OLD | NEW |
(Empty) | |
| 1 ; |
| 2 ; jchuff-sse2-64.asm - Huffman entropy encoding (64-bit SSE2) |
| 3 ; |
| 4 ; Copyright 2009-2011, 2014-2016 D. R. Commander. |
| 5 ; Copyright 2015 Matthieu Darbois |
| 6 ; |
| 7 ; Based on |
| 8 ; x86 SIMD extension for IJG JPEG library |
| 9 ; Copyright (C) 1999-2006, MIYASAKA Masaru. |
| 10 ; For conditions of distribution and use, see copyright notice in jsimdext.inc |
| 11 ; |
| 12 ; This file should be assembled with NASM (Netwide Assembler), |
| 13 ; can *not* be assembled with Microsoft's MASM or any compatible |
| 14 ; assembler (including Borland's Turbo Assembler). |
| 15 ; NASM is available from http://nasm.sourceforge.net/ or |
| 16 ; http://sourceforge.net/project/showfiles.php?group_id=6208 |
| 17 ; |
| 18 ; This file contains an SSE2 implementation for Huffman coding of one block. |
| 19 ; The following code is based directly on jchuff.c; see jchuff.c for more |
| 20 ; details. |
| 21 ; |
| 22 ; [TAB8] |
| 23 |
| 24 %include "jsimdext.inc" |
| 25 |
| 26 ; -------------------------------------------------------------------------- |
| 27 SECTION SEG_CONST |
| 28 |
| 29 alignz 16 |
| 30 global EXTN(jconst_huff_encode_one_block) |
| 31 |
| 32 EXTN(jconst_huff_encode_one_block): |
| 33 |
| 34 %include "jpeg_nbits_table.inc" |
| 35 |
| 36 alignz 16 |
| 37 |
| 38 ; -------------------------------------------------------------------------- |
| 39 SECTION SEG_TEXT |
| 40 BITS 64 |
| 41 |
| 42 ; These macros perform the same task as the emit_bits() function in the |
| 43 ; original libjpeg code. In addition to reducing overhead by explicitly |
| 44 ; inlining the code, additional performance is achieved by taking into |
| 45 ; account the size of the bit buffer and waiting until it is almost full |
| 46 ; before emptying it. This mostly benefits 64-bit platforms, since 6 |
| 47 ; bytes can be stored in a 64-bit bit buffer before it has to be emptied. |
| 48 |
| 49 %macro EMIT_BYTE 0 |
| 50 sub put_bits, 8 ; put_bits -= 8; |
| 51 mov rdx, put_buffer |
| 52 mov ecx, put_bits |
| 53 shr rdx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits); |
| 54 mov byte [buffer], dl ; *buffer++ = c; |
| 55 add buffer, 1 |
| 56 cmp dl, 0xFF ; need to stuff a zero byte? |
| 57 jne %%.EMIT_BYTE_END |
| 58 mov byte [buffer], 0 ; *buffer++ = 0; |
| 59 add buffer, 1 |
| 60 %%.EMIT_BYTE_END: |
| 61 %endmacro |
| 62 |
| 63 %macro PUT_BITS 1 |
| 64 add put_bits, ecx ; put_bits += size; |
| 65 shl put_buffer, cl ; put_buffer = (put_buffer << size); |
| 66 or put_buffer, %1 |
| 67 %endmacro |
| 68 |
| 69 %macro CHECKBUF31 0 |
| 70 cmp put_bits, 32 ; if (put_bits > 31) { |
| 71 jl %%.CHECKBUF31_END |
| 72 EMIT_BYTE |
| 73 EMIT_BYTE |
| 74 EMIT_BYTE |
| 75 EMIT_BYTE |
| 76 %%.CHECKBUF31_END: |
| 77 %endmacro |
| 78 |
| 79 %macro CHECKBUF47 0 |
| 80 cmp put_bits, 48 ; if (put_bits > 47) { |
| 81 jl %%.CHECKBUF47_END |
| 82 EMIT_BYTE |
| 83 EMIT_BYTE |
| 84 EMIT_BYTE |
| 85 EMIT_BYTE |
| 86 EMIT_BYTE |
| 87 EMIT_BYTE |
| 88 %%.CHECKBUF47_END: |
| 89 %endmacro |
| 90 |
| 91 %macro EMIT_BITS 2 |
| 92 CHECKBUF47 |
| 93 mov ecx, %2 |
| 94 PUT_BITS %1 |
| 95 %endmacro |
| 96 |
| 97 %macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3) |
| 98 pxor xmm8, xmm8 ; __m128i neg = _mm_setzero_si128(); |
| 99 pxor xmm9, xmm9 ; __m128i neg = _mm_setzero_si128(); |
| 100 pxor xmm10, xmm10 ; __m128i neg = _mm_setzero_si128(); |
| 101 pxor xmm11, xmm11 ; __m128i neg = _mm_setzero_si128(); |
| 102 pinsrw %34, word [r12 + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0]
; |
| 103 pinsrw %35, word [r12 + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8]
; |
| 104 pinsrw %36, word [r12 + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno1
6]; |
| 105 pinsrw %37, word [r12 + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno2
4]; |
| 106 pinsrw %34, word [r12 + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1]
; |
| 107 pinsrw %35, word [r12 + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9]
; |
| 108 pinsrw %36, word [r12 + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno1
7]; |
| 109 pinsrw %37, word [r12 + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno2
5]; |
| 110 pinsrw %34, word [r12 + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2]
; |
| 111 pinsrw %35, word [r12 + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno1
0]; |
| 112 pinsrw %36, word [r12 + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno1
8]; |
| 113 pinsrw %37, word [r12 + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno2
6]; |
| 114 pinsrw %34, word [r12 + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3]
; |
| 115 pinsrw %35, word [r12 + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno1
1]; |
| 116 pinsrw %36, word [r12 + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno1
9]; |
| 117 pinsrw %37, word [r12 + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno2
7]; |
| 118 pinsrw %34, word [r12 + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4]
; |
| 119 pinsrw %35, word [r12 + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno1
2]; |
| 120 pinsrw %36, word [r12 + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno2
0]; |
| 121 pinsrw %37, word [r12 + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno2
8]; |
| 122 pinsrw %34, word [r12 + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5]
; |
| 123 pinsrw %35, word [r12 + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno1
3]; |
| 124 pinsrw %36, word [r12 + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno2
1]; |
| 125 pinsrw %37, word [r12 + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno2
9]; |
| 126 pinsrw %34, word [r12 + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6]
; |
| 127 pinsrw %35, word [r12 + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno1
4]; |
| 128 pinsrw %36, word [r12 + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno2
2]; |
| 129 pinsrw %37, word [r12 + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno3
0]; |
| 130 pinsrw %34, word [r12 + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7]
; |
| 131 pinsrw %35, word [r12 + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno1
5]; |
| 132 pinsrw %36, word [r12 + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno2
3]; |
| 133 %if %1 != 32 |
| 134 pinsrw %37, word [r12 + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno3
1]; |
| 135 %else |
| 136 pinsrw %37, ebx, 7 ; xmm_shadow[31] = block[jno31]; |
| 137 %endif |
| 138 pcmpgtw xmm8, %34 ; neg = _mm_cmpgt_epi16(neg, x1); |
| 139 pcmpgtw xmm9, %35 ; neg = _mm_cmpgt_epi16(neg, x1); |
| 140 pcmpgtw xmm10, %36 ; neg = _mm_cmpgt_epi16(neg, x1); |
| 141 pcmpgtw xmm11, %37 ; neg = _mm_cmpgt_epi16(neg, x1); |
| 142 paddw %34, xmm8 ; x1 = _mm_add_epi16(x1, neg); |
| 143 paddw %35, xmm9 ; x1 = _mm_add_epi16(x1, neg); |
| 144 paddw %36, xmm10 ; x1 = _mm_add_epi16(x1, neg); |
| 145 paddw %37, xmm11 ; x1 = _mm_add_epi16(x1, neg); |
| 146 pxor %34, xmm8 ; x1 = _mm_xor_si128(x1, neg); |
| 147 pxor %35, xmm9 ; x1 = _mm_xor_si128(x1, neg); |
| 148 pxor %36, xmm10 ; x1 = _mm_xor_si128(x1, neg); |
| 149 pxor %37, xmm11 ; x1 = _mm_xor_si128(x1, neg); |
| 150 pxor xmm8, %34 ; neg = _mm_xor_si128(neg, x1); |
| 151 pxor xmm9, %35 ; neg = _mm_xor_si128(neg, x1); |
| 152 pxor xmm10, %36 ; neg = _mm_xor_si128(neg, x1); |
| 153 pxor xmm11, %37 ; neg = _mm_xor_si128(neg, x1); |
| 154 movdqa XMMWORD [t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(
t1 + ko), x1); |
| 155 movdqa XMMWORD [t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m12
8i *)(t1 + ko + 8), x1); |
| 156 movdqa XMMWORD [t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m1
28i *)(t1 + ko + 16), x1); |
| 157 movdqa XMMWORD [t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m1
28i *)(t1 + ko + 24), x1); |
| 158 movdqa XMMWORD [t2 + %1 * SIZEOF_WORD], xmm8 ; _mm_storeu_si128((__m128i *)
(t2 + ko), neg); |
| 159 movdqa XMMWORD [t2 + (%1 + 8) * SIZEOF_WORD], xmm9 ; _mm_storeu_si128((__m1
28i *)(t2 + ko + 8), neg); |
| 160 movdqa XMMWORD [t2 + (%1 + 16) * SIZEOF_WORD], xmm10 ; _mm_storeu_si128((__
m128i *)(t2 + ko + 16), neg); |
| 161 movdqa XMMWORD [t2 + (%1 + 24) * SIZEOF_WORD], xmm11 ; _mm_storeu_si128((__
m128i *)(t2 + ko + 24), neg); |
| 162 %endmacro |
| 163 |
| 164 ; |
| 165 ; Encode a single block's worth of coefficients. |
| 166 ; |
| 167 ; GLOBAL(JOCTET*) |
| 168 ; jsimd_huff_encode_one_block_sse2 (working_state *state, JOCTET *buffer, |
| 169 ; JCOEFPTR block, int last_dc_val, |
| 170 ; c_derived_tbl *dctbl, c_derived_tbl *actbl) |
| 171 ; |
| 172 |
| 173 ; r10 = working_state *state |
| 174 ; r11 = JOCTET *buffer |
| 175 ; r12 = JCOEFPTR block |
| 176 ; r13 = int last_dc_val |
| 177 ; r14 = c_derived_tbl *dctbl |
| 178 ; r15 = c_derived_tbl *actbl |
| 179 |
| 180 %define t1 rbp-(DCTSIZE2*SIZEOF_WORD) |
| 181 %define t2 t1-(DCTSIZE2*SIZEOF_WORD) |
| 182 %define put_buffer r8 |
| 183 %define put_bits r9d |
| 184 %define buffer rax |
| 185 |
| 186 align 16 |
| 187 global EXTN(jsimd_huff_encode_one_block_sse2) |
| 188 |
| 189 EXTN(jsimd_huff_encode_one_block_sse2): |
| 190 push rbp |
| 191 mov rax,rsp ; rax = original rbp |
| 192 sub rsp, byte 4 |
| 193 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits |
| 194 mov [rsp],rax |
| 195 mov rbp,rsp ; rbp = aligned rbp |
| 196 lea rsp, [t2] |
| 197 collect_args |
| 198 %ifdef WIN64 |
| 199 movaps XMMWORD [rsp-1*SIZEOF_XMMWORD], xmm8 |
| 200 movaps XMMWORD [rsp-2*SIZEOF_XMMWORD], xmm9 |
| 201 movaps XMMWORD [rsp-3*SIZEOF_XMMWORD], xmm10 |
| 202 movaps XMMWORD [rsp-4*SIZEOF_XMMWORD], xmm11 |
| 203 sub rsp, 4*SIZEOF_XMMWORD |
| 204 %endif |
| 205 push rbx |
| 206 |
| 207 mov buffer, r11 ; r11 is now sratch |
| 208 |
| 209 mov put_buffer, MMWORD [r10+16] ; put_buffer = state->cur.put_buffer; |
| 210 mov put_bits, DWORD [r10+24] ; put_bits = state->cur.put_bits; |
| 211 push r10 ; r10 is now scratch |
| 212 |
| 213 ; Encode the DC coefficient difference per section F.1.2.1 |
| 214 movsx edi, word [r12] ; temp = temp2 = block[0] - last_dc_val; |
| 215 sub edi, r13d ; r13 is not used anymore |
| 216 mov ebx, edi |
| 217 |
| 218 ; This is a well-known technique for obtaining the absolute value |
| 219 ; without a branch. It is derived from an assembly language technique |
| 220 ; presented in "How to Optimize for the Pentium Processors", |
| 221 ; Copyright (c) 1996, 1997 by Agner Fog. |
| 222 mov esi, edi |
| 223 sar esi, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); |
| 224 xor edi, esi ; temp ^= temp3; |
| 225 sub edi, esi ; temp -= temp3; |
| 226 |
| 227 ; For a negative input, want temp2 = bitwise complement of abs(input) |
| 228 ; This code assumes we are on a two's complement machine |
| 229 add ebx, esi ; temp2 += temp3; |
| 230 |
| 231 ; Find the number of bits needed for the magnitude of the coefficient |
| 232 lea r11, [rel jpeg_nbits_table] |
| 233 movzx rdi, byte [r11 + rdi] ; nbits = JPEG_NBITS(temp); |
| 234 ; Emit the Huffman-coded symbol for the number of bits |
| 235 mov r11d, INT [r14 + rdi * 4] ; code = dctbl->ehufco[nbits]; |
| 236 movzx esi, byte [r14 + rdi + 1024] ; size = dctbl->ehufsi[nbits]; |
| 237 EMIT_BITS r11, esi ; EMIT_BITS(code, size) |
| 238 |
| 239 ; Mask off any extra bits in code |
| 240 mov esi, 1 |
| 241 mov ecx, edi |
| 242 shl esi, cl |
| 243 dec esi |
| 244 and ebx, esi ; temp2 &= (((JLONG) 1)<<nbits) - 1; |
| 245 |
| 246 ; Emit that number of bits of the value, if positive, |
| 247 ; or the complement of its magnitude, if negative. |
| 248 EMIT_BITS rbx, edi ; EMIT_BITS(temp2, nbits) |
| 249 |
| 250 ; Prepare data |
| 251 xor ebx, ebx |
| 252 kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \ |
| 253 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \ |
| 254 27, 20, 13, 6, 7, 14, 21, 28, 35, \ |
| 255 xmm0, xmm1, xmm2, xmm3 |
| 256 kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \ |
| 257 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \ |
| 258 53, 60, 61, 54, 47, 55, 62, 63, 63, \ |
| 259 xmm4, xmm5, xmm6, xmm7 |
| 260 |
| 261 pxor xmm8, xmm8 |
| 262 pcmpeqw xmm0, xmm8 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero); |
| 263 pcmpeqw xmm1, xmm8 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero); |
| 264 pcmpeqw xmm2, xmm8 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero); |
| 265 pcmpeqw xmm3, xmm8 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero); |
| 266 pcmpeqw xmm4, xmm8 ; tmp4 = _mm_cmpeq_epi16(tmp4, zero); |
| 267 pcmpeqw xmm5, xmm8 ; tmp5 = _mm_cmpeq_epi16(tmp5, zero); |
| 268 pcmpeqw xmm6, xmm8 ; tmp6 = _mm_cmpeq_epi16(tmp6, zero); |
| 269 pcmpeqw xmm7, xmm8 ; tmp7 = _mm_cmpeq_epi16(tmp7, zero); |
| 270 packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1); |
| 271 packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3); |
| 272 packsswb xmm4, xmm5 ; tmp4 = _mm_packs_epi16(tmp4, tmp5); |
| 273 packsswb xmm6, xmm7 ; tmp6 = _mm_packs_epi16(tmp6, tmp7); |
| 274 pmovmskb r11d, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0
; |
| 275 pmovmskb r12d, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 1
6; |
| 276 pmovmskb r13d, xmm4 ; index = ((uint64_t)_mm_movemask_epi8(tmp4)) << 3
2; |
| 277 pmovmskb r14d, xmm6 ; index = ((uint64_t)_mm_movemask_epi8(tmp6)) << 4
8; |
| 278 shl r12, 16 |
| 279 shl r14, 16 |
| 280 or r11, r12 |
| 281 or r13, r14 |
| 282 shl r13, 32 |
| 283 or r11, r13 |
| 284 not r11 ; index = ~index; |
| 285 |
| 286 ;mov MMWORD [ t1 + DCTSIZE2 * SIZEOF_WORD ], r11 |
| 287 ;jmp .EFN |
| 288 |
| 289 mov r13d, INT [r15 + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0]; |
| 290 movzx r14d, byte [r15 + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0]; |
| 291 lea rsi, [t1] |
| 292 .BLOOP: |
| 293 bsf r12, r11 ; r = __builtin_ctzl(index); |
| 294 jz .ELOOP |
| 295 mov rcx, r12 |
| 296 lea rsi, [rsi+r12*2] ; k += r; |
| 297 shr r11, cl ; index >>= r; |
| 298 movzx rdi, word [rsi] ; temp = t1[k]; |
| 299 lea rbx, [rel jpeg_nbits_table] |
| 300 movzx rdi, byte [rbx + rdi] ; nbits = JPEG_NBITS(temp); |
| 301 .BRLOOP: |
| 302 cmp r12, 16 ; while (r > 15) { |
| 303 jl .ERLOOP |
| 304 EMIT_BITS r13, r14d ; EMIT_BITS(code_0xf0, size_0xf0) |
| 305 sub r12, 16 ; r -= 16; |
| 306 jmp .BRLOOP |
| 307 .ERLOOP: |
| 308 ; Emit Huffman symbol for run length / number of bits |
| 309 CHECKBUF31 ; uses rcx, rdx |
| 310 |
| 311 shl r12, 4 ; temp3 = (r << 4) + nbits; |
| 312 add r12, rdi |
| 313 mov ebx, INT [r15 + r12 * 4] ; code = actbl->ehufco[temp3]; |
| 314 movzx ecx, byte [r15 + r12 + 1024] ; size = actbl->ehufsi[temp3]; |
| 315 PUT_BITS rbx |
| 316 |
| 317 ;EMIT_CODE(code, size) |
| 318 |
| 319 movsx ebx, word [rsi-DCTSIZE2*2] ; temp2 = t2[k]; |
| 320 ; Mask off any extra bits in code |
| 321 mov rcx, rdi |
| 322 mov rdx, 1 |
| 323 shl rdx, cl |
| 324 dec rdx |
| 325 and rbx, rdx ; temp2 &= (((JLONG) 1)<<nbits) - 1; |
| 326 PUT_BITS rbx ; PUT_BITS(temp2, nbits) |
| 327 |
| 328 shr r11, 1 ; index >>= 1; |
| 329 add rsi, 2 ; ++k; |
| 330 jmp .BLOOP |
| 331 .ELOOP: |
| 332 ; If the last coef(s) were zero, emit an end-of-block code |
| 333 lea rdi, [t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k; |
| 334 cmp rdi, rsi ; if (r > 0) { |
| 335 je .EFN |
| 336 mov ebx, INT [r15] ; code = actbl->ehufco[0]; |
| 337 movzx r12d, byte [r15 + 1024] ; size = actbl->ehufsi[0]; |
| 338 EMIT_BITS rbx, r12d |
| 339 .EFN: |
| 340 pop r10 |
| 341 ; Save put_buffer & put_bits |
| 342 mov MMWORD [r10+16], put_buffer ; state->cur.put_buffer = put_buffer; |
| 343 mov DWORD [r10+24], put_bits ; state->cur.put_bits = put_bits; |
| 344 |
| 345 pop rbx |
| 346 %ifdef WIN64 |
| 347 movaps xmm11, XMMWORD [rsp+0*SIZEOF_XMMWORD] |
| 348 movaps xmm10, XMMWORD [rsp+1*SIZEOF_XMMWORD] |
| 349 movaps xmm9, XMMWORD [rsp+2*SIZEOF_XMMWORD] |
| 350 movaps xmm8, XMMWORD [rsp+3*SIZEOF_XMMWORD] |
| 351 add rsp, 4*SIZEOF_XMMWORD |
| 352 %endif |
| 353 uncollect_args |
| 354 mov rsp,rbp ; rsp <- aligned rbp |
| 355 pop rsp ; rsp <- original rbp |
| 356 pop rbp |
| 357 ret |
| 358 |
| 359 ; For some reason, the OS X linker does not honor the request to align the |
| 360 ; segment unless we do this. |
| 361 align 16 |
OLD | NEW |