OLD | NEW |
1 /* | 1 /* |
2 * jidctfst.c | 2 * jidctfst.c |
3 * | 3 * |
| 4 * This file was part of the Independent JPEG Group's software: |
4 * Copyright (C) 1994-1998, Thomas G. Lane. | 5 * Copyright (C) 1994-1998, Thomas G. Lane. |
5 * This file is part of the Independent JPEG Group's software. | 6 * libjpeg-turbo Modifications: |
6 * For conditions of distribution and use, see the accompanying README file. | 7 * Copyright (C) 2015, D. R. Commander. |
| 8 * For conditions of distribution and use, see the accompanying README.ijg |
| 9 * file. |
7 * | 10 * |
8 * This file contains a fast, not so accurate integer implementation of the | 11 * This file contains a fast, not so accurate integer implementation of the |
9 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine | 12 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
10 * must also perform dequantization of the input coefficients. | 13 * must also perform dequantization of the input coefficients. |
11 * | 14 * |
12 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT | 15 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
13 * on each row (or vice versa, but it's more convenient to emit a row at | 16 * on each row (or vice versa, but it's more convenient to emit a row at |
14 * a time). Direct algorithms are also available, but they are much more | 17 * a time). Direct algorithms are also available, but they are much more |
15 * complex and seem not to be any faster when reduced to code. | 18 * complex and seem not to be any faster when reduced to code. |
16 * | 19 * |
17 * This implementation is based on Arai, Agui, and Nakajima's algorithm for | 20 * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
18 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | 21 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
19 * Japanese, but the algorithm is described in the Pennebaker & Mitchell | 22 * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
20 * JPEG textbook (see REFERENCES section in file README). The following code | 23 * JPEG textbook (see REFERENCES section in file README.ijg). The following |
21 * is based directly on figure 4-8 in P&M. | 24 * code is based directly on figure 4-8 in P&M. |
22 * While an 8-point DCT cannot be done in less than 11 multiplies, it is | 25 * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
23 * possible to arrange the computation so that many of the multiplies are | 26 * possible to arrange the computation so that many of the multiplies are |
24 * simple scalings of the final outputs. These multiplies can then be | 27 * simple scalings of the final outputs. These multiplies can then be |
25 * folded into the multiplications or divisions by the JPEG quantization | 28 * folded into the multiplications or divisions by the JPEG quantization |
26 * table entries. The AA&N method leaves only 5 multiplies and 29 adds | 29 * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
27 * to be done in the DCT itself. | 30 * to be done in the DCT itself. |
28 * The primary disadvantage of this method is that with fixed-point math, | 31 * The primary disadvantage of this method is that with fixed-point math, |
29 * accuracy is lost due to imprecise representation of the scaled | 32 * accuracy is lost due to imprecise representation of the scaled |
30 * quantization values. The smaller the quantization table entry, the less | 33 * quantization values. The smaller the quantization table entry, the less |
31 * precise the scaled value, so this implementation does worse with high- | 34 * precise the scaled value, so this implementation does worse with high- |
32 * quality-setting files than with low-quality ones. | 35 * quality-setting files than with low-quality ones. |
33 */ | 36 */ |
34 | 37 |
35 #define JPEG_INTERNALS | 38 #define JPEG_INTERNALS |
36 #include "jinclude.h" | 39 #include "jinclude.h" |
37 #include "jpeglib.h" | 40 #include "jpeglib.h" |
38 #include "jdct.h"» » /* Private declarations for DCT subsystem */ | 41 #include "jdct.h" /* Private declarations for DCT subsystem */ |
39 | 42 |
40 #ifdef DCT_IFAST_SUPPORTED | 43 #ifdef DCT_IFAST_SUPPORTED |
41 | 44 |
42 | 45 |
43 /* | 46 /* |
44 * This module is specialized to the case DCTSIZE = 8. | 47 * This module is specialized to the case DCTSIZE = 8. |
45 */ | 48 */ |
46 | 49 |
47 #if DCTSIZE != 8 | 50 #if DCTSIZE != 8 |
48 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | 51 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
(...skipping 22 matching lines...) Expand all Loading... |
71 * 8 fractional bits, rather than 13. This saves some shifting work on some | 74 * 8 fractional bits, rather than 13. This saves some shifting work on some |
72 * machines, and may also reduce the cost of multiplication (since there | 75 * machines, and may also reduce the cost of multiplication (since there |
73 * are fewer one-bits in the constants). | 76 * are fewer one-bits in the constants). |
74 */ | 77 */ |
75 | 78 |
76 #if BITS_IN_JSAMPLE == 8 | 79 #if BITS_IN_JSAMPLE == 8 |
77 #define CONST_BITS 8 | 80 #define CONST_BITS 8 |
78 #define PASS1_BITS 2 | 81 #define PASS1_BITS 2 |
79 #else | 82 #else |
80 #define CONST_BITS 8 | 83 #define CONST_BITS 8 |
81 #define PASS1_BITS 1» » /* lose a little precision to avoid overflow */ | 84 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
82 #endif | 85 #endif |
83 | 86 |
84 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | 87 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
85 * causing a lot of useless floating-point operations at run time. | 88 * causing a lot of useless floating-point operations at run time. |
86 * To get around this we use the following pre-calculated constants. | 89 * To get around this we use the following pre-calculated constants. |
87 * If you change CONST_BITS you may want to add appropriate values. | 90 * If you change CONST_BITS you may want to add appropriate values. |
88 * (With a reasonable C compiler, you can just rely on the FIX() macro...) | 91 * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
89 */ | 92 */ |
90 | 93 |
91 #if CONST_BITS == 8 | 94 #if CONST_BITS == 8 |
92 #define FIX_1_082392200 ((INT32) 277)»» /* FIX(1.082392200) */ | 95 #define FIX_1_082392200 ((JLONG) 277) /* FIX(1.082392200) */ |
93 #define FIX_1_414213562 ((INT32) 362)»» /* FIX(1.414213562) */ | 96 #define FIX_1_414213562 ((JLONG) 362) /* FIX(1.414213562) */ |
94 #define FIX_1_847759065 ((INT32) 473)»» /* FIX(1.847759065) */ | 97 #define FIX_1_847759065 ((JLONG) 473) /* FIX(1.847759065) */ |
95 #define FIX_2_613125930 ((INT32) 669)»» /* FIX(2.613125930) */ | 98 #define FIX_2_613125930 ((JLONG) 669) /* FIX(2.613125930) */ |
96 #else | 99 #else |
97 #define FIX_1_082392200 FIX(1.082392200) | 100 #define FIX_1_082392200 FIX(1.082392200) |
98 #define FIX_1_414213562 FIX(1.414213562) | 101 #define FIX_1_414213562 FIX(1.414213562) |
99 #define FIX_1_847759065 FIX(1.847759065) | 102 #define FIX_1_847759065 FIX(1.847759065) |
100 #define FIX_2_613125930 FIX(2.613125930) | 103 #define FIX_2_613125930 FIX(2.613125930) |
101 #endif | 104 #endif |
102 | 105 |
103 | 106 |
104 /* We can gain a little more speed, with a further compromise in accuracy, | 107 /* We can gain a little more speed, with a further compromise in accuracy, |
105 * by omitting the addition in a descaling shift. This yields an incorrectly | 108 * by omitting the addition in a descaling shift. This yields an incorrectly |
106 * rounded result half the time... | 109 * rounded result half the time... |
107 */ | 110 */ |
108 | 111 |
109 #ifndef USE_ACCURATE_ROUNDING | 112 #ifndef USE_ACCURATE_ROUNDING |
110 #undef DESCALE | 113 #undef DESCALE |
111 #define DESCALE(x,n) RIGHT_SHIFT(x, n) | 114 #define DESCALE(x,n) RIGHT_SHIFT(x, n) |
112 #endif | 115 #endif |
113 | 116 |
114 | 117 |
115 /* Multiply a DCTELEM variable by an INT32 constant, and immediately | 118 /* Multiply a DCTELEM variable by an JLONG constant, and immediately |
116 * descale to yield a DCTELEM result. | 119 * descale to yield a DCTELEM result. |
117 */ | 120 */ |
118 | 121 |
119 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) | 122 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
120 | 123 |
121 | 124 |
122 /* Dequantize a coefficient by multiplying it by the multiplier-table | 125 /* Dequantize a coefficient by multiplying it by the multiplier-table |
123 * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 | 126 * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 |
124 * multiplication will do. For 12-bit data, the multiplier table is | 127 * multiplication will do. For 12-bit data, the multiplier table is |
125 * declared INT32, so a 32-bit multiply will be used. | 128 * declared JLONG, so a 32-bit multiply will be used. |
126 */ | 129 */ |
127 | 130 |
128 #if BITS_IN_JSAMPLE == 8 | 131 #if BITS_IN_JSAMPLE == 8 |
129 #define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) | 132 #define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) |
130 #else | 133 #else |
131 #define DEQUANTIZE(coef,quantval) \ | 134 #define DEQUANTIZE(coef,quantval) \ |
132 » DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) | 135 DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) |
133 #endif | 136 #endif |
134 | 137 |
135 | 138 |
136 /* Like DESCALE, but applies to a DCTELEM and produces an int. | 139 /* Like DESCALE, but applies to a DCTELEM and produces an int. |
137 * We assume that int right shift is unsigned if INT32 right shift is. | 140 * We assume that int right shift is unsigned if JLONG right shift is. |
138 */ | 141 */ |
139 | 142 |
140 #ifdef RIGHT_SHIFT_IS_UNSIGNED | 143 #ifdef RIGHT_SHIFT_IS_UNSIGNED |
141 #define ISHIFT_TEMPS» DCTELEM ishift_temp; | 144 #define ISHIFT_TEMPS DCTELEM ishift_temp; |
142 #if BITS_IN_JSAMPLE == 8 | 145 #if BITS_IN_JSAMPLE == 8 |
143 #define DCTELEMBITS 16»» /* DCTELEM may be 16 or 32 bits */ | 146 #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ |
144 #else | 147 #else |
145 #define DCTELEMBITS 32»» /* DCTELEM must be 32 bits */ | 148 #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ |
146 #endif | 149 #endif |
147 #define IRIGHT_SHIFT(x,shft) \ | 150 #define IRIGHT_SHIFT(x,shft) \ |
148 ((ishift_temp = (x)) < 0 ? \ | 151 ((ishift_temp = (x)) < 0 ? \ |
149 (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ | 152 (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ |
150 (ishift_temp >> (shft))) | 153 (ishift_temp >> (shft))) |
151 #else | 154 #else |
152 #define ISHIFT_TEMPS | 155 #define ISHIFT_TEMPS |
153 #define IRIGHT_SHIFT(x,shft)» ((x) >> (shft)) | 156 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
154 #endif | 157 #endif |
155 | 158 |
156 #ifdef USE_ACCURATE_ROUNDING | 159 #ifdef USE_ACCURATE_ROUNDING |
157 #define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) | 160 #define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) |
158 #else | 161 #else |
159 #define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n)) | 162 #define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n)) |
160 #endif | 163 #endif |
161 | 164 |
162 | 165 |
163 /* | 166 /* |
164 * Perform dequantization and inverse DCT on one block of coefficients. | 167 * Perform dequantization and inverse DCT on one block of coefficients. |
165 */ | 168 */ |
166 | 169 |
167 GLOBAL(void) | 170 GLOBAL(void) |
168 jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, | 171 jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
169 » » JCOEFPTR coef_block, | 172 JCOEFPTR coef_block, |
170 » » JSAMPARRAY output_buf, JDIMENSION output_col) | 173 JSAMPARRAY output_buf, JDIMENSION output_col) |
171 { | 174 { |
172 DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | 175 DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
173 DCTELEM tmp10, tmp11, tmp12, tmp13; | 176 DCTELEM tmp10, tmp11, tmp12, tmp13; |
174 DCTELEM z5, z10, z11, z12, z13; | 177 DCTELEM z5, z10, z11, z12, z13; |
175 JCOEFPTR inptr; | 178 JCOEFPTR inptr; |
176 IFAST_MULT_TYPE * quantptr; | 179 IFAST_MULT_TYPE *quantptr; |
177 int * wsptr; | 180 int *wsptr; |
178 JSAMPROW outptr; | 181 JSAMPROW outptr; |
179 JSAMPLE *range_limit = IDCT_range_limit(cinfo); | 182 JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
180 int ctr; | 183 int ctr; |
181 int workspace[DCTSIZE2];» /* buffers data between passes */ | 184 int workspace[DCTSIZE2]; /* buffers data between passes */ |
182 SHIFT_TEMPS» » » /* for DESCALE */ | 185 SHIFT_TEMPS /* for DESCALE */ |
183 ISHIFT_TEMPS» » » /* for IDESCALE */ | 186 ISHIFT_TEMPS /* for IDESCALE */ |
184 | 187 |
185 /* Pass 1: process columns from input, store into work array. */ | 188 /* Pass 1: process columns from input, store into work array. */ |
186 | 189 |
187 inptr = coef_block; | 190 inptr = coef_block; |
188 quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; | 191 quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; |
189 wsptr = workspace; | 192 wsptr = workspace; |
190 for (ctr = DCTSIZE; ctr > 0; ctr--) { | 193 for (ctr = DCTSIZE; ctr > 0; ctr--) { |
191 /* Due to quantization, we will usually find that many of the input | 194 /* Due to quantization, we will usually find that many of the input |
192 * coefficients are zero, especially the AC terms. We can exploit this | 195 * coefficients are zero, especially the AC terms. We can exploit this |
193 * by short-circuiting the IDCT calculation for any column in which all | 196 * by short-circuiting the IDCT calculation for any column in which all |
194 * the AC terms are zero. In that case each output is equal to the | 197 * the AC terms are zero. In that case each output is equal to the |
195 * DC coefficient (with scale factor as needed). | 198 * DC coefficient (with scale factor as needed). |
196 * With typical images and quantization tables, half or more of the | 199 * With typical images and quantization tables, half or more of the |
197 * column DCT calculations can be simplified this way. | 200 * column DCT calculations can be simplified this way. |
198 */ | 201 */ |
199 | 202 |
200 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && | 203 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
201 » inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && | 204 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
202 » inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && | 205 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
203 » inptr[DCTSIZE*7] == 0) { | 206 inptr[DCTSIZE*7] == 0) { |
204 /* AC terms all zero */ | 207 /* AC terms all zero */ |
205 int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | 208 int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
206 | 209 |
207 wsptr[DCTSIZE*0] = dcval; | 210 wsptr[DCTSIZE*0] = dcval; |
208 wsptr[DCTSIZE*1] = dcval; | 211 wsptr[DCTSIZE*1] = dcval; |
209 wsptr[DCTSIZE*2] = dcval; | 212 wsptr[DCTSIZE*2] = dcval; |
210 wsptr[DCTSIZE*3] = dcval; | 213 wsptr[DCTSIZE*3] = dcval; |
211 wsptr[DCTSIZE*4] = dcval; | 214 wsptr[DCTSIZE*4] = dcval; |
212 wsptr[DCTSIZE*5] = dcval; | 215 wsptr[DCTSIZE*5] = dcval; |
213 wsptr[DCTSIZE*6] = dcval; | 216 wsptr[DCTSIZE*6] = dcval; |
214 wsptr[DCTSIZE*7] = dcval; | 217 wsptr[DCTSIZE*7] = dcval; |
215 | 218 |
216 inptr++;» » » /* advance pointers to next column */ | 219 inptr++; /* advance pointers to next column */ |
217 quantptr++; | 220 quantptr++; |
218 wsptr++; | 221 wsptr++; |
219 continue; | 222 continue; |
220 } | 223 } |
221 | 224 |
222 /* Even part */ | 225 /* Even part */ |
223 | 226 |
224 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | 227 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
225 tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); | 228 tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
226 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); | 229 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
227 tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); | 230 tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
228 | 231 |
229 tmp10 = tmp0 + tmp2;» /* phase 3 */ | 232 tmp10 = tmp0 + tmp2; /* phase 3 */ |
230 tmp11 = tmp0 - tmp2; | 233 tmp11 = tmp0 - tmp2; |
231 | 234 |
232 tmp13 = tmp1 + tmp3;» /* phases 5-3 */ | 235 tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
233 tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ | 236 tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ |
234 | 237 |
235 tmp0 = tmp10 + tmp13;» /* phase 2 */ | 238 tmp0 = tmp10 + tmp13; /* phase 2 */ |
236 tmp3 = tmp10 - tmp13; | 239 tmp3 = tmp10 - tmp13; |
237 tmp1 = tmp11 + tmp12; | 240 tmp1 = tmp11 + tmp12; |
238 tmp2 = tmp11 - tmp12; | 241 tmp2 = tmp11 - tmp12; |
239 | 242 |
240 /* Odd part */ | 243 /* Odd part */ |
241 | 244 |
242 tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | 245 tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
243 tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | 246 tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
244 tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | 247 tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
245 tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | 248 tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
246 | 249 |
247 z13 = tmp6 + tmp5;» » /* phase 6 */ | 250 z13 = tmp6 + tmp5; /* phase 6 */ |
248 z10 = tmp6 - tmp5; | 251 z10 = tmp6 - tmp5; |
249 z11 = tmp4 + tmp7; | 252 z11 = tmp4 + tmp7; |
250 z12 = tmp4 - tmp7; | 253 z12 = tmp4 - tmp7; |
251 | 254 |
252 tmp7 = z11 + z13;» » /* phase 5 */ | 255 tmp7 = z11 + z13; /* phase 5 */ |
253 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ | 256 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
254 | 257 |
255 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ | 258 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
256 tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ | 259 tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
257 tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ | 260 tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
258 | 261 |
259 tmp6 = tmp12 - tmp7;» /* phase 2 */ | 262 tmp6 = tmp12 - tmp7; /* phase 2 */ |
260 tmp5 = tmp11 - tmp6; | 263 tmp5 = tmp11 - tmp6; |
261 tmp4 = tmp10 + tmp5; | 264 tmp4 = tmp10 + tmp5; |
262 | 265 |
263 wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); | 266 wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); |
264 wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); | 267 wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); |
265 wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); | 268 wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); |
266 wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); | 269 wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); |
267 wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); | 270 wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); |
268 wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); | 271 wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); |
269 wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); | 272 wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); |
270 wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); | 273 wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); |
271 | 274 |
272 inptr++;» » » /* advance pointers to next column */ | 275 inptr++; /* advance pointers to next column */ |
273 quantptr++; | 276 quantptr++; |
274 wsptr++; | 277 wsptr++; |
275 } | 278 } |
276 | 279 |
277 /* Pass 2: process rows from work array, store into output array. */ | 280 /* Pass 2: process rows from work array, store into output array. */ |
278 /* Note that we must descale the results by a factor of 8 == 2**3, */ | 281 /* Note that we must descale the results by a factor of 8 == 2**3, */ |
279 /* and also undo the PASS1_BITS scaling. */ | 282 /* and also undo the PASS1_BITS scaling. */ |
280 | 283 |
281 wsptr = workspace; | 284 wsptr = workspace; |
282 for (ctr = 0; ctr < DCTSIZE; ctr++) { | 285 for (ctr = 0; ctr < DCTSIZE; ctr++) { |
283 outptr = output_buf[ctr] + output_col; | 286 outptr = output_buf[ctr] + output_col; |
284 /* Rows of zeroes can be exploited in the same way as we did with columns. | 287 /* Rows of zeroes can be exploited in the same way as we did with columns. |
285 * However, the column calculation has created many nonzero AC terms, so | 288 * However, the column calculation has created many nonzero AC terms, so |
286 * the simplification applies less often (typically 5% to 10% of the time). | 289 * the simplification applies less often (typically 5% to 10% of the time). |
287 * On machines with very fast multiplication, it's possible that the | 290 * On machines with very fast multiplication, it's possible that the |
288 * test takes more time than it's worth. In that case this section | 291 * test takes more time than it's worth. In that case this section |
289 * may be commented out. | 292 * may be commented out. |
290 */ | 293 */ |
291 | 294 |
292 #ifndef NO_ZERO_ROW_TEST | 295 #ifndef NO_ZERO_ROW_TEST |
293 if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && | 296 if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && |
294 » wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | 297 wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
295 /* AC terms all zero */ | 298 /* AC terms all zero */ |
296 JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) | 299 JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) |
297 » » » » & RANGE_MASK]; | 300 & RANGE_MASK]; |
298 | 301 |
299 outptr[0] = dcval; | 302 outptr[0] = dcval; |
300 outptr[1] = dcval; | 303 outptr[1] = dcval; |
301 outptr[2] = dcval; | 304 outptr[2] = dcval; |
302 outptr[3] = dcval; | 305 outptr[3] = dcval; |
303 outptr[4] = dcval; | 306 outptr[4] = dcval; |
304 outptr[5] = dcval; | 307 outptr[5] = dcval; |
305 outptr[6] = dcval; | 308 outptr[6] = dcval; |
306 outptr[7] = dcval; | 309 outptr[7] = dcval; |
307 | 310 |
308 wsptr += DCTSIZE;»» /* advance pointer to next row */ | 311 wsptr += DCTSIZE; /* advance pointer to next row */ |
309 continue; | 312 continue; |
310 } | 313 } |
311 #endif | 314 #endif |
312 | 315 |
313 /* Even part */ | 316 /* Even part */ |
314 | 317 |
315 tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); | 318 tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); |
316 tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); | 319 tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); |
317 | 320 |
318 tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); | 321 tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); |
319 tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) | 322 tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) |
320 » - tmp13; | 323 - tmp13; |
321 | 324 |
322 tmp0 = tmp10 + tmp13; | 325 tmp0 = tmp10 + tmp13; |
323 tmp3 = tmp10 - tmp13; | 326 tmp3 = tmp10 - tmp13; |
324 tmp1 = tmp11 + tmp12; | 327 tmp1 = tmp11 + tmp12; |
325 tmp2 = tmp11 - tmp12; | 328 tmp2 = tmp11 - tmp12; |
326 | 329 |
327 /* Odd part */ | 330 /* Odd part */ |
328 | 331 |
329 z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; | 332 z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; |
330 z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; | 333 z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; |
331 z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; | 334 z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; |
332 z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; | 335 z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; |
333 | 336 |
334 tmp7 = z11 + z13;» » /* phase 5 */ | 337 tmp7 = z11 + z13; /* phase 5 */ |
335 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ | 338 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
336 | 339 |
337 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ | 340 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
338 tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ | 341 tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
339 tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ | 342 tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
340 | 343 |
341 tmp6 = tmp12 - tmp7;» /* phase 2 */ | 344 tmp6 = tmp12 - tmp7; /* phase 2 */ |
342 tmp5 = tmp11 - tmp6; | 345 tmp5 = tmp11 - tmp6; |
343 tmp4 = tmp10 + tmp5; | 346 tmp4 = tmp10 + tmp5; |
344 | 347 |
345 /* Final output stage: scale down by a factor of 8 and range-limit */ | 348 /* Final output stage: scale down by a factor of 8 and range-limit */ |
346 | 349 |
347 outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) | 350 outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) |
348 » » » & RANGE_MASK]; | 351 & RANGE_MASK]; |
349 outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) | 352 outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) |
350 » » » & RANGE_MASK]; | 353 & RANGE_MASK]; |
351 outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) | 354 outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) |
352 » » » & RANGE_MASK]; | 355 & RANGE_MASK]; |
353 outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) | 356 outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) |
354 » » » & RANGE_MASK]; | 357 & RANGE_MASK]; |
355 outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) | 358 outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) |
356 » » » & RANGE_MASK]; | 359 & RANGE_MASK]; |
357 outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) | 360 outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) |
358 » » » & RANGE_MASK]; | 361 & RANGE_MASK]; |
359 outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) | 362 outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) |
360 » » » & RANGE_MASK]; | 363 & RANGE_MASK]; |
361 outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) | 364 outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) |
362 » » » & RANGE_MASK]; | 365 & RANGE_MASK]; |
363 | 366 |
364 wsptr += DCTSIZE;» » /* advance pointer to next row */ | 367 wsptr += DCTSIZE; /* advance pointer to next row */ |
365 } | 368 } |
366 } | 369 } |
367 | 370 |
368 #endif /* DCT_IFAST_SUPPORTED */ | 371 #endif /* DCT_IFAST_SUPPORTED */ |
OLD | NEW |