OLD | NEW |
1 /* | 1 /* |
2 * jmemmgr.c | 2 * jmemmgr.c |
3 * | 3 * |
| 4 * This file was part of the Independent JPEG Group's software: |
4 * Copyright (C) 1991-1997, Thomas G. Lane. | 5 * Copyright (C) 1991-1997, Thomas G. Lane. |
5 * This file is part of the Independent JPEG Group's software. | 6 * libjpeg-turbo Modifications: |
6 * For conditions of distribution and use, see the accompanying README file. | 7 * Copyright (C) 2016, D. R. Commander. |
| 8 * For conditions of distribution and use, see the accompanying README.ijg |
| 9 * file. |
7 * | 10 * |
8 * This file contains the JPEG system-independent memory management | 11 * This file contains the JPEG system-independent memory management |
9 * routines. This code is usable across a wide variety of machines; most | 12 * routines. This code is usable across a wide variety of machines; most |
10 * of the system dependencies have been isolated in a separate file. | 13 * of the system dependencies have been isolated in a separate file. |
11 * The major functions provided here are: | 14 * The major functions provided here are: |
12 * * pool-based allocation and freeing of memory; | 15 * * pool-based allocation and freeing of memory; |
13 * * policy decisions about how to divide available memory among the | 16 * * policy decisions about how to divide available memory among the |
14 * virtual arrays; | 17 * virtual arrays; |
15 * * control logic for swapping virtual arrays between main memory and | 18 * * control logic for swapping virtual arrays between main memory and |
16 * backing storage. | 19 * backing storage. |
17 * The separate system-dependent file provides the actual backing-storage | 20 * The separate system-dependent file provides the actual backing-storage |
18 * access code, and it contains the policy decision about how much total | 21 * access code, and it contains the policy decision about how much total |
19 * main memory to use. | 22 * main memory to use. |
20 * This file is system-dependent in the sense that some of its functions | 23 * This file is system-dependent in the sense that some of its functions |
21 * are unnecessary in some systems. For example, if there is enough virtual | 24 * are unnecessary in some systems. For example, if there is enough virtual |
22 * memory so that backing storage will never be used, much of the virtual | 25 * memory so that backing storage will never be used, much of the virtual |
23 * array control logic could be removed. (Of course, if you have that much | 26 * array control logic could be removed. (Of course, if you have that much |
24 * memory then you shouldn't care about a little bit of unused code...) | 27 * memory then you shouldn't care about a little bit of unused code...) |
25 */ | 28 */ |
26 | 29 |
27 #define JPEG_INTERNALS | 30 #define JPEG_INTERNALS |
28 #define AM_MEMORY_MANAGER» /* we define jvirt_Xarray_control structs */ | 31 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ |
29 #include "jinclude.h" | 32 #include "jinclude.h" |
30 #include "jpeglib.h" | 33 #include "jpeglib.h" |
31 #include "jmemsys.h"» » /* import the system-dependent declarations */ | 34 #include "jmemsys.h" /* import the system-dependent declarations */ |
32 | 35 |
33 #ifndef NO_GETENV | 36 #ifndef NO_GETENV |
34 #ifndef HAVE_STDLIB_H» » /* <stdlib.h> should declare getenv() */ | 37 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ |
35 extern char * getenv JPP((const char * name)); | 38 extern char *getenv (const char *name); |
36 #endif | 39 #endif |
37 #endif | 40 #endif |
38 | 41 |
39 | 42 |
40 LOCAL(size_t) | 43 LOCAL(size_t) |
41 round_up_pow2 (size_t a, size_t b) | 44 round_up_pow2 (size_t a, size_t b) |
42 /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */ | 45 /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */ |
43 /* Assumes a >= 0, b > 0, and b is a power of 2 */ | 46 /* Assumes a >= 0, b > 0, and b is a power of 2 */ |
44 { | 47 { |
45 return ((a + b - 1) & (~(b - 1))); | 48 return ((a + b - 1) & (~(b - 1))); |
(...skipping 14 matching lines...) Expand all Loading... |
60 | 63 |
61 | 64 |
62 /* | 65 /* |
63 * Many machines require storage alignment: longs must start on 4-byte | 66 * Many machines require storage alignment: longs must start on 4-byte |
64 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() | 67 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() |
65 * always returns pointers that are multiples of the worst-case alignment | 68 * always returns pointers that are multiples of the worst-case alignment |
66 * requirement, and we had better do so too. | 69 * requirement, and we had better do so too. |
67 * There isn't any really portable way to determine the worst-case alignment | 70 * There isn't any really portable way to determine the worst-case alignment |
68 * requirement. This module assumes that the alignment requirement is | 71 * requirement. This module assumes that the alignment requirement is |
69 * multiples of ALIGN_SIZE. | 72 * multiples of ALIGN_SIZE. |
70 * By default, we define ALIGN_SIZE as sizeof(double). This is necessary on som
e | 73 * By default, we define ALIGN_SIZE as sizeof(double). This is necessary on |
71 * workstations (where doubles really do need 8-byte alignment) and will work | 74 * some workstations (where doubles really do need 8-byte alignment) and will |
72 * fine on nearly everything. If your machine has lesser alignment needs, | 75 * work fine on nearly everything. If your machine has lesser alignment needs, |
73 * you can save a few bytes by making ALIGN_SIZE smaller. | 76 * you can save a few bytes by making ALIGN_SIZE smaller. |
74 * The only place I know of where this will NOT work is certain Macintosh | 77 * The only place I know of where this will NOT work is certain Macintosh |
75 * 680x0 compilers that define double as a 10-byte IEEE extended float. | 78 * 680x0 compilers that define double as a 10-byte IEEE extended float. |
76 * Doing 10-byte alignment is counterproductive because longwords won't be | 79 * Doing 10-byte alignment is counterproductive because longwords won't be |
77 * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have | 80 * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have |
78 * such a compiler. | 81 * such a compiler. |
79 */ | 82 */ |
80 | 83 |
81 #ifndef ALIGN_SIZE» » /* so can override from jconfig.h */ | 84 #ifndef ALIGN_SIZE /* so can override from jconfig.h */ |
82 #ifndef WITH_SIMD | 85 #ifndef WITH_SIMD |
83 #define ALIGN_SIZE SIZEOF(double) | 86 #define ALIGN_SIZE sizeof(double) |
84 #else | 87 #else |
85 #define ALIGN_SIZE 16 /* Most SIMD implementations require this */ | 88 #define ALIGN_SIZE 16 /* Most SIMD implementations require this */ |
86 #endif | 89 #endif |
87 #endif | 90 #endif |
88 | 91 |
89 /* | 92 /* |
90 * We allocate objects from "pools", where each pool is gotten with a single | 93 * We allocate objects from "pools", where each pool is gotten with a single |
91 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object | 94 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object |
92 * overhead within a pool, except for alignment padding. Each pool has a | 95 * overhead within a pool, except for alignment padding. Each pool has a |
93 * header with a link to the next pool of the same class. | 96 * header with a link to the next pool of the same class. |
94 * Small and large pool headers are identical except that the latter's | 97 * Small and large pool headers are identical. |
95 * link pointer must be FAR on 80x86 machines. | |
96 */ | 98 */ |
97 | 99 |
98 typedef struct small_pool_struct * small_pool_ptr; | 100 typedef struct small_pool_struct *small_pool_ptr; |
99 | 101 |
100 typedef struct small_pool_struct { | 102 typedef struct small_pool_struct { |
101 small_pool_ptr next;» /* next in list of pools */ | 103 small_pool_ptr next; /* next in list of pools */ |
102 size_t bytes_used;» » /* how many bytes already used within pool */ | 104 size_t bytes_used; /* how many bytes already used within pool */ |
103 size_t bytes_left;» » /* bytes still available in this pool */ | 105 size_t bytes_left; /* bytes still available in this pool */ |
104 } small_pool_hdr; | 106 } small_pool_hdr; |
105 | 107 |
106 typedef struct large_pool_struct FAR * large_pool_ptr; | 108 typedef struct large_pool_struct *large_pool_ptr; |
107 | 109 |
108 typedef struct large_pool_struct { | 110 typedef struct large_pool_struct { |
109 large_pool_ptr next;» /* next in list of pools */ | 111 large_pool_ptr next; /* next in list of pools */ |
110 size_t bytes_used;» » /* how many bytes already used within pool */ | 112 size_t bytes_used; /* how many bytes already used within pool */ |
111 size_t bytes_left;» » /* bytes still available in this pool */ | 113 size_t bytes_left; /* bytes still available in this pool */ |
112 } large_pool_hdr; | 114 } large_pool_hdr; |
113 | 115 |
114 /* | 116 /* |
115 * Here is the full definition of a memory manager object. | 117 * Here is the full definition of a memory manager object. |
116 */ | 118 */ |
117 | 119 |
118 typedef struct { | 120 typedef struct { |
119 struct jpeg_memory_mgr pub;» /* public fields */ | 121 struct jpeg_memory_mgr pub; /* public fields */ |
120 | 122 |
121 /* Each pool identifier (lifetime class) names a linked list of pools. */ | 123 /* Each pool identifier (lifetime class) names a linked list of pools. */ |
122 small_pool_ptr small_list[JPOOL_NUMPOOLS]; | 124 small_pool_ptr small_list[JPOOL_NUMPOOLS]; |
123 large_pool_ptr large_list[JPOOL_NUMPOOLS]; | 125 large_pool_ptr large_list[JPOOL_NUMPOOLS]; |
124 | 126 |
125 /* Since we only have one lifetime class of virtual arrays, only one | 127 /* Since we only have one lifetime class of virtual arrays, only one |
126 * linked list is necessary (for each datatype). Note that the virtual | 128 * linked list is necessary (for each datatype). Note that the virtual |
127 * array control blocks being linked together are actually stored somewhere | 129 * array control blocks being linked together are actually stored somewhere |
128 * in the small-pool list. | 130 * in the small-pool list. |
129 */ | 131 */ |
130 jvirt_sarray_ptr virt_sarray_list; | 132 jvirt_sarray_ptr virt_sarray_list; |
131 jvirt_barray_ptr virt_barray_list; | 133 jvirt_barray_ptr virt_barray_list; |
132 | 134 |
133 /* This counts total space obtained from jpeg_get_small/large */ | 135 /* This counts total space obtained from jpeg_get_small/large */ |
134 size_t total_space_allocated; | 136 size_t total_space_allocated; |
135 | 137 |
136 /* alloc_sarray and alloc_barray set this value for use by virtual | 138 /* alloc_sarray and alloc_barray set this value for use by virtual |
137 * array routines. | 139 * array routines. |
138 */ | 140 */ |
139 JDIMENSION last_rowsperchunk;»/* from most recent alloc_sarray/barray */ | 141 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ |
140 } my_memory_mgr; | 142 } my_memory_mgr; |
141 | 143 |
142 typedef my_memory_mgr * my_mem_ptr; | 144 typedef my_memory_mgr *my_mem_ptr; |
143 | 145 |
144 | 146 |
145 /* | 147 /* |
146 * The control blocks for virtual arrays. | 148 * The control blocks for virtual arrays. |
147 * Note that these blocks are allocated in the "small" pool area. | 149 * Note that these blocks are allocated in the "small" pool area. |
148 * System-dependent info for the associated backing store (if any) is hidden | 150 * System-dependent info for the associated backing store (if any) is hidden |
149 * inside the backing_store_info struct. | 151 * inside the backing_store_info struct. |
150 */ | 152 */ |
151 | 153 |
152 struct jvirt_sarray_control { | 154 struct jvirt_sarray_control { |
153 JSAMPARRAY mem_buffer;» /* => the in-memory buffer */ | 155 JSAMPARRAY mem_buffer; /* => the in-memory buffer */ |
154 JDIMENSION rows_in_array;» /* total virtual array height */ | 156 JDIMENSION rows_in_array; /* total virtual array height */ |
155 JDIMENSION samplesperrow;» /* width of array (and of memory buffer) */ | 157 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ |
156 JDIMENSION maxaccess;»» /* max rows accessed by access_virt_sarray */ | 158 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ |
157 JDIMENSION rows_in_mem;» /* height of memory buffer */ | 159 JDIMENSION rows_in_mem; /* height of memory buffer */ |
158 JDIMENSION rowsperchunk;» /* allocation chunk size in mem_buffer */ | 160 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
159 JDIMENSION cur_start_row;» /* first logical row # in the buffer */ | 161 JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
160 JDIMENSION first_undef_row;» /* row # of first uninitialized row */ | 162 JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
161 boolean pre_zero;» » /* pre-zero mode requested? */ | 163 boolean pre_zero; /* pre-zero mode requested? */ |
162 boolean dirty;» » /* do current buffer contents need written? */ | 164 boolean dirty; /* do current buffer contents need written? */ |
163 boolean b_s_open;» » /* is backing-store data valid? */ | 165 boolean b_s_open; /* is backing-store data valid? */ |
164 jvirt_sarray_ptr next;» /* link to next virtual sarray control block */ | 166 jvirt_sarray_ptr next; /* link to next virtual sarray control block */ |
165 backing_store_info b_s_info;» /* System-dependent control info */ | 167 backing_store_info b_s_info; /* System-dependent control info */ |
166 }; | 168 }; |
167 | 169 |
168 struct jvirt_barray_control { | 170 struct jvirt_barray_control { |
169 JBLOCKARRAY mem_buffer;» /* => the in-memory buffer */ | 171 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ |
170 JDIMENSION rows_in_array;» /* total virtual array height */ | 172 JDIMENSION rows_in_array; /* total virtual array height */ |
171 JDIMENSION blocksperrow;» /* width of array (and of memory buffer) */ | 173 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ |
172 JDIMENSION maxaccess;»» /* max rows accessed by access_virt_barray */ | 174 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ |
173 JDIMENSION rows_in_mem;» /* height of memory buffer */ | 175 JDIMENSION rows_in_mem; /* height of memory buffer */ |
174 JDIMENSION rowsperchunk;» /* allocation chunk size in mem_buffer */ | 176 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
175 JDIMENSION cur_start_row;» /* first logical row # in the buffer */ | 177 JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
176 JDIMENSION first_undef_row;» /* row # of first uninitialized row */ | 178 JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
177 boolean pre_zero;» » /* pre-zero mode requested? */ | 179 boolean pre_zero; /* pre-zero mode requested? */ |
178 boolean dirty;» » /* do current buffer contents need written? */ | 180 boolean dirty; /* do current buffer contents need written? */ |
179 boolean b_s_open;» » /* is backing-store data valid? */ | 181 boolean b_s_open; /* is backing-store data valid? */ |
180 jvirt_barray_ptr next;» /* link to next virtual barray control block */ | 182 jvirt_barray_ptr next; /* link to next virtual barray control block */ |
181 backing_store_info b_s_info;» /* System-dependent control info */ | 183 backing_store_info b_s_info; /* System-dependent control info */ |
182 }; | 184 }; |
183 | 185 |
184 | 186 |
185 #ifdef MEM_STATS» » /* optional extra stuff for statistics */ | 187 #ifdef MEM_STATS /* optional extra stuff for statistics */ |
186 | 188 |
187 LOCAL(void) | 189 LOCAL(void) |
188 print_mem_stats (j_common_ptr cinfo, int pool_id) | 190 print_mem_stats (j_common_ptr cinfo, int pool_id) |
189 { | 191 { |
190 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 192 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
191 small_pool_ptr shdr_ptr; | 193 small_pool_ptr shdr_ptr; |
192 large_pool_ptr lhdr_ptr; | 194 large_pool_ptr lhdr_ptr; |
193 | 195 |
194 /* Since this is only a debugging stub, we can cheat a little by using | 196 /* Since this is only a debugging stub, we can cheat a little by using |
195 * fprintf directly rather than going through the trace message code. | 197 * fprintf directly rather than going through the trace message code. |
196 * This is helpful because message parm array can't handle longs. | 198 * This is helpful because message parm array can't handle longs. |
197 */ | 199 */ |
198 fprintf(stderr, "Freeing pool %d, total space = %ld\n", | 200 fprintf(stderr, "Freeing pool %d, total space = %ld\n", |
199 » pool_id, mem->total_space_allocated); | 201 pool_id, mem->total_space_allocated); |
200 | 202 |
201 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; | 203 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; |
202 lhdr_ptr = lhdr_ptr->next) { | 204 lhdr_ptr = lhdr_ptr->next) { |
203 fprintf(stderr, " Large chunk used %ld\n", | 205 fprintf(stderr, " Large chunk used %ld\n", |
204 » (long) lhdr_ptr->bytes_used); | 206 (long) lhdr_ptr->bytes_used); |
205 } | 207 } |
206 | 208 |
207 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; | 209 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; |
208 shdr_ptr = shdr_ptr->next) { | 210 shdr_ptr = shdr_ptr->next) { |
209 fprintf(stderr, " Small chunk used %ld free %ld\n", | 211 fprintf(stderr, " Small chunk used %ld free %ld\n", |
210 » (long) shdr_ptr->bytes_used, | 212 (long) shdr_ptr->bytes_used, |
211 » (long) shdr_ptr->bytes_left); | 213 (long) shdr_ptr->bytes_left); |
212 } | 214 } |
213 } | 215 } |
214 | 216 |
215 #endif /* MEM_STATS */ | 217 #endif /* MEM_STATS */ |
216 | 218 |
217 | 219 |
218 LOCAL(void) | 220 LOCAL(void) |
219 out_of_memory (j_common_ptr cinfo, int which) | 221 out_of_memory (j_common_ptr cinfo, int which) |
220 /* Report an out-of-memory error and stop execution */ | 222 /* Report an out-of-memory error and stop execution */ |
221 /* If we compiled MEM_STATS support, report alloc requests before dying */ | 223 /* If we compiled MEM_STATS support, report alloc requests before dying */ |
222 { | 224 { |
223 #ifdef MEM_STATS | 225 #ifdef MEM_STATS |
224 cinfo->err->trace_level = 2;» /* force self_destruct to report stats */ | 226 cinfo->err->trace_level = 2; /* force self_destruct to report stats */ |
225 #endif | 227 #endif |
226 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); | 228 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); |
227 } | 229 } |
228 | 230 |
229 | 231 |
230 /* | 232 /* |
231 * Allocation of "small" objects. | 233 * Allocation of "small" objects. |
232 * | 234 * |
233 * For these, we use pooled storage. When a new pool must be created, | 235 * For these, we use pooled storage. When a new pool must be created, |
234 * we try to get enough space for the current request plus a "slop" factor, | 236 * we try to get enough space for the current request plus a "slop" factor, |
235 * where the slop will be the amount of leftover space in the new pool. | 237 * where the slop will be the amount of leftover space in the new pool. |
236 * The speed vs. space tradeoff is largely determined by the slop values. | 238 * The speed vs. space tradeoff is largely determined by the slop values. |
237 * A different slop value is provided for each pool class (lifetime), | 239 * A different slop value is provided for each pool class (lifetime), |
238 * and we also distinguish the first pool of a class from later ones. | 240 * and we also distinguish the first pool of a class from later ones. |
239 * NOTE: the values given work fairly well on both 16- and 32-bit-int | 241 * NOTE: the values given work fairly well on both 16- and 32-bit-int |
240 * machines, but may be too small if longs are 64 bits or more. | 242 * machines, but may be too small if longs are 64 bits or more. |
241 * | 243 * |
242 * Since we do not know what alignment malloc() gives us, we have to | 244 * Since we do not know what alignment malloc() gives us, we have to |
243 * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment | 245 * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment |
244 * adjustment. | 246 * adjustment. |
245 */ | 247 */ |
246 | 248 |
247 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = | 249 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = |
248 { | 250 { |
249 » 1600,» » » /* first PERMANENT pool */ | 251 1600, /* first PERMANENT pool */ |
250 » 16000» » » /* first IMAGE pool */ | 252 16000 /* first IMAGE pool */ |
251 }; | 253 }; |
252 | 254 |
253 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = | 255 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = |
254 { | 256 { |
255 » 0,» » » /* additional PERMANENT pools */ | 257 0, /* additional PERMANENT pools */ |
256 » 5000» » » /* additional IMAGE pools */ | 258 5000 /* additional IMAGE pools */ |
257 }; | 259 }; |
258 | 260 |
259 #define MIN_SLOP 50» » /* greater than 0 to avoid futile looping */ | 261 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ |
260 | 262 |
261 | 263 |
262 METHODDEF(void *) | 264 METHODDEF(void *) |
263 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | 265 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
264 /* Allocate a "small" object */ | 266 /* Allocate a "small" object */ |
265 { | 267 { |
266 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 268 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
267 small_pool_ptr hdr_ptr, prev_hdr_ptr; | 269 small_pool_ptr hdr_ptr, prev_hdr_ptr; |
268 char * data_ptr; | 270 char *data_ptr; |
269 size_t min_request, slop; | 271 size_t min_request, slop; |
270 | 272 |
271 /* | 273 /* |
272 * Round up the requested size to a multiple of ALIGN_SIZE in order | 274 * Round up the requested size to a multiple of ALIGN_SIZE in order |
273 * to assure alignment for the next object allocated in the same pool | 275 * to assure alignment for the next object allocated in the same pool |
274 * and so that algorithms can straddle outside the proper area up | 276 * and so that algorithms can straddle outside the proper area up |
275 * to the next alignment. | 277 * to the next alignment. |
276 */ | 278 */ |
| 279 if (sizeofobject > MAX_ALLOC_CHUNK) { |
| 280 /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
| 281 is close to SIZE_MAX. */ |
| 282 out_of_memory(cinfo, 7); |
| 283 } |
277 sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); | 284 sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
278 | 285 |
279 /* Check for unsatisfiable request (do now to ensure no overflow below) */ | 286 /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
280 if ((SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK
) | 287 if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > |
281 out_of_memory(cinfo, 1);» /* request exceeds malloc's ability */ | 288 MAX_ALLOC_CHUNK) |
| 289 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ |
282 | 290 |
283 /* See if space is available in any existing pool */ | 291 /* See if space is available in any existing pool */ |
284 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | 292 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
285 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);»/* safety check */ | 293 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
286 prev_hdr_ptr = NULL; | 294 prev_hdr_ptr = NULL; |
287 hdr_ptr = mem->small_list[pool_id]; | 295 hdr_ptr = mem->small_list[pool_id]; |
288 while (hdr_ptr != NULL) { | 296 while (hdr_ptr != NULL) { |
289 if (hdr_ptr->bytes_left >= sizeofobject) | 297 if (hdr_ptr->bytes_left >= sizeofobject) |
290 break;» » » /* found pool with enough space */ | 298 break; /* found pool with enough space */ |
291 prev_hdr_ptr = hdr_ptr; | 299 prev_hdr_ptr = hdr_ptr; |
292 hdr_ptr = hdr_ptr->next; | 300 hdr_ptr = hdr_ptr->next; |
293 } | 301 } |
294 | 302 |
295 /* Time to make a new pool? */ | 303 /* Time to make a new pool? */ |
296 if (hdr_ptr == NULL) { | 304 if (hdr_ptr == NULL) { |
297 /* min_request is what we need now, slop is what will be leftover */ | 305 /* min_request is what we need now, slop is what will be leftover */ |
298 min_request = SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1; | 306 min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1; |
299 if (prev_hdr_ptr == NULL)» /* first pool in class? */ | 307 if (prev_hdr_ptr == NULL) /* first pool in class? */ |
300 slop = first_pool_slop[pool_id]; | 308 slop = first_pool_slop[pool_id]; |
301 else | 309 else |
302 slop = extra_pool_slop[pool_id]; | 310 slop = extra_pool_slop[pool_id]; |
303 /* Don't ask for more than MAX_ALLOC_CHUNK */ | 311 /* Don't ask for more than MAX_ALLOC_CHUNK */ |
304 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) | 312 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) |
305 slop = (size_t) (MAX_ALLOC_CHUNK-min_request); | 313 slop = (size_t) (MAX_ALLOC_CHUNK-min_request); |
306 /* Try to get space, if fail reduce slop and try again */ | 314 /* Try to get space, if fail reduce slop and try again */ |
307 for (;;) { | 315 for (;;) { |
308 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); | 316 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); |
309 if (hdr_ptr != NULL) | 317 if (hdr_ptr != NULL) |
310 » break; | 318 break; |
311 slop /= 2; | 319 slop /= 2; |
312 if (slop < MIN_SLOP)» /* give up when it gets real small */ | 320 if (slop < MIN_SLOP) /* give up when it gets real small */ |
313 » out_of_memory(cinfo, 2); /* jpeg_get_small failed */ | 321 out_of_memory(cinfo, 2); /* jpeg_get_small failed */ |
314 } | 322 } |
315 mem->total_space_allocated += min_request + slop; | 323 mem->total_space_allocated += min_request + slop; |
316 /* Success, initialize the new pool header and add to end of list */ | 324 /* Success, initialize the new pool header and add to end of list */ |
317 hdr_ptr->next = NULL; | 325 hdr_ptr->next = NULL; |
318 hdr_ptr->bytes_used = 0; | 326 hdr_ptr->bytes_used = 0; |
319 hdr_ptr->bytes_left = sizeofobject + slop; | 327 hdr_ptr->bytes_left = sizeofobject + slop; |
320 if (prev_hdr_ptr == NULL)» /* first pool in class? */ | 328 if (prev_hdr_ptr == NULL) /* first pool in class? */ |
321 mem->small_list[pool_id] = hdr_ptr; | 329 mem->small_list[pool_id] = hdr_ptr; |
322 else | 330 else |
323 prev_hdr_ptr->next = hdr_ptr; | 331 prev_hdr_ptr->next = hdr_ptr; |
324 } | 332 } |
325 | 333 |
326 /* OK, allocate the object from the current pool */ | 334 /* OK, allocate the object from the current pool */ |
327 data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ | 335 data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ |
328 data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */ | 336 data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ |
329 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ | 337 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
330 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; | 338 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
331 data_ptr += hdr_ptr->bytes_used; /* point to place for object */ | 339 data_ptr += hdr_ptr->bytes_used; /* point to place for object */ |
332 hdr_ptr->bytes_used += sizeofobject; | 340 hdr_ptr->bytes_used += sizeofobject; |
333 hdr_ptr->bytes_left -= sizeofobject; | 341 hdr_ptr->bytes_left -= sizeofobject; |
334 | 342 |
335 return (void *) data_ptr; | 343 return (void *) data_ptr; |
336 } | 344 } |
337 | 345 |
338 | 346 |
339 /* | 347 /* |
340 * Allocation of "large" objects. | 348 * Allocation of "large" objects. |
341 * | 349 * |
342 * The external semantics of these are the same as "small" objects, | 350 * The external semantics of these are the same as "small" objects. However, |
343 * except that FAR pointers are used on 80x86. However the pool | 351 * the pool management heuristics are quite different. We assume that each |
344 * management heuristics are quite different. We assume that each | |
345 * request is large enough that it may as well be passed directly to | 352 * request is large enough that it may as well be passed directly to |
346 * jpeg_get_large; the pool management just links everything together | 353 * jpeg_get_large; the pool management just links everything together |
347 * so that we can free it all on demand. | 354 * so that we can free it all on demand. |
348 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY | 355 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY |
349 * structures. The routines that create these structures (see below) | 356 * structures. The routines that create these structures (see below) |
350 * deliberately bunch rows together to ensure a large request size. | 357 * deliberately bunch rows together to ensure a large request size. |
351 */ | 358 */ |
352 | 359 |
353 METHODDEF(void FAR *) | 360 METHODDEF(void *) |
354 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | 361 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
355 /* Allocate a "large" object */ | 362 /* Allocate a "large" object */ |
356 { | 363 { |
357 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 364 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
358 large_pool_ptr hdr_ptr; | 365 large_pool_ptr hdr_ptr; |
359 char FAR * data_ptr; | 366 char *data_ptr; |
360 | 367 |
361 /* | 368 /* |
362 * Round up the requested size to a multiple of ALIGN_SIZE so that | 369 * Round up the requested size to a multiple of ALIGN_SIZE so that |
363 * algorithms can straddle outside the proper area up to the next | 370 * algorithms can straddle outside the proper area up to the next |
364 * alignment. | 371 * alignment. |
365 */ | 372 */ |
| 373 if (sizeofobject > MAX_ALLOC_CHUNK) { |
| 374 /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
| 375 is close to SIZE_MAX. */ |
| 376 out_of_memory(cinfo, 8); |
| 377 } |
366 sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); | 378 sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
367 | 379 |
368 /* Check for unsatisfiable request (do now to ensure no overflow below) */ | 380 /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
369 if ((SIZEOF(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK
) | 381 if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > |
370 out_of_memory(cinfo, 3);» /* request exceeds malloc's ability */ | 382 MAX_ALLOC_CHUNK) |
| 383 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ |
371 | 384 |
372 /* Always make a new pool */ | 385 /* Always make a new pool */ |
373 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | 386 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
374 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);»/* safety check */ | 387 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
375 | 388 |
376 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + | 389 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + |
377 » » » » » SIZEOF(large_pool_hdr) + | 390 sizeof(large_pool_hdr) + |
378 » » » » » ALIGN_SIZE - 1); | 391 ALIGN_SIZE - 1); |
379 if (hdr_ptr == NULL) | 392 if (hdr_ptr == NULL) |
380 out_of_memory(cinfo, 4);» /* jpeg_get_large failed */ | 393 out_of_memory(cinfo, 4); /* jpeg_get_large failed */ |
381 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr) + ALIGN_SI
ZE - 1; | 394 mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) + |
| 395 ALIGN_SIZE - 1; |
382 | 396 |
383 /* Success, initialize the new pool header and add to list */ | 397 /* Success, initialize the new pool header and add to list */ |
384 hdr_ptr->next = mem->large_list[pool_id]; | 398 hdr_ptr->next = mem->large_list[pool_id]; |
385 /* We maintain space counts in each pool header for statistical purposes, | 399 /* We maintain space counts in each pool header for statistical purposes, |
386 * even though they are not needed for allocation. | 400 * even though they are not needed for allocation. |
387 */ | 401 */ |
388 hdr_ptr->bytes_used = sizeofobject; | 402 hdr_ptr->bytes_used = sizeofobject; |
389 hdr_ptr->bytes_left = 0; | 403 hdr_ptr->bytes_left = 0; |
390 mem->large_list[pool_id] = hdr_ptr; | 404 mem->large_list[pool_id] = hdr_ptr; |
391 | 405 |
392 data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ | 406 data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ |
393 data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */ | 407 data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ |
394 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ | 408 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
395 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; | 409 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
396 | 410 |
397 return (void FAR *) data_ptr; | 411 return (void *) data_ptr; |
398 } | 412 } |
399 | 413 |
400 | 414 |
401 /* | 415 /* |
402 * Creation of 2-D sample arrays. | 416 * Creation of 2-D sample arrays. |
403 * The pointers are in near heap, the samples themselves in FAR heap. | |
404 * | 417 * |
405 * To minimize allocation overhead and to allow I/O of large contiguous | 418 * To minimize allocation overhead and to allow I/O of large contiguous |
406 * blocks, we allocate the sample rows in groups of as many rows as possible | 419 * blocks, we allocate the sample rows in groups of as many rows as possible |
407 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. | 420 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. |
408 * NB: the virtual array control routines, later in this file, know about | 421 * NB: the virtual array control routines, later in this file, know about |
409 * this chunking of rows. The rowsperchunk value is left in the mem manager | 422 * this chunking of rows. The rowsperchunk value is left in the mem manager |
410 * object so that it can be saved away if this sarray is the workspace for | 423 * object so that it can be saved away if this sarray is the workspace for |
411 * a virtual array. | 424 * a virtual array. |
412 * | 425 * |
413 * Since we are often upsampling with a factor 2, we align the size (not | 426 * Since we are often upsampling with a factor 2, we align the size (not |
414 * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have | 427 * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have |
415 * to be as careful about size. | 428 * to be as careful about size. |
416 */ | 429 */ |
417 | 430 |
418 METHODDEF(JSAMPARRAY) | 431 METHODDEF(JSAMPARRAY) |
419 alloc_sarray (j_common_ptr cinfo, int pool_id, | 432 alloc_sarray (j_common_ptr cinfo, int pool_id, |
420 » JDIMENSION samplesperrow, JDIMENSION numrows) | 433 JDIMENSION samplesperrow, JDIMENSION numrows) |
421 /* Allocate a 2-D sample array */ | 434 /* Allocate a 2-D sample array */ |
422 { | 435 { |
423 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 436 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
424 JSAMPARRAY result; | 437 JSAMPARRAY result; |
425 JSAMPROW workspace; | 438 JSAMPROW workspace; |
426 JDIMENSION rowsperchunk, currow, i; | 439 JDIMENSION rowsperchunk, currow, i; |
427 long ltemp; | 440 long ltemp; |
428 | 441 |
429 /* Make sure each row is properly aligned */ | 442 /* Make sure each row is properly aligned */ |
430 if ((ALIGN_SIZE % SIZEOF(JSAMPLE)) != 0) | 443 if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0) |
431 out_of_memory(cinfo, 5);» /* safety check */ | 444 out_of_memory(cinfo, 5); /* safety check */ |
432 samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / SI
ZEOF(JSAMPLE)); | 445 |
| 446 if (samplesperrow > MAX_ALLOC_CHUNK) { |
| 447 /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
| 448 is close to SIZE_MAX. */ |
| 449 out_of_memory(cinfo, 9); |
| 450 } |
| 451 samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / |
| 452 sizeof(JSAMPLE)); |
433 | 453 |
434 /* Calculate max # of rows allowed in one allocation chunk */ | 454 /* Calculate max # of rows allowed in one allocation chunk */ |
435 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / | 455 ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) / |
436 » ((long) samplesperrow * SIZEOF(JSAMPLE)); | 456 ((long) samplesperrow * sizeof(JSAMPLE)); |
437 if (ltemp <= 0) | 457 if (ltemp <= 0) |
438 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | 458 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
439 if (ltemp < (long) numrows) | 459 if (ltemp < (long) numrows) |
440 rowsperchunk = (JDIMENSION) ltemp; | 460 rowsperchunk = (JDIMENSION) ltemp; |
441 else | 461 else |
442 rowsperchunk = numrows; | 462 rowsperchunk = numrows; |
443 mem->last_rowsperchunk = rowsperchunk; | 463 mem->last_rowsperchunk = rowsperchunk; |
444 | 464 |
445 /* Get space for row pointers (small object) */ | 465 /* Get space for row pointers (small object) */ |
446 result = (JSAMPARRAY) alloc_small(cinfo, pool_id, | 466 result = (JSAMPARRAY) alloc_small(cinfo, pool_id, |
447 » » » » (size_t) (numrows * SIZEOF(JSAMPROW))); | 467 (size_t) (numrows * sizeof(JSAMPROW))); |
448 | 468 |
449 /* Get the rows themselves (large objects) */ | 469 /* Get the rows themselves (large objects) */ |
450 currow = 0; | 470 currow = 0; |
451 while (currow < numrows) { | 471 while (currow < numrows) { |
452 rowsperchunk = MIN(rowsperchunk, numrows - currow); | 472 rowsperchunk = MIN(rowsperchunk, numrows - currow); |
453 workspace = (JSAMPROW) alloc_large(cinfo, pool_id, | 473 workspace = (JSAMPROW) alloc_large(cinfo, pool_id, |
454 » (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow | 474 (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow |
455 » » * SIZEOF(JSAMPLE))); | 475 * sizeof(JSAMPLE))); |
456 for (i = rowsperchunk; i > 0; i--) { | 476 for (i = rowsperchunk; i > 0; i--) { |
457 result[currow++] = workspace; | 477 result[currow++] = workspace; |
458 workspace += samplesperrow; | 478 workspace += samplesperrow; |
459 } | 479 } |
460 } | 480 } |
461 | 481 |
462 return result; | 482 return result; |
463 } | 483 } |
464 | 484 |
465 | 485 |
466 /* | 486 /* |
467 * Creation of 2-D coefficient-block arrays. | 487 * Creation of 2-D coefficient-block arrays. |
468 * This is essentially the same as the code for sample arrays, above. | 488 * This is essentially the same as the code for sample arrays, above. |
469 */ | 489 */ |
470 | 490 |
471 METHODDEF(JBLOCKARRAY) | 491 METHODDEF(JBLOCKARRAY) |
472 alloc_barray (j_common_ptr cinfo, int pool_id, | 492 alloc_barray (j_common_ptr cinfo, int pool_id, |
473 » JDIMENSION blocksperrow, JDIMENSION numrows) | 493 JDIMENSION blocksperrow, JDIMENSION numrows) |
474 /* Allocate a 2-D coefficient-block array */ | 494 /* Allocate a 2-D coefficient-block array */ |
475 { | 495 { |
476 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 496 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
477 JBLOCKARRAY result; | 497 JBLOCKARRAY result; |
478 JBLOCKROW workspace; | 498 JBLOCKROW workspace; |
479 JDIMENSION rowsperchunk, currow, i; | 499 JDIMENSION rowsperchunk, currow, i; |
480 long ltemp; | 500 long ltemp; |
481 | 501 |
482 /* Make sure each row is properly aligned */ | 502 /* Make sure each row is properly aligned */ |
483 if ((SIZEOF(JBLOCK) % ALIGN_SIZE) != 0) | 503 if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0) |
484 out_of_memory(cinfo, 6);» /* safety check */ | 504 out_of_memory(cinfo, 6); /* safety check */ |
485 | 505 |
486 /* Calculate max # of rows allowed in one allocation chunk */ | 506 /* Calculate max # of rows allowed in one allocation chunk */ |
487 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / | 507 ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) / |
488 » ((long) blocksperrow * SIZEOF(JBLOCK)); | 508 ((long) blocksperrow * sizeof(JBLOCK)); |
489 if (ltemp <= 0) | 509 if (ltemp <= 0) |
490 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | 510 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
491 if (ltemp < (long) numrows) | 511 if (ltemp < (long) numrows) |
492 rowsperchunk = (JDIMENSION) ltemp; | 512 rowsperchunk = (JDIMENSION) ltemp; |
493 else | 513 else |
494 rowsperchunk = numrows; | 514 rowsperchunk = numrows; |
495 mem->last_rowsperchunk = rowsperchunk; | 515 mem->last_rowsperchunk = rowsperchunk; |
496 | 516 |
497 /* Get space for row pointers (small object) */ | 517 /* Get space for row pointers (small object) */ |
498 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, | 518 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, |
499 » » » » (size_t) (numrows * SIZEOF(JBLOCKROW))); | 519 (size_t) (numrows * sizeof(JBLOCKROW))); |
500 | 520 |
501 /* Get the rows themselves (large objects) */ | 521 /* Get the rows themselves (large objects) */ |
502 currow = 0; | 522 currow = 0; |
503 while (currow < numrows) { | 523 while (currow < numrows) { |
504 rowsperchunk = MIN(rowsperchunk, numrows - currow); | 524 rowsperchunk = MIN(rowsperchunk, numrows - currow); |
505 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, | 525 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, |
506 » (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow | 526 (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow |
507 » » * SIZEOF(JBLOCK))); | 527 * sizeof(JBLOCK))); |
508 for (i = rowsperchunk; i > 0; i--) { | 528 for (i = rowsperchunk; i > 0; i--) { |
509 result[currow++] = workspace; | 529 result[currow++] = workspace; |
510 workspace += blocksperrow; | 530 workspace += blocksperrow; |
511 } | 531 } |
512 } | 532 } |
513 | 533 |
514 return result; | 534 return result; |
515 } | 535 } |
516 | 536 |
517 | 537 |
(...skipping 29 matching lines...) Expand all Loading... |
547 * num_rows = maxaccess. This means we can get good performance with simple | 567 * num_rows = maxaccess. This means we can get good performance with simple |
548 * buffer dump/reload logic, by making the in-memory buffer be a multiple | 568 * buffer dump/reload logic, by making the in-memory buffer be a multiple |
549 * of the access height; then there will never be accesses across bufferload | 569 * of the access height; then there will never be accesses across bufferload |
550 * boundaries. The code will still work with overlapping access requests, | 570 * boundaries. The code will still work with overlapping access requests, |
551 * but it doesn't handle bufferload overlaps very efficiently. | 571 * but it doesn't handle bufferload overlaps very efficiently. |
552 */ | 572 */ |
553 | 573 |
554 | 574 |
555 METHODDEF(jvirt_sarray_ptr) | 575 METHODDEF(jvirt_sarray_ptr) |
556 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | 576 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
557 » » JDIMENSION samplesperrow, JDIMENSION numrows, | 577 JDIMENSION samplesperrow, JDIMENSION numrows, |
558 » » JDIMENSION maxaccess) | 578 JDIMENSION maxaccess) |
559 /* Request a virtual 2-D sample array */ | 579 /* Request a virtual 2-D sample array */ |
560 { | 580 { |
561 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 581 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
562 jvirt_sarray_ptr result; | 582 jvirt_sarray_ptr result; |
563 | 583 |
564 /* Only IMAGE-lifetime virtual arrays are currently supported */ | 584 /* Only IMAGE-lifetime virtual arrays are currently supported */ |
565 if (pool_id != JPOOL_IMAGE) | 585 if (pool_id != JPOOL_IMAGE) |
566 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);»/* safety check */ | 586 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
567 | 587 |
568 /* get control block */ | 588 /* get control block */ |
569 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, | 589 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, |
570 » » » » » SIZEOF(struct jvirt_sarray_control)); | 590 sizeof(struct jvirt_sarray_control)); |
571 | 591 |
572 result->mem_buffer = NULL;» /* marks array not yet realized */ | 592 result->mem_buffer = NULL; /* marks array not yet realized */ |
573 result->rows_in_array = numrows; | 593 result->rows_in_array = numrows; |
574 result->samplesperrow = samplesperrow; | 594 result->samplesperrow = samplesperrow; |
575 result->maxaccess = maxaccess; | 595 result->maxaccess = maxaccess; |
576 result->pre_zero = pre_zero; | 596 result->pre_zero = pre_zero; |
577 result->b_s_open = FALSE;» /* no associated backing-store object */ | 597 result->b_s_open = FALSE; /* no associated backing-store object */ |
578 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ | 598 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ |
579 mem->virt_sarray_list = result; | 599 mem->virt_sarray_list = result; |
580 | 600 |
581 return result; | 601 return result; |
582 } | 602 } |
583 | 603 |
584 | 604 |
585 METHODDEF(jvirt_barray_ptr) | 605 METHODDEF(jvirt_barray_ptr) |
586 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | 606 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
587 » » JDIMENSION blocksperrow, JDIMENSION numrows, | 607 JDIMENSION blocksperrow, JDIMENSION numrows, |
588 » » JDIMENSION maxaccess) | 608 JDIMENSION maxaccess) |
589 /* Request a virtual 2-D coefficient-block array */ | 609 /* Request a virtual 2-D coefficient-block array */ |
590 { | 610 { |
591 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 611 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
592 jvirt_barray_ptr result; | 612 jvirt_barray_ptr result; |
593 | 613 |
594 /* Only IMAGE-lifetime virtual arrays are currently supported */ | 614 /* Only IMAGE-lifetime virtual arrays are currently supported */ |
595 if (pool_id != JPOOL_IMAGE) | 615 if (pool_id != JPOOL_IMAGE) |
596 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);»/* safety check */ | 616 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
597 | 617 |
598 /* get control block */ | 618 /* get control block */ |
599 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, | 619 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, |
600 » » » » » SIZEOF(struct jvirt_barray_control)); | 620 sizeof(struct jvirt_barray_control)); |
601 | 621 |
602 result->mem_buffer = NULL;» /* marks array not yet realized */ | 622 result->mem_buffer = NULL; /* marks array not yet realized */ |
603 result->rows_in_array = numrows; | 623 result->rows_in_array = numrows; |
604 result->blocksperrow = blocksperrow; | 624 result->blocksperrow = blocksperrow; |
605 result->maxaccess = maxaccess; | 625 result->maxaccess = maxaccess; |
606 result->pre_zero = pre_zero; | 626 result->pre_zero = pre_zero; |
607 result->b_s_open = FALSE;» /* no associated backing-store object */ | 627 result->b_s_open = FALSE; /* no associated backing-store object */ |
608 result->next = mem->virt_barray_list; /* add to list of virtual arrays */ | 628 result->next = mem->virt_barray_list; /* add to list of virtual arrays */ |
609 mem->virt_barray_list = result; | 629 mem->virt_barray_list = result; |
610 | 630 |
611 return result; | 631 return result; |
612 } | 632 } |
613 | 633 |
614 | 634 |
615 METHODDEF(void) | 635 METHODDEF(void) |
616 realize_virt_arrays (j_common_ptr cinfo) | 636 realize_virt_arrays (j_common_ptr cinfo) |
617 /* Allocate the in-memory buffers for any unrealized virtual arrays */ | 637 /* Allocate the in-memory buffers for any unrealized virtual arrays */ |
618 { | 638 { |
619 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 639 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
620 size_t space_per_minheight, maximum_space, avail_mem; | 640 size_t space_per_minheight, maximum_space, avail_mem; |
621 size_t minheights, max_minheights; | 641 size_t minheights, max_minheights; |
622 jvirt_sarray_ptr sptr; | 642 jvirt_sarray_ptr sptr; |
623 jvirt_barray_ptr bptr; | 643 jvirt_barray_ptr bptr; |
624 | 644 |
625 /* Compute the minimum space needed (maxaccess rows in each buffer) | 645 /* Compute the minimum space needed (maxaccess rows in each buffer) |
626 * and the maximum space needed (full image height in each buffer). | 646 * and the maximum space needed (full image height in each buffer). |
627 * These may be of use to the system-dependent jpeg_mem_available routine. | 647 * These may be of use to the system-dependent jpeg_mem_available routine. |
628 */ | 648 */ |
629 space_per_minheight = 0; | 649 space_per_minheight = 0; |
630 maximum_space = 0; | 650 maximum_space = 0; |
631 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | 651 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
632 if (sptr->mem_buffer == NULL) { /* if not realized yet */ | 652 if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
633 space_per_minheight += (long) sptr->maxaccess * | 653 space_per_minheight += (long) sptr->maxaccess * |
634 » » » (long) sptr->samplesperrow * SIZEOF(JSAMPLE); | 654 (long) sptr->samplesperrow * sizeof(JSAMPLE); |
635 maximum_space += (long) sptr->rows_in_array * | 655 maximum_space += (long) sptr->rows_in_array * |
636 » » (long) sptr->samplesperrow * SIZEOF(JSAMPLE); | 656 (long) sptr->samplesperrow * sizeof(JSAMPLE); |
637 } | 657 } |
638 } | 658 } |
639 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | 659 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
640 if (bptr->mem_buffer == NULL) { /* if not realized yet */ | 660 if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
641 space_per_minheight += (long) bptr->maxaccess * | 661 space_per_minheight += (long) bptr->maxaccess * |
642 » » » (long) bptr->blocksperrow * SIZEOF(JBLOCK); | 662 (long) bptr->blocksperrow * sizeof(JBLOCK); |
643 maximum_space += (long) bptr->rows_in_array * | 663 maximum_space += (long) bptr->rows_in_array * |
644 » » (long) bptr->blocksperrow * SIZEOF(JBLOCK); | 664 (long) bptr->blocksperrow * sizeof(JBLOCK); |
645 } | 665 } |
646 } | 666 } |
647 | 667 |
648 if (space_per_minheight <= 0) | 668 if (space_per_minheight <= 0) |
649 return;» » » /* no unrealized arrays, no work */ | 669 return; /* no unrealized arrays, no work */ |
650 | 670 |
651 /* Determine amount of memory to actually use; this is system-dependent. */ | 671 /* Determine amount of memory to actually use; this is system-dependent. */ |
652 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, | 672 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, |
653 » » » » mem->total_space_allocated); | 673 mem->total_space_allocated); |
654 | 674 |
655 /* If the maximum space needed is available, make all the buffers full | 675 /* If the maximum space needed is available, make all the buffers full |
656 * height; otherwise parcel it out with the same number of minheights | 676 * height; otherwise parcel it out with the same number of minheights |
657 * in each buffer. | 677 * in each buffer. |
658 */ | 678 */ |
659 if (avail_mem >= maximum_space) | 679 if (avail_mem >= maximum_space) |
660 max_minheights = 1000000000L; | 680 max_minheights = 1000000000L; |
661 else { | 681 else { |
662 max_minheights = avail_mem / space_per_minheight; | 682 max_minheights = avail_mem / space_per_minheight; |
663 /* If there doesn't seem to be enough space, try to get the minimum | 683 /* If there doesn't seem to be enough space, try to get the minimum |
664 * anyway. This allows a "stub" implementation of jpeg_mem_available(). | 684 * anyway. This allows a "stub" implementation of jpeg_mem_available(). |
665 */ | 685 */ |
666 if (max_minheights <= 0) | 686 if (max_minheights <= 0) |
667 max_minheights = 1; | 687 max_minheights = 1; |
668 } | 688 } |
669 | 689 |
670 /* Allocate the in-memory buffers and initialize backing store as needed. */ | 690 /* Allocate the in-memory buffers and initialize backing store as needed. */ |
671 | 691 |
672 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | 692 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
673 if (sptr->mem_buffer == NULL) { /* if not realized yet */ | 693 if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
674 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; | 694 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; |
675 if (minheights <= max_minheights) { | 695 if (minheights <= max_minheights) { |
676 » /* This buffer fits in memory */ | 696 /* This buffer fits in memory */ |
677 » sptr->rows_in_mem = sptr->rows_in_array; | 697 sptr->rows_in_mem = sptr->rows_in_array; |
678 } else { | 698 } else { |
679 » /* It doesn't fit in memory, create backing store. */ | 699 /* It doesn't fit in memory, create backing store. */ |
680 » sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); | 700 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); |
681 » jpeg_open_backing_store(cinfo, & sptr->b_s_info, | 701 jpeg_open_backing_store(cinfo, & sptr->b_s_info, |
682 » » » » (long) sptr->rows_in_array * | 702 (long) sptr->rows_in_array * |
683 » » » » (long) sptr->samplesperrow * | 703 (long) sptr->samplesperrow * |
684 » » » » (long) SIZEOF(JSAMPLE)); | 704 (long) sizeof(JSAMPLE)); |
685 » sptr->b_s_open = TRUE; | 705 sptr->b_s_open = TRUE; |
686 } | 706 } |
687 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, | 707 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, |
688 » » » » sptr->samplesperrow, sptr->rows_in_mem); | 708 sptr->samplesperrow, sptr->rows_in_mem); |
689 sptr->rowsperchunk = mem->last_rowsperchunk; | 709 sptr->rowsperchunk = mem->last_rowsperchunk; |
690 sptr->cur_start_row = 0; | 710 sptr->cur_start_row = 0; |
691 sptr->first_undef_row = 0; | 711 sptr->first_undef_row = 0; |
692 sptr->dirty = FALSE; | 712 sptr->dirty = FALSE; |
693 } | 713 } |
694 } | 714 } |
695 | 715 |
696 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | 716 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
697 if (bptr->mem_buffer == NULL) { /* if not realized yet */ | 717 if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
698 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; | 718 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; |
699 if (minheights <= max_minheights) { | 719 if (minheights <= max_minheights) { |
700 » /* This buffer fits in memory */ | 720 /* This buffer fits in memory */ |
701 » bptr->rows_in_mem = bptr->rows_in_array; | 721 bptr->rows_in_mem = bptr->rows_in_array; |
702 } else { | 722 } else { |
703 » /* It doesn't fit in memory, create backing store. */ | 723 /* It doesn't fit in memory, create backing store. */ |
704 » bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); | 724 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); |
705 » jpeg_open_backing_store(cinfo, & bptr->b_s_info, | 725 jpeg_open_backing_store(cinfo, & bptr->b_s_info, |
706 » » » » (long) bptr->rows_in_array * | 726 (long) bptr->rows_in_array * |
707 » » » » (long) bptr->blocksperrow * | 727 (long) bptr->blocksperrow * |
708 » » » » (long) SIZEOF(JBLOCK)); | 728 (long) sizeof(JBLOCK)); |
709 » bptr->b_s_open = TRUE; | 729 bptr->b_s_open = TRUE; |
710 } | 730 } |
711 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, | 731 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, |
712 » » » » bptr->blocksperrow, bptr->rows_in_mem); | 732 bptr->blocksperrow, bptr->rows_in_mem); |
713 bptr->rowsperchunk = mem->last_rowsperchunk; | 733 bptr->rowsperchunk = mem->last_rowsperchunk; |
714 bptr->cur_start_row = 0; | 734 bptr->cur_start_row = 0; |
715 bptr->first_undef_row = 0; | 735 bptr->first_undef_row = 0; |
716 bptr->dirty = FALSE; | 736 bptr->dirty = FALSE; |
717 } | 737 } |
718 } | 738 } |
719 } | 739 } |
720 | 740 |
721 | 741 |
722 LOCAL(void) | 742 LOCAL(void) |
723 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) | 743 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) |
724 /* Do backing store read or write of a virtual sample array */ | 744 /* Do backing store read or write of a virtual sample array */ |
725 { | 745 { |
726 long bytesperrow, file_offset, byte_count, rows, thisrow, i; | 746 long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
727 | 747 |
728 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); | 748 bytesperrow = (long) ptr->samplesperrow * sizeof(JSAMPLE); |
729 file_offset = ptr->cur_start_row * bytesperrow; | 749 file_offset = ptr->cur_start_row * bytesperrow; |
730 /* Loop to read or write each allocation chunk in mem_buffer */ | 750 /* Loop to read or write each allocation chunk in mem_buffer */ |
731 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | 751 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
732 /* One chunk, but check for short chunk at end of buffer */ | 752 /* One chunk, but check for short chunk at end of buffer */ |
733 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); | 753 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
734 /* Transfer no more than is currently defined */ | 754 /* Transfer no more than is currently defined */ |
735 thisrow = (long) ptr->cur_start_row + i; | 755 thisrow = (long) ptr->cur_start_row + i; |
736 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); | 756 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
737 /* Transfer no more than fits in file */ | 757 /* Transfer no more than fits in file */ |
738 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); | 758 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
739 if (rows <= 0)» » /* this chunk might be past end of file! */ | 759 if (rows <= 0) /* this chunk might be past end of file! */ |
740 break; | 760 break; |
741 byte_count = rows * bytesperrow; | 761 byte_count = rows * bytesperrow; |
742 if (writing) | 762 if (writing) |
743 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | 763 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
744 » » » » » (void FAR *) ptr->mem_buffer[i], | 764 (void *) ptr->mem_buffer[i], |
745 » » » » » file_offset, byte_count); | 765 file_offset, byte_count); |
746 else | 766 else |
747 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | 767 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
748 » » » » » (void FAR *) ptr->mem_buffer[i], | 768 (void *) ptr->mem_buffer[i], |
749 » » » » » file_offset, byte_count); | 769 file_offset, byte_count); |
750 file_offset += byte_count; | 770 file_offset += byte_count; |
751 } | 771 } |
752 } | 772 } |
753 | 773 |
754 | 774 |
755 LOCAL(void) | 775 LOCAL(void) |
756 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) | 776 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) |
757 /* Do backing store read or write of a virtual coefficient-block array */ | 777 /* Do backing store read or write of a virtual coefficient-block array */ |
758 { | 778 { |
759 long bytesperrow, file_offset, byte_count, rows, thisrow, i; | 779 long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
760 | 780 |
761 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); | 781 bytesperrow = (long) ptr->blocksperrow * sizeof(JBLOCK); |
762 file_offset = ptr->cur_start_row * bytesperrow; | 782 file_offset = ptr->cur_start_row * bytesperrow; |
763 /* Loop to read or write each allocation chunk in mem_buffer */ | 783 /* Loop to read or write each allocation chunk in mem_buffer */ |
764 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | 784 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
765 /* One chunk, but check for short chunk at end of buffer */ | 785 /* One chunk, but check for short chunk at end of buffer */ |
766 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); | 786 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
767 /* Transfer no more than is currently defined */ | 787 /* Transfer no more than is currently defined */ |
768 thisrow = (long) ptr->cur_start_row + i; | 788 thisrow = (long) ptr->cur_start_row + i; |
769 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); | 789 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
770 /* Transfer no more than fits in file */ | 790 /* Transfer no more than fits in file */ |
771 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); | 791 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
772 if (rows <= 0)» » /* this chunk might be past end of file! */ | 792 if (rows <= 0) /* this chunk might be past end of file! */ |
773 break; | 793 break; |
774 byte_count = rows * bytesperrow; | 794 byte_count = rows * bytesperrow; |
775 if (writing) | 795 if (writing) |
776 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | 796 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
777 » » » » » (void FAR *) ptr->mem_buffer[i], | 797 (void *) ptr->mem_buffer[i], |
778 » » » » » file_offset, byte_count); | 798 file_offset, byte_count); |
779 else | 799 else |
780 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | 800 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
781 » » » » » (void FAR *) ptr->mem_buffer[i], | 801 (void *) ptr->mem_buffer[i], |
782 » » » » » file_offset, byte_count); | 802 file_offset, byte_count); |
783 file_offset += byte_count; | 803 file_offset += byte_count; |
784 } | 804 } |
785 } | 805 } |
786 | 806 |
787 | 807 |
788 METHODDEF(JSAMPARRAY) | 808 METHODDEF(JSAMPARRAY) |
789 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, | 809 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, |
790 » » JDIMENSION start_row, JDIMENSION num_rows, | 810 JDIMENSION start_row, JDIMENSION num_rows, |
791 » » boolean writable) | 811 boolean writable) |
792 /* Access the part of a virtual sample array starting at start_row */ | 812 /* Access the part of a virtual sample array starting at start_row */ |
793 /* and extending for num_rows rows. writable is true if */ | 813 /* and extending for num_rows rows. writable is true if */ |
794 /* caller intends to modify the accessed area. */ | 814 /* caller intends to modify the accessed area. */ |
795 { | 815 { |
796 JDIMENSION end_row = start_row + num_rows; | 816 JDIMENSION end_row = start_row + num_rows; |
797 JDIMENSION undef_row; | 817 JDIMENSION undef_row; |
798 | 818 |
799 /* debugging check */ | 819 /* debugging check */ |
800 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | 820 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
801 ptr->mem_buffer == NULL) | 821 ptr->mem_buffer == NULL) |
(...skipping 17 matching lines...) Expand all Loading... |
819 * start_row = 0, so the limiting case applies and we load from 0 anyway. | 839 * start_row = 0, so the limiting case applies and we load from 0 anyway. |
820 */ | 840 */ |
821 if (start_row > ptr->cur_start_row) { | 841 if (start_row > ptr->cur_start_row) { |
822 ptr->cur_start_row = start_row; | 842 ptr->cur_start_row = start_row; |
823 } else { | 843 } else { |
824 /* use long arithmetic here to avoid overflow & unsigned problems */ | 844 /* use long arithmetic here to avoid overflow & unsigned problems */ |
825 long ltemp; | 845 long ltemp; |
826 | 846 |
827 ltemp = (long) end_row - (long) ptr->rows_in_mem; | 847 ltemp = (long) end_row - (long) ptr->rows_in_mem; |
828 if (ltemp < 0) | 848 if (ltemp < 0) |
829 » ltemp = 0;» » /* don't fall off front end of file */ | 849 ltemp = 0; /* don't fall off front end of file */ |
830 ptr->cur_start_row = (JDIMENSION) ltemp; | 850 ptr->cur_start_row = (JDIMENSION) ltemp; |
831 } | 851 } |
832 /* Read in the selected part of the array. | 852 /* Read in the selected part of the array. |
833 * During the initial write pass, we will do no actual read | 853 * During the initial write pass, we will do no actual read |
834 * because the selected part is all undefined. | 854 * because the selected part is all undefined. |
835 */ | 855 */ |
836 do_sarray_io(cinfo, ptr, FALSE); | 856 do_sarray_io(cinfo, ptr, FALSE); |
837 } | 857 } |
838 /* Ensure the accessed part of the array is defined; prezero if needed. | 858 /* Ensure the accessed part of the array is defined; prezero if needed. |
839 * To improve locality of access, we only prezero the part of the array | 859 * To improve locality of access, we only prezero the part of the array |
840 * that the caller is about to access, not the entire in-memory array. | 860 * that the caller is about to access, not the entire in-memory array. |
841 */ | 861 */ |
842 if (ptr->first_undef_row < end_row) { | 862 if (ptr->first_undef_row < end_row) { |
843 if (ptr->first_undef_row < start_row) { | 863 if (ptr->first_undef_row < start_row) { |
844 if (writable)» » /* writer skipped over a section of array */ | 864 if (writable) /* writer skipped over a section of array */ |
845 » ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 865 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
846 undef_row = start_row;» /* but reader is allowed to read ahead */ | 866 undef_row = start_row; /* but reader is allowed to read ahead */ |
847 } else { | 867 } else { |
848 undef_row = ptr->first_undef_row; | 868 undef_row = ptr->first_undef_row; |
849 } | 869 } |
850 if (writable) | 870 if (writable) |
851 ptr->first_undef_row = end_row; | 871 ptr->first_undef_row = end_row; |
852 if (ptr->pre_zero) { | 872 if (ptr->pre_zero) { |
853 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); | 873 size_t bytesperrow = (size_t) ptr->samplesperrow * sizeof(JSAMPLE); |
854 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | 874 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
855 end_row -= ptr->cur_start_row; | 875 end_row -= ptr->cur_start_row; |
856 while (undef_row < end_row) { | 876 while (undef_row < end_row) { |
857 » jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | 877 jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow); |
858 » undef_row++; | 878 undef_row++; |
859 } | 879 } |
860 } else { | 880 } else { |
861 if (! writable)» » /* reader looking at undefined data */ | 881 if (! writable) /* reader looking at undefined data */ |
862 » ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 882 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
863 } | 883 } |
864 } | 884 } |
865 /* Flag the buffer dirty if caller will write in it */ | 885 /* Flag the buffer dirty if caller will write in it */ |
866 if (writable) | 886 if (writable) |
867 ptr->dirty = TRUE; | 887 ptr->dirty = TRUE; |
868 /* Return address of proper part of the buffer */ | 888 /* Return address of proper part of the buffer */ |
869 return ptr->mem_buffer + (start_row - ptr->cur_start_row); | 889 return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
870 } | 890 } |
871 | 891 |
872 | 892 |
873 METHODDEF(JBLOCKARRAY) | 893 METHODDEF(JBLOCKARRAY) |
874 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, | 894 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, |
875 » » JDIMENSION start_row, JDIMENSION num_rows, | 895 JDIMENSION start_row, JDIMENSION num_rows, |
876 » » boolean writable) | 896 boolean writable) |
877 /* Access the part of a virtual block array starting at start_row */ | 897 /* Access the part of a virtual block array starting at start_row */ |
878 /* and extending for num_rows rows. writable is true if */ | 898 /* and extending for num_rows rows. writable is true if */ |
879 /* caller intends to modify the accessed area. */ | 899 /* caller intends to modify the accessed area. */ |
880 { | 900 { |
881 JDIMENSION end_row = start_row + num_rows; | 901 JDIMENSION end_row = start_row + num_rows; |
882 JDIMENSION undef_row; | 902 JDIMENSION undef_row; |
883 | 903 |
884 /* debugging check */ | 904 /* debugging check */ |
885 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | 905 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
886 ptr->mem_buffer == NULL) | 906 ptr->mem_buffer == NULL) |
(...skipping 17 matching lines...) Expand all Loading... |
904 * start_row = 0, so the limiting case applies and we load from 0 anyway. | 924 * start_row = 0, so the limiting case applies and we load from 0 anyway. |
905 */ | 925 */ |
906 if (start_row > ptr->cur_start_row) { | 926 if (start_row > ptr->cur_start_row) { |
907 ptr->cur_start_row = start_row; | 927 ptr->cur_start_row = start_row; |
908 } else { | 928 } else { |
909 /* use long arithmetic here to avoid overflow & unsigned problems */ | 929 /* use long arithmetic here to avoid overflow & unsigned problems */ |
910 long ltemp; | 930 long ltemp; |
911 | 931 |
912 ltemp = (long) end_row - (long) ptr->rows_in_mem; | 932 ltemp = (long) end_row - (long) ptr->rows_in_mem; |
913 if (ltemp < 0) | 933 if (ltemp < 0) |
914 » ltemp = 0;» » /* don't fall off front end of file */ | 934 ltemp = 0; /* don't fall off front end of file */ |
915 ptr->cur_start_row = (JDIMENSION) ltemp; | 935 ptr->cur_start_row = (JDIMENSION) ltemp; |
916 } | 936 } |
917 /* Read in the selected part of the array. | 937 /* Read in the selected part of the array. |
918 * During the initial write pass, we will do no actual read | 938 * During the initial write pass, we will do no actual read |
919 * because the selected part is all undefined. | 939 * because the selected part is all undefined. |
920 */ | 940 */ |
921 do_barray_io(cinfo, ptr, FALSE); | 941 do_barray_io(cinfo, ptr, FALSE); |
922 } | 942 } |
923 /* Ensure the accessed part of the array is defined; prezero if needed. | 943 /* Ensure the accessed part of the array is defined; prezero if needed. |
924 * To improve locality of access, we only prezero the part of the array | 944 * To improve locality of access, we only prezero the part of the array |
925 * that the caller is about to access, not the entire in-memory array. | 945 * that the caller is about to access, not the entire in-memory array. |
926 */ | 946 */ |
927 if (ptr->first_undef_row < end_row) { | 947 if (ptr->first_undef_row < end_row) { |
928 if (ptr->first_undef_row < start_row) { | 948 if (ptr->first_undef_row < start_row) { |
929 if (writable)» » /* writer skipped over a section of array */ | 949 if (writable) /* writer skipped over a section of array */ |
930 » ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 950 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
931 undef_row = start_row;» /* but reader is allowed to read ahead */ | 951 undef_row = start_row; /* but reader is allowed to read ahead */ |
932 } else { | 952 } else { |
933 undef_row = ptr->first_undef_row; | 953 undef_row = ptr->first_undef_row; |
934 } | 954 } |
935 if (writable) | 955 if (writable) |
936 ptr->first_undef_row = end_row; | 956 ptr->first_undef_row = end_row; |
937 if (ptr->pre_zero) { | 957 if (ptr->pre_zero) { |
938 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); | 958 size_t bytesperrow = (size_t) ptr->blocksperrow * sizeof(JBLOCK); |
939 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | 959 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
940 end_row -= ptr->cur_start_row; | 960 end_row -= ptr->cur_start_row; |
941 while (undef_row < end_row) { | 961 while (undef_row < end_row) { |
942 » jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | 962 jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow); |
943 » undef_row++; | 963 undef_row++; |
944 } | 964 } |
945 } else { | 965 } else { |
946 if (! writable)» » /* reader looking at undefined data */ | 966 if (! writable) /* reader looking at undefined data */ |
947 » ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 967 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
948 } | 968 } |
949 } | 969 } |
950 /* Flag the buffer dirty if caller will write in it */ | 970 /* Flag the buffer dirty if caller will write in it */ |
951 if (writable) | 971 if (writable) |
952 ptr->dirty = TRUE; | 972 ptr->dirty = TRUE; |
953 /* Return address of proper part of the buffer */ | 973 /* Return address of proper part of the buffer */ |
954 return ptr->mem_buffer + (start_row - ptr->cur_start_row); | 974 return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
955 } | 975 } |
956 | 976 |
957 | 977 |
958 /* | 978 /* |
959 * Release all objects belonging to a specified pool. | 979 * Release all objects belonging to a specified pool. |
960 */ | 980 */ |
961 | 981 |
962 METHODDEF(void) | 982 METHODDEF(void) |
963 free_pool (j_common_ptr cinfo, int pool_id) | 983 free_pool (j_common_ptr cinfo, int pool_id) |
964 { | 984 { |
965 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 985 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
966 small_pool_ptr shdr_ptr; | 986 small_pool_ptr shdr_ptr; |
967 large_pool_ptr lhdr_ptr; | 987 large_pool_ptr lhdr_ptr; |
968 size_t space_freed; | 988 size_t space_freed; |
969 | 989 |
970 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | 990 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
971 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);»/* safety check */ | 991 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
972 | 992 |
973 #ifdef MEM_STATS | 993 #ifdef MEM_STATS |
974 if (cinfo->err->trace_level > 1) | 994 if (cinfo->err->trace_level > 1) |
975 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ | 995 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ |
976 #endif | 996 #endif |
977 | 997 |
978 /* If freeing IMAGE pool, close any virtual arrays first */ | 998 /* If freeing IMAGE pool, close any virtual arrays first */ |
979 if (pool_id == JPOOL_IMAGE) { | 999 if (pool_id == JPOOL_IMAGE) { |
980 jvirt_sarray_ptr sptr; | 1000 jvirt_sarray_ptr sptr; |
981 jvirt_barray_ptr bptr; | 1001 jvirt_barray_ptr bptr; |
982 | 1002 |
983 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | 1003 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
984 if (sptr->b_s_open) {» /* there may be no backing store */ | 1004 if (sptr->b_s_open) { /* there may be no backing store */ |
985 » sptr->b_s_open = FALSE;»/* prevent recursive close if error */ | 1005 sptr->b_s_open = FALSE; /* prevent recursive close if error */ |
986 » (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); | 1006 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); |
987 } | 1007 } |
988 } | 1008 } |
989 mem->virt_sarray_list = NULL; | 1009 mem->virt_sarray_list = NULL; |
990 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | 1010 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
991 if (bptr->b_s_open) {» /* there may be no backing store */ | 1011 if (bptr->b_s_open) { /* there may be no backing store */ |
992 » bptr->b_s_open = FALSE;»/* prevent recursive close if error */ | 1012 bptr->b_s_open = FALSE; /* prevent recursive close if error */ |
993 » (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); | 1013 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); |
994 } | 1014 } |
995 } | 1015 } |
996 mem->virt_barray_list = NULL; | 1016 mem->virt_barray_list = NULL; |
997 } | 1017 } |
998 | 1018 |
999 /* Release large objects */ | 1019 /* Release large objects */ |
1000 lhdr_ptr = mem->large_list[pool_id]; | 1020 lhdr_ptr = mem->large_list[pool_id]; |
1001 mem->large_list[pool_id] = NULL; | 1021 mem->large_list[pool_id] = NULL; |
1002 | 1022 |
1003 while (lhdr_ptr != NULL) { | 1023 while (lhdr_ptr != NULL) { |
1004 large_pool_ptr next_lhdr_ptr = lhdr_ptr->next; | 1024 large_pool_ptr next_lhdr_ptr = lhdr_ptr->next; |
1005 space_freed = lhdr_ptr->bytes_used + | 1025 space_freed = lhdr_ptr->bytes_used + |
1006 » » lhdr_ptr->bytes_left + | 1026 lhdr_ptr->bytes_left + |
1007 » » SIZEOF(large_pool_hdr); | 1027 sizeof(large_pool_hdr); |
1008 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); | 1028 jpeg_free_large(cinfo, (void *) lhdr_ptr, space_freed); |
1009 mem->total_space_allocated -= space_freed; | 1029 mem->total_space_allocated -= space_freed; |
1010 lhdr_ptr = next_lhdr_ptr; | 1030 lhdr_ptr = next_lhdr_ptr; |
1011 } | 1031 } |
1012 | 1032 |
1013 /* Release small objects */ | 1033 /* Release small objects */ |
1014 shdr_ptr = mem->small_list[pool_id]; | 1034 shdr_ptr = mem->small_list[pool_id]; |
1015 mem->small_list[pool_id] = NULL; | 1035 mem->small_list[pool_id] = NULL; |
1016 | 1036 |
1017 while (shdr_ptr != NULL) { | 1037 while (shdr_ptr != NULL) { |
1018 small_pool_ptr next_shdr_ptr = shdr_ptr->next; | 1038 small_pool_ptr next_shdr_ptr = shdr_ptr->next; |
1019 space_freed = shdr_ptr->bytes_used + | 1039 space_freed = shdr_ptr->bytes_used + |
1020 » » shdr_ptr->bytes_left + | 1040 shdr_ptr->bytes_left + |
1021 » » SIZEOF(small_pool_hdr); | 1041 sizeof(small_pool_hdr); |
1022 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); | 1042 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); |
1023 mem->total_space_allocated -= space_freed; | 1043 mem->total_space_allocated -= space_freed; |
1024 shdr_ptr = next_shdr_ptr; | 1044 shdr_ptr = next_shdr_ptr; |
1025 } | 1045 } |
1026 } | 1046 } |
1027 | 1047 |
1028 | 1048 |
1029 /* | 1049 /* |
1030 * Close up shop entirely. | 1050 * Close up shop entirely. |
1031 * Note that this cannot be called unless cinfo->mem is non-NULL. | 1051 * Note that this cannot be called unless cinfo->mem is non-NULL. |
1032 */ | 1052 */ |
1033 | 1053 |
1034 METHODDEF(void) | 1054 METHODDEF(void) |
1035 self_destruct (j_common_ptr cinfo) | 1055 self_destruct (j_common_ptr cinfo) |
1036 { | 1056 { |
1037 int pool; | 1057 int pool; |
1038 | 1058 |
1039 /* Close all backing store, release all memory. | 1059 /* Close all backing store, release all memory. |
1040 * Releasing pools in reverse order might help avoid fragmentation | 1060 * Releasing pools in reverse order might help avoid fragmentation |
1041 * with some (brain-damaged) malloc libraries. | 1061 * with some (brain-damaged) malloc libraries. |
1042 */ | 1062 */ |
1043 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { | 1063 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
1044 free_pool(cinfo, pool); | 1064 free_pool(cinfo, pool); |
1045 } | 1065 } |
1046 | 1066 |
1047 /* Release the memory manager control block too. */ | 1067 /* Release the memory manager control block too. */ |
1048 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); | 1068 jpeg_free_small(cinfo, (void *) cinfo->mem, sizeof(my_memory_mgr)); |
1049 cinfo->mem = NULL;» » /* ensures I will be called only once */ | 1069 cinfo->mem = NULL; /* ensures I will be called only once */ |
1050 | 1070 |
1051 jpeg_mem_term(cinfo);»» /* system-dependent cleanup */ | 1071 jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1052 } | 1072 } |
1053 | 1073 |
1054 | 1074 |
1055 /* | 1075 /* |
1056 * Memory manager initialization. | 1076 * Memory manager initialization. |
1057 * When this is called, only the error manager pointer is valid in cinfo! | 1077 * When this is called, only the error manager pointer is valid in cinfo! |
1058 */ | 1078 */ |
1059 | 1079 |
1060 GLOBAL(void) | 1080 GLOBAL(void) |
1061 jinit_memory_mgr (j_common_ptr cinfo) | 1081 jinit_memory_mgr (j_common_ptr cinfo) |
1062 { | 1082 { |
1063 my_mem_ptr mem; | 1083 my_mem_ptr mem; |
1064 long max_to_use; | 1084 long max_to_use; |
1065 int pool; | 1085 int pool; |
1066 size_t test_mac; | 1086 size_t test_mac; |
1067 | 1087 |
1068 cinfo->mem = NULL;» » /* for safety if init fails */ | 1088 cinfo->mem = NULL; /* for safety if init fails */ |
1069 | 1089 |
1070 /* Check for configuration errors. | 1090 /* Check for configuration errors. |
1071 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably | 1091 * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably |
1072 * doesn't reflect any real hardware alignment requirement. | 1092 * doesn't reflect any real hardware alignment requirement. |
1073 * The test is a little tricky: for X>0, X and X-1 have no one-bits | 1093 * The test is a little tricky: for X>0, X and X-1 have no one-bits |
1074 * in common if and only if X is a power of 2, ie has only one one-bit. | 1094 * in common if and only if X is a power of 2, ie has only one one-bit. |
1075 * Some compilers may give an "unreachable code" warning here; ignore it. | 1095 * Some compilers may give an "unreachable code" warning here; ignore it. |
1076 */ | 1096 */ |
1077 if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0) | 1097 if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0) |
1078 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); | 1098 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); |
1079 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be | 1099 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be |
1080 * a multiple of ALIGN_SIZE. | 1100 * a multiple of ALIGN_SIZE. |
1081 * Again, an "unreachable code" warning may be ignored here. | 1101 * Again, an "unreachable code" warning may be ignored here. |
1082 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. | 1102 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. |
1083 */ | 1103 */ |
1084 test_mac = (size_t) MAX_ALLOC_CHUNK; | 1104 test_mac = (size_t) MAX_ALLOC_CHUNK; |
1085 if ((long) test_mac != MAX_ALLOC_CHUNK || | 1105 if ((long) test_mac != MAX_ALLOC_CHUNK || |
1086 (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0) | 1106 (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0) |
1087 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); | 1107 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); |
1088 | 1108 |
1089 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ | 1109 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ |
1090 | 1110 |
1091 /* Attempt to allocate memory manager's control block */ | 1111 /* Attempt to allocate memory manager's control block */ |
1092 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); | 1112 mem = (my_mem_ptr) jpeg_get_small(cinfo, sizeof(my_memory_mgr)); |
1093 | 1113 |
1094 if (mem == NULL) { | 1114 if (mem == NULL) { |
1095 jpeg_mem_term(cinfo);» /* system-dependent cleanup */ | 1115 jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1096 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); | 1116 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); |
1097 } | 1117 } |
1098 | 1118 |
1099 /* OK, fill in the method pointers */ | 1119 /* OK, fill in the method pointers */ |
1100 mem->pub.alloc_small = alloc_small; | 1120 mem->pub.alloc_small = alloc_small; |
1101 mem->pub.alloc_large = alloc_large; | 1121 mem->pub.alloc_large = alloc_large; |
1102 mem->pub.alloc_sarray = alloc_sarray; | 1122 mem->pub.alloc_sarray = alloc_sarray; |
1103 mem->pub.alloc_barray = alloc_barray; | 1123 mem->pub.alloc_barray = alloc_barray; |
1104 mem->pub.request_virt_sarray = request_virt_sarray; | 1124 mem->pub.request_virt_sarray = request_virt_sarray; |
1105 mem->pub.request_virt_barray = request_virt_barray; | 1125 mem->pub.request_virt_barray = request_virt_barray; |
1106 mem->pub.realize_virt_arrays = realize_virt_arrays; | 1126 mem->pub.realize_virt_arrays = realize_virt_arrays; |
1107 mem->pub.access_virt_sarray = access_virt_sarray; | 1127 mem->pub.access_virt_sarray = access_virt_sarray; |
1108 mem->pub.access_virt_barray = access_virt_barray; | 1128 mem->pub.access_virt_barray = access_virt_barray; |
1109 mem->pub.free_pool = free_pool; | 1129 mem->pub.free_pool = free_pool; |
1110 mem->pub.self_destruct = self_destruct; | 1130 mem->pub.self_destruct = self_destruct; |
1111 | 1131 |
1112 /* Make MAX_ALLOC_CHUNK accessible to other modules */ | 1132 /* Make MAX_ALLOC_CHUNK accessible to other modules */ |
1113 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; | 1133 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; |
1114 | 1134 |
1115 /* Initialize working state */ | 1135 /* Initialize working state */ |
1116 mem->pub.max_memory_to_use = max_to_use; | 1136 mem->pub.max_memory_to_use = max_to_use; |
1117 | 1137 |
1118 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { | 1138 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
1119 mem->small_list[pool] = NULL; | 1139 mem->small_list[pool] = NULL; |
1120 mem->large_list[pool] = NULL; | 1140 mem->large_list[pool] = NULL; |
1121 } | 1141 } |
1122 mem->virt_sarray_list = NULL; | 1142 mem->virt_sarray_list = NULL; |
1123 mem->virt_barray_list = NULL; | 1143 mem->virt_barray_list = NULL; |
1124 | 1144 |
1125 mem->total_space_allocated = SIZEOF(my_memory_mgr); | 1145 mem->total_space_allocated = sizeof(my_memory_mgr); |
1126 | 1146 |
1127 /* Declare ourselves open for business */ | 1147 /* Declare ourselves open for business */ |
1128 cinfo->mem = & mem->pub; | 1148 cinfo->mem = & mem->pub; |
1129 | 1149 |
1130 /* Check for an environment variable JPEGMEM; if found, override the | 1150 /* Check for an environment variable JPEGMEM; if found, override the |
1131 * default max_memory setting from jpeg_mem_init. Note that the | 1151 * default max_memory setting from jpeg_mem_init. Note that the |
1132 * surrounding application may again override this value. | 1152 * surrounding application may again override this value. |
1133 * If your system doesn't support getenv(), define NO_GETENV to disable | 1153 * If your system doesn't support getenv(), define NO_GETENV to disable |
1134 * this feature. | 1154 * this feature. |
1135 */ | 1155 */ |
1136 #ifndef NO_GETENV | 1156 #ifndef NO_GETENV |
1137 { char * memenv; | 1157 { char *memenv; |
1138 | 1158 |
1139 if ((memenv = getenv("JPEGMEM")) != NULL) { | 1159 if ((memenv = getenv("JPEGMEM")) != NULL) { |
1140 char ch = 'x'; | 1160 char ch = 'x'; |
1141 | 1161 |
1142 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { | 1162 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { |
1143 » if (ch == 'm' || ch == 'M') | 1163 if (ch == 'm' || ch == 'M') |
1144 » max_to_use *= 1000L; | 1164 max_to_use *= 1000L; |
1145 » mem->pub.max_memory_to_use = max_to_use * 1000L; | 1165 mem->pub.max_memory_to_use = max_to_use * 1000L; |
1146 } | 1166 } |
1147 } | 1167 } |
1148 } | 1168 } |
1149 #endif | 1169 #endif |
1150 | 1170 |
1151 } | 1171 } |
OLD | NEW |