OLD | NEW |
(Empty) | |
| 1 ; |
| 2 ; jchuff-sse2.asm - Huffman entropy encoding (SSE2) |
| 3 ; |
| 4 ; Copyright 2009-2011, 2014-2016 D. R. Commander. |
| 5 ; Copyright 2015 Matthieu Darbois |
| 6 ; |
| 7 ; Based on |
| 8 ; x86 SIMD extension for IJG JPEG library |
| 9 ; Copyright (C) 1999-2006, MIYASAKA Masaru. |
| 10 ; For conditions of distribution and use, see copyright notice in jsimdext.inc |
| 11 ; |
| 12 ; This file should be assembled with NASM (Netwide Assembler), |
| 13 ; can *not* be assembled with Microsoft's MASM or any compatible |
| 14 ; assembler (including Borland's Turbo Assembler). |
| 15 ; NASM is available from http://nasm.sourceforge.net/ or |
| 16 ; http://sourceforge.net/project/showfiles.php?group_id=6208 |
| 17 ; |
| 18 ; This file contains an SSE2 implementation for Huffman coding of one block. |
| 19 ; The following code is based directly on jchuff.c; see jchuff.c for more |
| 20 ; details. |
| 21 ; |
| 22 ; [TAB8] |
| 23 |
| 24 %include "jsimdext.inc" |
| 25 |
| 26 ; -------------------------------------------------------------------------- |
| 27 SECTION SEG_CONST |
| 28 |
| 29 alignz 16 |
| 30 global EXTN(jconst_huff_encode_one_block) |
| 31 |
| 32 EXTN(jconst_huff_encode_one_block): |
| 33 |
| 34 %include "jpeg_nbits_table.inc" |
| 35 |
| 36 alignz 16 |
| 37 |
| 38 ; -------------------------------------------------------------------------- |
| 39 SECTION SEG_TEXT |
| 40 BITS 32 |
| 41 |
| 42 ; These macros perform the same task as the emit_bits() function in the |
| 43 ; original libjpeg code. In addition to reducing overhead by explicitly |
| 44 ; inlining the code, additional performance is achieved by taking into |
| 45 ; account the size of the bit buffer and waiting until it is almost full |
| 46 ; before emptying it. This mostly benefits 64-bit platforms, since 6 |
| 47 ; bytes can be stored in a 64-bit bit buffer before it has to be emptied. |
| 48 |
| 49 %macro EMIT_BYTE 0 |
| 50 sub put_bits, 8 ; put_bits -= 8; |
| 51 mov edx, put_buffer |
| 52 mov ecx, put_bits |
| 53 shr edx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits); |
| 54 mov byte [eax], dl ; *buffer++ = c; |
| 55 add eax, 1 |
| 56 cmp dl, 0xFF ; need to stuff a zero byte? |
| 57 jne %%.EMIT_BYTE_END |
| 58 mov byte [eax], 0 ; *buffer++ = 0; |
| 59 add eax, 1 |
| 60 %%.EMIT_BYTE_END: |
| 61 %endmacro |
| 62 |
| 63 %macro PUT_BITS 1 |
| 64 add put_bits, ecx ; put_bits += size; |
| 65 shl put_buffer, cl ; put_buffer = (put_buffer << size); |
| 66 or put_buffer, %1 |
| 67 %endmacro |
| 68 |
| 69 %macro CHECKBUF15 0 |
| 70 cmp put_bits, 16 ; if (put_bits > 31) { |
| 71 jl %%.CHECKBUF15_END |
| 72 mov eax, POINTER [esp+buffer] |
| 73 EMIT_BYTE |
| 74 EMIT_BYTE |
| 75 mov POINTER [esp+buffer], eax |
| 76 %%.CHECKBUF15_END: |
| 77 %endmacro |
| 78 |
| 79 %macro EMIT_BITS 1 |
| 80 PUT_BITS %1 |
| 81 CHECKBUF15 |
| 82 %endmacro |
| 83 |
| 84 %macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3) |
| 85 pxor xmm4, xmm4 ; __m128i neg = _mm_setzero_si128(); |
| 86 pxor xmm5, xmm5 ; __m128i neg = _mm_setzero_si128(); |
| 87 pxor xmm6, xmm6 ; __m128i neg = _mm_setzero_si128(); |
| 88 pxor xmm7, xmm7 ; __m128i neg = _mm_setzero_si128(); |
| 89 pinsrw %34, word [esi + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0]
; |
| 90 pinsrw %35, word [esi + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8]
; |
| 91 pinsrw %36, word [esi + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno1
6]; |
| 92 pinsrw %37, word [esi + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno2
4]; |
| 93 pinsrw %34, word [esi + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1]
; |
| 94 pinsrw %35, word [esi + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9]
; |
| 95 pinsrw %36, word [esi + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno1
7]; |
| 96 pinsrw %37, word [esi + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno2
5]; |
| 97 pinsrw %34, word [esi + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2]
; |
| 98 pinsrw %35, word [esi + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno1
0]; |
| 99 pinsrw %36, word [esi + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno1
8]; |
| 100 pinsrw %37, word [esi + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno2
6]; |
| 101 pinsrw %34, word [esi + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3]
; |
| 102 pinsrw %35, word [esi + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno1
1]; |
| 103 pinsrw %36, word [esi + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno1
9]; |
| 104 pinsrw %37, word [esi + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno2
7]; |
| 105 pinsrw %34, word [esi + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4]
; |
| 106 pinsrw %35, word [esi + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno1
2]; |
| 107 pinsrw %36, word [esi + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno2
0]; |
| 108 pinsrw %37, word [esi + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno2
8]; |
| 109 pinsrw %34, word [esi + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5]
; |
| 110 pinsrw %35, word [esi + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno1
3]; |
| 111 pinsrw %36, word [esi + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno2
1]; |
| 112 pinsrw %37, word [esi + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno2
9]; |
| 113 pinsrw %34, word [esi + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6]
; |
| 114 pinsrw %35, word [esi + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno1
4]; |
| 115 pinsrw %36, word [esi + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno2
2]; |
| 116 pinsrw %37, word [esi + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno3
0]; |
| 117 pinsrw %34, word [esi + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7]
; |
| 118 pinsrw %35, word [esi + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno1
5]; |
| 119 pinsrw %36, word [esi + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno2
3]; |
| 120 %if %1 != 32 |
| 121 pinsrw %37, word [esi + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno3
1]; |
| 122 %else |
| 123 pinsrw %37, ecx, 7 ; xmm_shadow[31] = block[jno31]; |
| 124 %endif |
| 125 pcmpgtw xmm4, %34 ; neg = _mm_cmpgt_epi16(neg, x1); |
| 126 pcmpgtw xmm5, %35 ; neg = _mm_cmpgt_epi16(neg, x1); |
| 127 pcmpgtw xmm6, %36 ; neg = _mm_cmpgt_epi16(neg, x1); |
| 128 pcmpgtw xmm7, %37 ; neg = _mm_cmpgt_epi16(neg, x1); |
| 129 paddw %34, xmm4 ; x1 = _mm_add_epi16(x1, neg); |
| 130 paddw %35, xmm5 ; x1 = _mm_add_epi16(x1, neg); |
| 131 paddw %36, xmm6 ; x1 = _mm_add_epi16(x1, neg); |
| 132 paddw %37, xmm7 ; x1 = _mm_add_epi16(x1, neg); |
| 133 pxor %34, xmm4 ; x1 = _mm_xor_si128(x1, neg); |
| 134 pxor %35, xmm5 ; x1 = _mm_xor_si128(x1, neg); |
| 135 pxor %36, xmm6 ; x1 = _mm_xor_si128(x1, neg); |
| 136 pxor %37, xmm7 ; x1 = _mm_xor_si128(x1, neg); |
| 137 pxor xmm4, %34 ; neg = _mm_xor_si128(neg, x1); |
| 138 pxor xmm5, %35 ; neg = _mm_xor_si128(neg, x1); |
| 139 pxor xmm6, %36 ; neg = _mm_xor_si128(neg, x1); |
| 140 pxor xmm7, %37 ; neg = _mm_xor_si128(neg, x1); |
| 141 movdqa XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m12
8i *)(t1 + ko), x1); |
| 142 movdqa XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128(
(__m128i *)(t1 + ko + 8), x1); |
| 143 movdqa XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128
((__m128i *)(t1 + ko + 16), x1); |
| 144 movdqa XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128
((__m128i *)(t1 + ko + 24), x1); |
| 145 movdqa XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4 ; _mm_storeu_si128((__m1
28i *)(t2 + ko), neg); |
| 146 movdqa XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5 ; _mm_storeu_si128
((__m128i *)(t2 + ko + 8), neg); |
| 147 movdqa XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6 ; _mm_storeu_si12
8((__m128i *)(t2 + ko + 16), neg); |
| 148 movdqa XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7 ; _mm_storeu_si12
8((__m128i *)(t2 + ko + 24), neg); |
| 149 %endmacro |
| 150 |
| 151 ; |
| 152 ; Encode a single block's worth of coefficients. |
| 153 ; |
| 154 ; GLOBAL(JOCTET*) |
| 155 ; jsimd_huff_encode_one_block_sse2 (working_state *state, JOCTET *buffer, |
| 156 ; JCOEFPTR block, int last_dc_val, |
| 157 ; c_derived_tbl *dctbl, c_derived_tbl *actbl) |
| 158 ; |
| 159 |
| 160 ; eax + 8 = working_state *state |
| 161 ; eax + 12 = JOCTET *buffer |
| 162 ; eax + 16 = JCOEFPTR block |
| 163 ; eax + 20 = int last_dc_val |
| 164 ; eax + 24 = c_derived_tbl *dctbl |
| 165 ; eax + 28 = c_derived_tbl *actbl |
| 166 |
| 167 %define pad 6*SIZEOF_DWORD ; Align to 16 bytes |
| 168 %define t1 pad |
| 169 %define t2 t1+(DCTSIZE2*SIZEOF_WORD) |
| 170 %define block t2+(DCTSIZE2*SIZEOF_WORD) |
| 171 %define actbl block+SIZEOF_DWORD |
| 172 %define buffer actbl+SIZEOF_DWORD |
| 173 %define temp buffer+SIZEOF_DWORD |
| 174 %define temp2 temp+SIZEOF_DWORD |
| 175 %define temp3 temp2+SIZEOF_DWORD |
| 176 %define temp4 temp3+SIZEOF_DWORD |
| 177 %define temp5 temp4+SIZEOF_DWORD |
| 178 %define gotptr temp5+SIZEOF_DWORD ; void *gotptr |
| 179 %define put_buffer ebx |
| 180 %define put_bits edi |
| 181 |
| 182 align 16 |
| 183 global EXTN(jsimd_huff_encode_one_block_sse2) |
| 184 |
| 185 EXTN(jsimd_huff_encode_one_block_sse2): |
| 186 push ebp |
| 187 mov eax,esp ; eax = original ebp |
| 188 sub esp, byte 4 |
| 189 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits |
| 190 mov [esp],eax |
| 191 mov ebp,esp ; ebp = aligned ebp |
| 192 sub esp, temp5+9*SIZEOF_DWORD-pad |
| 193 push ebx |
| 194 push ecx |
| 195 ; push edx ; need not be preserved |
| 196 push esi |
| 197 push edi |
| 198 push ebp |
| 199 |
| 200 mov esi, POINTER [eax+8] ; (working_state *state) |
| 201 mov put_buffer, DWORD [esi+8] ; put_buffer = state->cur.put_buffer; |
| 202 mov put_bits, DWORD [esi+12] ; put_bits = state->cur.put_bits; |
| 203 push esi ; esi is now scratch |
| 204 |
| 205 get_GOT edx ; get GOT address |
| 206 movpic POINTER [esp+gotptr], edx ; save GOT address |
| 207 |
| 208 mov ecx, POINTER [eax+28] |
| 209 mov edx, POINTER [eax+16] |
| 210 mov esi, POINTER [eax+12] |
| 211 mov POINTER [esp+actbl], ecx |
| 212 mov POINTER [esp+block], edx |
| 213 mov POINTER [esp+buffer], esi |
| 214 |
| 215 ; Encode the DC coefficient difference per section F.1.2.1 |
| 216 mov esi, POINTER [esp+block] ; block |
| 217 movsx ecx, word [esi] ; temp = temp2 = block[0] - last_dc_val; |
| 218 sub ecx, DWORD [eax+20] |
| 219 mov esi, ecx |
| 220 |
| 221 ; This is a well-known technique for obtaining the absolute value |
| 222 ; without a branch. It is derived from an assembly language technique |
| 223 ; presented in "How to Optimize for the Pentium Processors", |
| 224 ; Copyright (c) 1996, 1997 by Agner Fog. |
| 225 mov edx, ecx |
| 226 sar edx, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); |
| 227 xor ecx, edx ; temp ^= temp3; |
| 228 sub ecx, edx ; temp -= temp3; |
| 229 |
| 230 ; For a negative input, want temp2 = bitwise complement of abs(input) |
| 231 ; This code assumes we are on a two's complement machine |
| 232 add esi, edx ; temp2 += temp3; |
| 233 mov DWORD [esp+temp], esi ; backup temp2 in temp |
| 234 |
| 235 ; Find the number of bits needed for the magnitude of the coefficient |
| 236 movpic ebp, POINTER [esp+gotptr] ; load GOT address (ebp) |
| 237 movzx edx, byte [GOTOFF(ebp, jpeg_nbits_table + ecx)] ; nbits = JPEG_NB
ITS(temp); |
| 238 mov DWORD [esp+temp2], edx ; backup nbits in temp2 |
| 239 |
| 240 ; Emit the Huffman-coded symbol for the number of bits |
| 241 mov ebp, POINTER [eax+24] ; After this point, arguments are not acce
ssible anymore |
| 242 mov eax, INT [ebp + edx * 4] ; code = dctbl->ehufco[nbits]; |
| 243 movzx ecx, byte [ebp + edx + 1024] ; size = dctbl->ehufsi[nbits]; |
| 244 EMIT_BITS eax ; EMIT_BITS(code, size) |
| 245 |
| 246 mov ecx, DWORD [esp+temp2] ; restore nbits |
| 247 |
| 248 ; Mask off any extra bits in code |
| 249 mov eax, 1 |
| 250 shl eax, cl |
| 251 dec eax |
| 252 and eax, DWORD [esp+temp] ; temp2 &= (((JLONG) 1)<<nbits) - 1; |
| 253 |
| 254 ; Emit that number of bits of the value, if positive, |
| 255 ; or the complement of its magnitude, if negative. |
| 256 EMIT_BITS eax ; EMIT_BITS(temp2, nbits) |
| 257 |
| 258 ; Prepare data |
| 259 xor ecx, ecx |
| 260 mov esi, POINTER [esp+block] |
| 261 kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \ |
| 262 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \ |
| 263 27, 20, 13, 6, 7, 14, 21, 28, 35, \ |
| 264 xmm0, xmm1, xmm2, xmm3 |
| 265 kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \ |
| 266 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \ |
| 267 53, 60, 61, 54, 47, 55, 62, 63, 63, \ |
| 268 xmm0, xmm1, xmm2, xmm3 |
| 269 |
| 270 pxor xmm7, xmm7 |
| 271 movdqa xmm0, XMMWORD [esp + t1 + 0 * SIZEOF_WORD] ; __m128i tmp0 = _mm
_loadu_si128((__m128i *)(t1 + 0)); |
| 272 movdqa xmm1, XMMWORD [esp + t1 + 8 * SIZEOF_WORD] ; __m128i tmp1 = _mm
_loadu_si128((__m128i *)(t1 + 8)); |
| 273 movdqa xmm2, XMMWORD [esp + t1 + 16 * SIZEOF_WORD] ; __m128i tmp2 = _mm
_loadu_si128((__m128i *)(t1 + 16)); |
| 274 movdqa xmm3, XMMWORD [esp + t1 + 24 * SIZEOF_WORD] ; __m128i tmp3 = _mm
_loadu_si128((__m128i *)(t1 + 24)); |
| 275 pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero); |
| 276 pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero); |
| 277 pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero); |
| 278 pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero); |
| 279 packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1); |
| 280 packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3); |
| 281 pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0; |
| 282 pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16
; |
| 283 shl ecx, 16 |
| 284 or edx, ecx |
| 285 not edx ; index = ~index; |
| 286 |
| 287 lea esi, [esp+t1] |
| 288 mov ebp, POINTER [esp+actbl] ; ebp = actbl |
| 289 |
| 290 .BLOOP: |
| 291 bsf ecx, edx ; r = __builtin_ctzl(index); |
| 292 jz .ELOOP |
| 293 lea esi, [esi+ecx*2] ; k += r; |
| 294 shr edx, cl ; index >>= r; |
| 295 mov DWORD [esp+temp3], edx |
| 296 .BRLOOP: |
| 297 cmp ecx, 16 ; while (r > 15) { |
| 298 jl .ERLOOP |
| 299 sub ecx, 16 ; r -= 16; |
| 300 mov DWORD [esp+temp], ecx |
| 301 mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0]; |
| 302 movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0]; |
| 303 EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0) |
| 304 mov ecx, DWORD [esp+temp] |
| 305 jmp .BRLOOP |
| 306 .ERLOOP: |
| 307 movsx eax, word [esi] ; temp = t1[k]; |
| 308 movpic edx, POINTER [esp+gotptr] ; load GOT address (edx) |
| 309 movzx eax, byte [GOTOFF(edx, jpeg_nbits_table + eax)] ; nbits = JPEG_NB
ITS(temp); |
| 310 mov DWORD [esp+temp2], eax |
| 311 ; Emit Huffman symbol for run length / number of bits |
| 312 shl ecx, 4 ; temp3 = (r << 4) + nbits; |
| 313 add ecx, eax |
| 314 mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3]; |
| 315 movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3]; |
| 316 EMIT_BITS eax |
| 317 |
| 318 movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k]; |
| 319 ; Mask off any extra bits in code |
| 320 mov ecx, DWORD [esp+temp2] |
| 321 mov eax, 1 |
| 322 shl eax, cl |
| 323 dec eax |
| 324 and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1; |
| 325 EMIT_BITS eax ; PUT_BITS(temp2, nbits) |
| 326 mov edx, DWORD [esp+temp3] |
| 327 add esi, 2 ; ++k; |
| 328 shr edx, 1 ; index >>= 1; |
| 329 |
| 330 jmp .BLOOP |
| 331 .ELOOP: |
| 332 movdqa xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD] ; __m128i tmp0 = _mm
_loadu_si128((__m128i *)(t1 + 0)); |
| 333 movdqa xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD] ; __m128i tmp1 = _mm
_loadu_si128((__m128i *)(t1 + 8)); |
| 334 movdqa xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD] ; __m128i tmp2 = _mm
_loadu_si128((__m128i *)(t1 + 16)); |
| 335 movdqa xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD] ; __m128i tmp3 = _mm
_loadu_si128((__m128i *)(t1 + 24)); |
| 336 pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero); |
| 337 pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero); |
| 338 pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero); |
| 339 pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero); |
| 340 packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1); |
| 341 packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3); |
| 342 pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0; |
| 343 pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16
; |
| 344 shl ecx, 16 |
| 345 or edx, ecx |
| 346 not edx ; index = ~index; |
| 347 |
| 348 lea eax, [esp + t1 + (DCTSIZE2/2) * 2] |
| 349 sub eax, esi |
| 350 shr eax, 1 |
| 351 bsf ecx, edx ; r = __builtin_ctzl(index); |
| 352 jz .ELOOP2 |
| 353 shr edx, cl ; index >>= r; |
| 354 add ecx, eax |
| 355 lea esi, [esi+ecx*2] ; k += r; |
| 356 mov DWORD [esp+temp3], edx |
| 357 jmp .BRLOOP2 |
| 358 .BLOOP2: |
| 359 bsf ecx, edx ; r = __builtin_ctzl(index); |
| 360 jz .ELOOP2 |
| 361 lea esi, [esi+ecx*2] ; k += r; |
| 362 shr edx, cl ; index >>= r; |
| 363 mov DWORD [esp+temp3], edx |
| 364 .BRLOOP2: |
| 365 cmp ecx, 16 ; while (r > 15) { |
| 366 jl .ERLOOP2 |
| 367 sub ecx, 16 ; r -= 16; |
| 368 mov DWORD [esp+temp], ecx |
| 369 mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0]; |
| 370 movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0]; |
| 371 EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0) |
| 372 mov ecx, DWORD [esp+temp] |
| 373 jmp .BRLOOP2 |
| 374 .ERLOOP2: |
| 375 movsx eax, word [esi] ; temp = t1[k]; |
| 376 bsr eax, eax ; nbits = 32 - __builtin_clz(temp); |
| 377 inc eax |
| 378 mov DWORD [esp+temp2], eax |
| 379 ; Emit Huffman symbol for run length / number of bits |
| 380 shl ecx, 4 ; temp3 = (r << 4) + nbits; |
| 381 add ecx, eax |
| 382 mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3]; |
| 383 movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3]; |
| 384 EMIT_BITS eax |
| 385 |
| 386 movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k]; |
| 387 ; Mask off any extra bits in code |
| 388 mov ecx, DWORD [esp+temp2] |
| 389 mov eax, 1 |
| 390 shl eax, cl |
| 391 dec eax |
| 392 and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1; |
| 393 EMIT_BITS eax ; PUT_BITS(temp2, nbits) |
| 394 mov edx, DWORD [esp+temp3] |
| 395 add esi, 2 ; ++k; |
| 396 shr edx, 1 ; index >>= 1; |
| 397 |
| 398 jmp .BLOOP2 |
| 399 .ELOOP2: |
| 400 ; If the last coef(s) were zero, emit an end-of-block code |
| 401 lea edx, [esp + t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k; |
| 402 cmp edx, esi ; if (r > 0) { |
| 403 je .EFN |
| 404 mov eax, INT [ebp] ; code = actbl->ehufco[0]; |
| 405 movzx ecx, byte [ebp + 1024] ; size = actbl->ehufsi[0]; |
| 406 EMIT_BITS eax |
| 407 .EFN: |
| 408 mov eax, [esp+buffer] |
| 409 pop esi |
| 410 ; Save put_buffer & put_bits |
| 411 mov DWORD [esi+8], put_buffer ; state->cur.put_buffer = put_buffer; |
| 412 mov DWORD [esi+12], put_bits ; state->cur.put_bits = put_bits; |
| 413 |
| 414 pop ebp |
| 415 pop edi |
| 416 pop esi |
| 417 ; pop edx ; need not be preserved |
| 418 pop ecx |
| 419 pop ebx |
| 420 mov esp,ebp ; esp <- aligned ebp |
| 421 pop esp ; esp <- original ebp |
| 422 pop ebp |
| 423 ret |
| 424 |
| 425 ; For some reason, the OS X linker does not honor the request to align the |
| 426 ; segment unless we do this. |
| 427 align 16 |
OLD | NEW |