Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(167)

Side by Side Diff: simd/jchuff-sse2.asm

Issue 1953443002: Update to libjpeg_turbo 1.4.90 (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/libjpeg_turbo.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « simd/jcgryss2-64.asm ('k') | simd/jchuff-sse2-64.asm » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 ;
2 ; jchuff-sse2.asm - Huffman entropy encoding (SSE2)
3 ;
4 ; Copyright 2009-2011, 2014-2016 D. R. Commander.
5 ; Copyright 2015 Matthieu Darbois
6 ;
7 ; Based on
8 ; x86 SIMD extension for IJG JPEG library
9 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
10 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
11 ;
12 ; This file should be assembled with NASM (Netwide Assembler),
13 ; can *not* be assembled with Microsoft's MASM or any compatible
14 ; assembler (including Borland's Turbo Assembler).
15 ; NASM is available from http://nasm.sourceforge.net/ or
16 ; http://sourceforge.net/project/showfiles.php?group_id=6208
17 ;
18 ; This file contains an SSE2 implementation for Huffman coding of one block.
19 ; The following code is based directly on jchuff.c; see jchuff.c for more
20 ; details.
21 ;
22 ; [TAB8]
23
24 %include "jsimdext.inc"
25
26 ; --------------------------------------------------------------------------
27 SECTION SEG_CONST
28
29 alignz 16
30 global EXTN(jconst_huff_encode_one_block)
31
32 EXTN(jconst_huff_encode_one_block):
33
34 %include "jpeg_nbits_table.inc"
35
36 alignz 16
37
38 ; --------------------------------------------------------------------------
39 SECTION SEG_TEXT
40 BITS 32
41
42 ; These macros perform the same task as the emit_bits() function in the
43 ; original libjpeg code. In addition to reducing overhead by explicitly
44 ; inlining the code, additional performance is achieved by taking into
45 ; account the size of the bit buffer and waiting until it is almost full
46 ; before emptying it. This mostly benefits 64-bit platforms, since 6
47 ; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
48
49 %macro EMIT_BYTE 0
50 sub put_bits, 8 ; put_bits -= 8;
51 mov edx, put_buffer
52 mov ecx, put_bits
53 shr edx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
54 mov byte [eax], dl ; *buffer++ = c;
55 add eax, 1
56 cmp dl, 0xFF ; need to stuff a zero byte?
57 jne %%.EMIT_BYTE_END
58 mov byte [eax], 0 ; *buffer++ = 0;
59 add eax, 1
60 %%.EMIT_BYTE_END:
61 %endmacro
62
63 %macro PUT_BITS 1
64 add put_bits, ecx ; put_bits += size;
65 shl put_buffer, cl ; put_buffer = (put_buffer << size);
66 or put_buffer, %1
67 %endmacro
68
69 %macro CHECKBUF15 0
70 cmp put_bits, 16 ; if (put_bits > 31) {
71 jl %%.CHECKBUF15_END
72 mov eax, POINTER [esp+buffer]
73 EMIT_BYTE
74 EMIT_BYTE
75 mov POINTER [esp+buffer], eax
76 %%.CHECKBUF15_END:
77 %endmacro
78
79 %macro EMIT_BITS 1
80 PUT_BITS %1
81 CHECKBUF15
82 %endmacro
83
84 %macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
85 pxor xmm4, xmm4 ; __m128i neg = _mm_setzero_si128();
86 pxor xmm5, xmm5 ; __m128i neg = _mm_setzero_si128();
87 pxor xmm6, xmm6 ; __m128i neg = _mm_setzero_si128();
88 pxor xmm7, xmm7 ; __m128i neg = _mm_setzero_si128();
89 pinsrw %34, word [esi + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0] ;
90 pinsrw %35, word [esi + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8] ;
91 pinsrw %36, word [esi + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno1 6];
92 pinsrw %37, word [esi + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno2 4];
93 pinsrw %34, word [esi + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1] ;
94 pinsrw %35, word [esi + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9] ;
95 pinsrw %36, word [esi + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno1 7];
96 pinsrw %37, word [esi + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno2 5];
97 pinsrw %34, word [esi + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2] ;
98 pinsrw %35, word [esi + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno1 0];
99 pinsrw %36, word [esi + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno1 8];
100 pinsrw %37, word [esi + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno2 6];
101 pinsrw %34, word [esi + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3] ;
102 pinsrw %35, word [esi + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno1 1];
103 pinsrw %36, word [esi + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno1 9];
104 pinsrw %37, word [esi + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno2 7];
105 pinsrw %34, word [esi + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4] ;
106 pinsrw %35, word [esi + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno1 2];
107 pinsrw %36, word [esi + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno2 0];
108 pinsrw %37, word [esi + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno2 8];
109 pinsrw %34, word [esi + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5] ;
110 pinsrw %35, word [esi + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno1 3];
111 pinsrw %36, word [esi + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno2 1];
112 pinsrw %37, word [esi + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno2 9];
113 pinsrw %34, word [esi + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6] ;
114 pinsrw %35, word [esi + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno1 4];
115 pinsrw %36, word [esi + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno2 2];
116 pinsrw %37, word [esi + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno3 0];
117 pinsrw %34, word [esi + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7] ;
118 pinsrw %35, word [esi + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno1 5];
119 pinsrw %36, word [esi + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno2 3];
120 %if %1 != 32
121 pinsrw %37, word [esi + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno3 1];
122 %else
123 pinsrw %37, ecx, 7 ; xmm_shadow[31] = block[jno31];
124 %endif
125 pcmpgtw xmm4, %34 ; neg = _mm_cmpgt_epi16(neg, x1);
126 pcmpgtw xmm5, %35 ; neg = _mm_cmpgt_epi16(neg, x1);
127 pcmpgtw xmm6, %36 ; neg = _mm_cmpgt_epi16(neg, x1);
128 pcmpgtw xmm7, %37 ; neg = _mm_cmpgt_epi16(neg, x1);
129 paddw %34, xmm4 ; x1 = _mm_add_epi16(x1, neg);
130 paddw %35, xmm5 ; x1 = _mm_add_epi16(x1, neg);
131 paddw %36, xmm6 ; x1 = _mm_add_epi16(x1, neg);
132 paddw %37, xmm7 ; x1 = _mm_add_epi16(x1, neg);
133 pxor %34, xmm4 ; x1 = _mm_xor_si128(x1, neg);
134 pxor %35, xmm5 ; x1 = _mm_xor_si128(x1, neg);
135 pxor %36, xmm6 ; x1 = _mm_xor_si128(x1, neg);
136 pxor %37, xmm7 ; x1 = _mm_xor_si128(x1, neg);
137 pxor xmm4, %34 ; neg = _mm_xor_si128(neg, x1);
138 pxor xmm5, %35 ; neg = _mm_xor_si128(neg, x1);
139 pxor xmm6, %36 ; neg = _mm_xor_si128(neg, x1);
140 pxor xmm7, %37 ; neg = _mm_xor_si128(neg, x1);
141 movdqa XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m12 8i *)(t1 + ko), x1);
142 movdqa XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128( (__m128i *)(t1 + ko + 8), x1);
143 movdqa XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128 ((__m128i *)(t1 + ko + 16), x1);
144 movdqa XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128 ((__m128i *)(t1 + ko + 24), x1);
145 movdqa XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4 ; _mm_storeu_si128((__m1 28i *)(t2 + ko), neg);
146 movdqa XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5 ; _mm_storeu_si128 ((__m128i *)(t2 + ko + 8), neg);
147 movdqa XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6 ; _mm_storeu_si12 8((__m128i *)(t2 + ko + 16), neg);
148 movdqa XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7 ; _mm_storeu_si12 8((__m128i *)(t2 + ko + 24), neg);
149 %endmacro
150
151 ;
152 ; Encode a single block's worth of coefficients.
153 ;
154 ; GLOBAL(JOCTET*)
155 ; jsimd_huff_encode_one_block_sse2 (working_state *state, JOCTET *buffer,
156 ; JCOEFPTR block, int last_dc_val,
157 ; c_derived_tbl *dctbl, c_derived_tbl *actbl)
158 ;
159
160 ; eax + 8 = working_state *state
161 ; eax + 12 = JOCTET *buffer
162 ; eax + 16 = JCOEFPTR block
163 ; eax + 20 = int last_dc_val
164 ; eax + 24 = c_derived_tbl *dctbl
165 ; eax + 28 = c_derived_tbl *actbl
166
167 %define pad 6*SIZEOF_DWORD ; Align to 16 bytes
168 %define t1 pad
169 %define t2 t1+(DCTSIZE2*SIZEOF_WORD)
170 %define block t2+(DCTSIZE2*SIZEOF_WORD)
171 %define actbl block+SIZEOF_DWORD
172 %define buffer actbl+SIZEOF_DWORD
173 %define temp buffer+SIZEOF_DWORD
174 %define temp2 temp+SIZEOF_DWORD
175 %define temp3 temp2+SIZEOF_DWORD
176 %define temp4 temp3+SIZEOF_DWORD
177 %define temp5 temp4+SIZEOF_DWORD
178 %define gotptr temp5+SIZEOF_DWORD ; void *gotptr
179 %define put_buffer ebx
180 %define put_bits edi
181
182 align 16
183 global EXTN(jsimd_huff_encode_one_block_sse2)
184
185 EXTN(jsimd_huff_encode_one_block_sse2):
186 push ebp
187 mov eax,esp ; eax = original ebp
188 sub esp, byte 4
189 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
190 mov [esp],eax
191 mov ebp,esp ; ebp = aligned ebp
192 sub esp, temp5+9*SIZEOF_DWORD-pad
193 push ebx
194 push ecx
195 ; push edx ; need not be preserved
196 push esi
197 push edi
198 push ebp
199
200 mov esi, POINTER [eax+8] ; (working_state *state)
201 mov put_buffer, DWORD [esi+8] ; put_buffer = state->cur.put_buffer;
202 mov put_bits, DWORD [esi+12] ; put_bits = state->cur.put_bits;
203 push esi ; esi is now scratch
204
205 get_GOT edx ; get GOT address
206 movpic POINTER [esp+gotptr], edx ; save GOT address
207
208 mov ecx, POINTER [eax+28]
209 mov edx, POINTER [eax+16]
210 mov esi, POINTER [eax+12]
211 mov POINTER [esp+actbl], ecx
212 mov POINTER [esp+block], edx
213 mov POINTER [esp+buffer], esi
214
215 ; Encode the DC coefficient difference per section F.1.2.1
216 mov esi, POINTER [esp+block] ; block
217 movsx ecx, word [esi] ; temp = temp2 = block[0] - last_dc_val;
218 sub ecx, DWORD [eax+20]
219 mov esi, ecx
220
221 ; This is a well-known technique for obtaining the absolute value
222 ; without a branch. It is derived from an assembly language technique
223 ; presented in "How to Optimize for the Pentium Processors",
224 ; Copyright (c) 1996, 1997 by Agner Fog.
225 mov edx, ecx
226 sar edx, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
227 xor ecx, edx ; temp ^= temp3;
228 sub ecx, edx ; temp -= temp3;
229
230 ; For a negative input, want temp2 = bitwise complement of abs(input)
231 ; This code assumes we are on a two's complement machine
232 add esi, edx ; temp2 += temp3;
233 mov DWORD [esp+temp], esi ; backup temp2 in temp
234
235 ; Find the number of bits needed for the magnitude of the coefficient
236 movpic ebp, POINTER [esp+gotptr] ; load GOT address (ebp)
237 movzx edx, byte [GOTOFF(ebp, jpeg_nbits_table + ecx)] ; nbits = JPEG_NB ITS(temp);
238 mov DWORD [esp+temp2], edx ; backup nbits in temp2
239
240 ; Emit the Huffman-coded symbol for the number of bits
241 mov ebp, POINTER [eax+24] ; After this point, arguments are not acce ssible anymore
242 mov eax, INT [ebp + edx * 4] ; code = dctbl->ehufco[nbits];
243 movzx ecx, byte [ebp + edx + 1024] ; size = dctbl->ehufsi[nbits];
244 EMIT_BITS eax ; EMIT_BITS(code, size)
245
246 mov ecx, DWORD [esp+temp2] ; restore nbits
247
248 ; Mask off any extra bits in code
249 mov eax, 1
250 shl eax, cl
251 dec eax
252 and eax, DWORD [esp+temp] ; temp2 &= (((JLONG) 1)<<nbits) - 1;
253
254 ; Emit that number of bits of the value, if positive,
255 ; or the complement of its magnitude, if negative.
256 EMIT_BITS eax ; EMIT_BITS(temp2, nbits)
257
258 ; Prepare data
259 xor ecx, ecx
260 mov esi, POINTER [esp+block]
261 kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \
262 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \
263 27, 20, 13, 6, 7, 14, 21, 28, 35, \
264 xmm0, xmm1, xmm2, xmm3
265 kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
266 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
267 53, 60, 61, 54, 47, 55, 62, 63, 63, \
268 xmm0, xmm1, xmm2, xmm3
269
270 pxor xmm7, xmm7
271 movdqa xmm0, XMMWORD [esp + t1 + 0 * SIZEOF_WORD] ; __m128i tmp0 = _mm _loadu_si128((__m128i *)(t1 + 0));
272 movdqa xmm1, XMMWORD [esp + t1 + 8 * SIZEOF_WORD] ; __m128i tmp1 = _mm _loadu_si128((__m128i *)(t1 + 8));
273 movdqa xmm2, XMMWORD [esp + t1 + 16 * SIZEOF_WORD] ; __m128i tmp2 = _mm _loadu_si128((__m128i *)(t1 + 16));
274 movdqa xmm3, XMMWORD [esp + t1 + 24 * SIZEOF_WORD] ; __m128i tmp3 = _mm _loadu_si128((__m128i *)(t1 + 24));
275 pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
276 pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
277 pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
278 pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
279 packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
280 packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
281 pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
282 pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16 ;
283 shl ecx, 16
284 or edx, ecx
285 not edx ; index = ~index;
286
287 lea esi, [esp+t1]
288 mov ebp, POINTER [esp+actbl] ; ebp = actbl
289
290 .BLOOP:
291 bsf ecx, edx ; r = __builtin_ctzl(index);
292 jz .ELOOP
293 lea esi, [esi+ecx*2] ; k += r;
294 shr edx, cl ; index >>= r;
295 mov DWORD [esp+temp3], edx
296 .BRLOOP:
297 cmp ecx, 16 ; while (r > 15) {
298 jl .ERLOOP
299 sub ecx, 16 ; r -= 16;
300 mov DWORD [esp+temp], ecx
301 mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
302 movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
303 EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
304 mov ecx, DWORD [esp+temp]
305 jmp .BRLOOP
306 .ERLOOP:
307 movsx eax, word [esi] ; temp = t1[k];
308 movpic edx, POINTER [esp+gotptr] ; load GOT address (edx)
309 movzx eax, byte [GOTOFF(edx, jpeg_nbits_table + eax)] ; nbits = JPEG_NB ITS(temp);
310 mov DWORD [esp+temp2], eax
311 ; Emit Huffman symbol for run length / number of bits
312 shl ecx, 4 ; temp3 = (r << 4) + nbits;
313 add ecx, eax
314 mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
315 movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
316 EMIT_BITS eax
317
318 movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
319 ; Mask off any extra bits in code
320 mov ecx, DWORD [esp+temp2]
321 mov eax, 1
322 shl eax, cl
323 dec eax
324 and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1;
325 EMIT_BITS eax ; PUT_BITS(temp2, nbits)
326 mov edx, DWORD [esp+temp3]
327 add esi, 2 ; ++k;
328 shr edx, 1 ; index >>= 1;
329
330 jmp .BLOOP
331 .ELOOP:
332 movdqa xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD] ; __m128i tmp0 = _mm _loadu_si128((__m128i *)(t1 + 0));
333 movdqa xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD] ; __m128i tmp1 = _mm _loadu_si128((__m128i *)(t1 + 8));
334 movdqa xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD] ; __m128i tmp2 = _mm _loadu_si128((__m128i *)(t1 + 16));
335 movdqa xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD] ; __m128i tmp3 = _mm _loadu_si128((__m128i *)(t1 + 24));
336 pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
337 pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
338 pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
339 pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
340 packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
341 packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
342 pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
343 pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16 ;
344 shl ecx, 16
345 or edx, ecx
346 not edx ; index = ~index;
347
348 lea eax, [esp + t1 + (DCTSIZE2/2) * 2]
349 sub eax, esi
350 shr eax, 1
351 bsf ecx, edx ; r = __builtin_ctzl(index);
352 jz .ELOOP2
353 shr edx, cl ; index >>= r;
354 add ecx, eax
355 lea esi, [esi+ecx*2] ; k += r;
356 mov DWORD [esp+temp3], edx
357 jmp .BRLOOP2
358 .BLOOP2:
359 bsf ecx, edx ; r = __builtin_ctzl(index);
360 jz .ELOOP2
361 lea esi, [esi+ecx*2] ; k += r;
362 shr edx, cl ; index >>= r;
363 mov DWORD [esp+temp3], edx
364 .BRLOOP2:
365 cmp ecx, 16 ; while (r > 15) {
366 jl .ERLOOP2
367 sub ecx, 16 ; r -= 16;
368 mov DWORD [esp+temp], ecx
369 mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
370 movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
371 EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
372 mov ecx, DWORD [esp+temp]
373 jmp .BRLOOP2
374 .ERLOOP2:
375 movsx eax, word [esi] ; temp = t1[k];
376 bsr eax, eax ; nbits = 32 - __builtin_clz(temp);
377 inc eax
378 mov DWORD [esp+temp2], eax
379 ; Emit Huffman symbol for run length / number of bits
380 shl ecx, 4 ; temp3 = (r << 4) + nbits;
381 add ecx, eax
382 mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
383 movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
384 EMIT_BITS eax
385
386 movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
387 ; Mask off any extra bits in code
388 mov ecx, DWORD [esp+temp2]
389 mov eax, 1
390 shl eax, cl
391 dec eax
392 and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1;
393 EMIT_BITS eax ; PUT_BITS(temp2, nbits)
394 mov edx, DWORD [esp+temp3]
395 add esi, 2 ; ++k;
396 shr edx, 1 ; index >>= 1;
397
398 jmp .BLOOP2
399 .ELOOP2:
400 ; If the last coef(s) were zero, emit an end-of-block code
401 lea edx, [esp + t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k;
402 cmp edx, esi ; if (r > 0) {
403 je .EFN
404 mov eax, INT [ebp] ; code = actbl->ehufco[0];
405 movzx ecx, byte [ebp + 1024] ; size = actbl->ehufsi[0];
406 EMIT_BITS eax
407 .EFN:
408 mov eax, [esp+buffer]
409 pop esi
410 ; Save put_buffer & put_bits
411 mov DWORD [esi+8], put_buffer ; state->cur.put_buffer = put_buffer;
412 mov DWORD [esi+12], put_bits ; state->cur.put_bits = put_bits;
413
414 pop ebp
415 pop edi
416 pop esi
417 ; pop edx ; need not be preserved
418 pop ecx
419 pop ebx
420 mov esp,ebp ; esp <- aligned ebp
421 pop esp ; esp <- original ebp
422 pop ebp
423 ret
424
425 ; For some reason, the OS X linker does not honor the request to align the
426 ; segment unless we do this.
427 align 16
OLDNEW
« no previous file with comments | « simd/jcgryss2-64.asm ('k') | simd/jchuff-sse2-64.asm » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698