4,[GOTOFF(ebx,PW_F0541)] ; xmm4=MULTIPLY(tmp10,FIX_0_541196)
372 pmulhw xmm1,[GOTOFF(ebx,PW_F1306)] ; xmm1=MULTIPLY(tmp12,FIX_1_306562)
373 paddw xmm4,xmm7 ; xmm4=z2
374 paddw xmm1,xmm7 ; xmm1=z4
375
376 movdqa xmm3,xmm5
377 psubw xmm5,xmm0 ; xmm5=z13
378 paddw xmm3,xmm0 ; xmm3=z11
379
380 movdqa xmm6,xmm5
381 movdqa xmm2,xmm3
382 psubw xmm5,xmm4 ; xmm5=data3
383 psubw xmm3,xmm1 ; xmm3=data7
384 paddw xmm6,xmm4 ; xmm6=data5
385 paddw xmm2,xmm1 ; xmm2=data1
386
387 movdqa XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)], xmm5
388 movdqa XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)], xmm3
389 movdqa XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)], xmm6
390 movdqa XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)], xmm2
391
392 ; pop edi ; unused
393 ; pop esi ; unused
394 ; pop edx ; need not be preserved
395 ; pop ecx ; unused
396 poppic ebx
397 mov esp,ebp ; esp <- aligned ebp
398 pop esp ; esp <- original ebp
399 pop ebp
400 ret
401
402 ; For some reason, the OS X linker does not honor the request to align the
403 ; segment unless we do this.
404 align 16
OLDNEW
« no previous file with comments | « simd/jfmmxint.asm ('k') | simd/jfss2fst-64.asm » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698