Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(449)

Side by Side Diff: jfdctfst.c

Issue 1953443002: Update to libjpeg_turbo 1.4.90 (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/libjpeg_turbo.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « jfdctflt.c ('k') | jfdctint.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * jfdctfst.c 2 * jfdctfst.c
3 * 3 *
4 * This file was part of the Independent JPEG Group's software:
4 * Copyright (C) 1994-1996, Thomas G. Lane. 5 * Copyright (C) 1994-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software. 6 * libjpeg-turbo Modifications:
6 * For conditions of distribution and use, see the accompanying README file. 7 * Copyright (C) 2015, D. R. Commander
8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
7 * 10 *
8 * This file contains a fast, not so accurate integer implementation of the 11 * This file contains a fast, not so accurate integer implementation of the
9 * forward DCT (Discrete Cosine Transform). 12 * forward DCT (Discrete Cosine Transform).
10 * 13 *
11 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT 14 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
12 * on each column. Direct algorithms are also available, but they are 15 * on each column. Direct algorithms are also available, but they are
13 * much more complex and seem not to be any faster when reduced to code. 16 * much more complex and seem not to be any faster when reduced to code.
14 * 17 *
15 * This implementation is based on Arai, Agui, and Nakajima's algorithm for 18 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
16 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in 19 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
17 * Japanese, but the algorithm is described in the Pennebaker & Mitchell 20 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
18 * JPEG textbook (see REFERENCES section in file README). The following code 21 * JPEG textbook (see REFERENCES section in file README.ijg). The following
19 * is based directly on figure 4-8 in P&M. 22 * code is based directly on figure 4-8 in P&M.
20 * While an 8-point DCT cannot be done in less than 11 multiplies, it is 23 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
21 * possible to arrange the computation so that many of the multiplies are 24 * possible to arrange the computation so that many of the multiplies are
22 * simple scalings of the final outputs. These multiplies can then be 25 * simple scalings of the final outputs. These multiplies can then be
23 * folded into the multiplications or divisions by the JPEG quantization 26 * folded into the multiplications or divisions by the JPEG quantization
24 * table entries. The AA&N method leaves only 5 multiplies and 29 adds 27 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
25 * to be done in the DCT itself. 28 * to be done in the DCT itself.
26 * The primary disadvantage of this method is that with fixed-point math, 29 * The primary disadvantage of this method is that with fixed-point math,
27 * accuracy is lost due to imprecise representation of the scaled 30 * accuracy is lost due to imprecise representation of the scaled
28 * quantization values. The smaller the quantization table entry, the less 31 * quantization values. The smaller the quantization table entry, the less
29 * precise the scaled value, so this implementation does worse with high- 32 * precise the scaled value, so this implementation does worse with high-
30 * quality-setting files than with low-quality ones. 33 * quality-setting files than with low-quality ones.
31 */ 34 */
32 35
33 #define JPEG_INTERNALS 36 #define JPEG_INTERNALS
34 #include "jinclude.h" 37 #include "jinclude.h"
35 #include "jpeglib.h" 38 #include "jpeglib.h"
36 #include "jdct.h"» » /* Private declarations for DCT subsystem */ 39 #include "jdct.h" /* Private declarations for DCT subsystem */
37 40
38 #ifdef DCT_IFAST_SUPPORTED 41 #ifdef DCT_IFAST_SUPPORTED
39 42
40 43
41 /* 44 /*
42 * This module is specialized to the case DCTSIZE = 8. 45 * This module is specialized to the case DCTSIZE = 8.
43 */ 46 */
44 47
45 #if DCTSIZE != 8 48 #if DCTSIZE != 8
46 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 49 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
(...skipping 22 matching lines...) Expand all
69 72
70 73
71 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus 74 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
72 * causing a lot of useless floating-point operations at run time. 75 * causing a lot of useless floating-point operations at run time.
73 * To get around this we use the following pre-calculated constants. 76 * To get around this we use the following pre-calculated constants.
74 * If you change CONST_BITS you may want to add appropriate values. 77 * If you change CONST_BITS you may want to add appropriate values.
75 * (With a reasonable C compiler, you can just rely on the FIX() macro...) 78 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
76 */ 79 */
77 80
78 #if CONST_BITS == 8 81 #if CONST_BITS == 8
79 #define FIX_0_382683433 ((INT32) 98)»» /* FIX(0.382683433) */ 82 #define FIX_0_382683433 ((JLONG) 98) /* FIX(0.382683433) */
80 #define FIX_0_541196100 ((INT32) 139)»» /* FIX(0.541196100) */ 83 #define FIX_0_541196100 ((JLONG) 139) /* FIX(0.541196100) */
81 #define FIX_0_707106781 ((INT32) 181)»» /* FIX(0.707106781) */ 84 #define FIX_0_707106781 ((JLONG) 181) /* FIX(0.707106781) */
82 #define FIX_1_306562965 ((INT32) 334)»» /* FIX(1.306562965) */ 85 #define FIX_1_306562965 ((JLONG) 334) /* FIX(1.306562965) */
83 #else 86 #else
84 #define FIX_0_382683433 FIX(0.382683433) 87 #define FIX_0_382683433 FIX(0.382683433)
85 #define FIX_0_541196100 FIX(0.541196100) 88 #define FIX_0_541196100 FIX(0.541196100)
86 #define FIX_0_707106781 FIX(0.707106781) 89 #define FIX_0_707106781 FIX(0.707106781)
87 #define FIX_1_306562965 FIX(1.306562965) 90 #define FIX_1_306562965 FIX(1.306562965)
88 #endif 91 #endif
89 92
90 93
91 /* We can gain a little more speed, with a further compromise in accuracy, 94 /* We can gain a little more speed, with a further compromise in accuracy,
92 * by omitting the addition in a descaling shift. This yields an incorrectly 95 * by omitting the addition in a descaling shift. This yields an incorrectly
93 * rounded result half the time... 96 * rounded result half the time...
94 */ 97 */
95 98
96 #ifndef USE_ACCURATE_ROUNDING 99 #ifndef USE_ACCURATE_ROUNDING
97 #undef DESCALE 100 #undef DESCALE
98 #define DESCALE(x,n) RIGHT_SHIFT(x, n) 101 #define DESCALE(x,n) RIGHT_SHIFT(x, n)
99 #endif 102 #endif
100 103
101 104
102 /* Multiply a DCTELEM variable by an INT32 constant, and immediately 105 /* Multiply a DCTELEM variable by an JLONG constant, and immediately
103 * descale to yield a DCTELEM result. 106 * descale to yield a DCTELEM result.
104 */ 107 */
105 108
106 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) 109 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
107 110
108 111
109 /* 112 /*
110 * Perform the forward DCT on one block of samples. 113 * Perform the forward DCT on one block of samples.
111 */ 114 */
112 115
113 GLOBAL(void) 116 GLOBAL(void)
114 jpeg_fdct_ifast (DCTELEM * data) 117 jpeg_fdct_ifast (DCTELEM *data)
115 { 118 {
116 DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 119 DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
117 DCTELEM tmp10, tmp11, tmp12, tmp13; 120 DCTELEM tmp10, tmp11, tmp12, tmp13;
118 DCTELEM z1, z2, z3, z4, z5, z11, z13; 121 DCTELEM z1, z2, z3, z4, z5, z11, z13;
119 DCTELEM *dataptr; 122 DCTELEM *dataptr;
120 int ctr; 123 int ctr;
121 SHIFT_TEMPS 124 SHIFT_TEMPS
122 125
123 /* Pass 1: process rows. */ 126 /* Pass 1: process rows. */
124 127
125 dataptr = data; 128 dataptr = data;
126 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 129 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
127 tmp0 = dataptr[0] + dataptr[7]; 130 tmp0 = dataptr[0] + dataptr[7];
128 tmp7 = dataptr[0] - dataptr[7]; 131 tmp7 = dataptr[0] - dataptr[7];
129 tmp1 = dataptr[1] + dataptr[6]; 132 tmp1 = dataptr[1] + dataptr[6];
130 tmp6 = dataptr[1] - dataptr[6]; 133 tmp6 = dataptr[1] - dataptr[6];
131 tmp2 = dataptr[2] + dataptr[5]; 134 tmp2 = dataptr[2] + dataptr[5];
132 tmp5 = dataptr[2] - dataptr[5]; 135 tmp5 = dataptr[2] - dataptr[5];
133 tmp3 = dataptr[3] + dataptr[4]; 136 tmp3 = dataptr[3] + dataptr[4];
134 tmp4 = dataptr[3] - dataptr[4]; 137 tmp4 = dataptr[3] - dataptr[4];
135 138
136 /* Even part */ 139 /* Even part */
137 140
138 tmp10 = tmp0 + tmp3;» /* phase 2 */ 141 tmp10 = tmp0 + tmp3; /* phase 2 */
139 tmp13 = tmp0 - tmp3; 142 tmp13 = tmp0 - tmp3;
140 tmp11 = tmp1 + tmp2; 143 tmp11 = tmp1 + tmp2;
141 tmp12 = tmp1 - tmp2; 144 tmp12 = tmp1 - tmp2;
142 145
143 dataptr[0] = tmp10 + tmp11; /* phase 3 */ 146 dataptr[0] = tmp10 + tmp11; /* phase 3 */
144 dataptr[4] = tmp10 - tmp11; 147 dataptr[4] = tmp10 - tmp11;
145 148
146 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ 149 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
147 dataptr[2] = tmp13 + z1;» /* phase 5 */ 150 dataptr[2] = tmp13 + z1; /* phase 5 */
148 dataptr[6] = tmp13 - z1; 151 dataptr[6] = tmp13 - z1;
149 152
150 /* Odd part */ 153 /* Odd part */
151 154
152 tmp10 = tmp4 + tmp5;» /* phase 2 */ 155 tmp10 = tmp4 + tmp5; /* phase 2 */
153 tmp11 = tmp5 + tmp6; 156 tmp11 = tmp5 + tmp6;
154 tmp12 = tmp6 + tmp7; 157 tmp12 = tmp6 + tmp7;
155 158
156 /* The rotator is modified from fig 4-8 to avoid extra negations. */ 159 /* The rotator is modified from fig 4-8 to avoid extra negations. */
157 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ 160 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
158 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ 161 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
159 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ 162 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
160 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ 163 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
161 164
162 z11 = tmp7 + z3;» » /* phase 5 */ 165 z11 = tmp7 + z3; /* phase 5 */
163 z13 = tmp7 - z3; 166 z13 = tmp7 - z3;
164 167
165 dataptr[5] = z13 + z2;» /* phase 6 */ 168 dataptr[5] = z13 + z2; /* phase 6 */
166 dataptr[3] = z13 - z2; 169 dataptr[3] = z13 - z2;
167 dataptr[1] = z11 + z4; 170 dataptr[1] = z11 + z4;
168 dataptr[7] = z11 - z4; 171 dataptr[7] = z11 - z4;
169 172
170 dataptr += DCTSIZE;»» /* advance pointer to next row */ 173 dataptr += DCTSIZE; /* advance pointer to next row */
171 } 174 }
172 175
173 /* Pass 2: process columns. */ 176 /* Pass 2: process columns. */
174 177
175 dataptr = data; 178 dataptr = data;
176 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 179 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
177 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; 180 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
178 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; 181 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
179 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; 182 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
180 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; 183 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
181 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; 184 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
182 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; 185 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
183 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; 186 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
184 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; 187 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
185 188
186 /* Even part */ 189 /* Even part */
187 190
188 tmp10 = tmp0 + tmp3;» /* phase 2 */ 191 tmp10 = tmp0 + tmp3; /* phase 2 */
189 tmp13 = tmp0 - tmp3; 192 tmp13 = tmp0 - tmp3;
190 tmp11 = tmp1 + tmp2; 193 tmp11 = tmp1 + tmp2;
191 tmp12 = tmp1 - tmp2; 194 tmp12 = tmp1 - tmp2;
192 195
193 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ 196 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
194 dataptr[DCTSIZE*4] = tmp10 - tmp11; 197 dataptr[DCTSIZE*4] = tmp10 - tmp11;
195 198
196 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ 199 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
197 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ 200 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
198 dataptr[DCTSIZE*6] = tmp13 - z1; 201 dataptr[DCTSIZE*6] = tmp13 - z1;
199 202
200 /* Odd part */ 203 /* Odd part */
201 204
202 tmp10 = tmp4 + tmp5;» /* phase 2 */ 205 tmp10 = tmp4 + tmp5; /* phase 2 */
203 tmp11 = tmp5 + tmp6; 206 tmp11 = tmp5 + tmp6;
204 tmp12 = tmp6 + tmp7; 207 tmp12 = tmp6 + tmp7;
205 208
206 /* The rotator is modified from fig 4-8 to avoid extra negations. */ 209 /* The rotator is modified from fig 4-8 to avoid extra negations. */
207 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ 210 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
208 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ 211 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
209 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ 212 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
210 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ 213 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
211 214
212 z11 = tmp7 + z3;» » /* phase 5 */ 215 z11 = tmp7 + z3; /* phase 5 */
213 z13 = tmp7 - z3; 216 z13 = tmp7 - z3;
214 217
215 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ 218 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
216 dataptr[DCTSIZE*3] = z13 - z2; 219 dataptr[DCTSIZE*3] = z13 - z2;
217 dataptr[DCTSIZE*1] = z11 + z4; 220 dataptr[DCTSIZE*1] = z11 + z4;
218 dataptr[DCTSIZE*7] = z11 - z4; 221 dataptr[DCTSIZE*7] = z11 - z4;
219 222
220 dataptr++;» » » /* advance pointer to next column */ 223 dataptr++; /* advance pointer to next column */
221 } 224 }
222 } 225 }
223 226
224 #endif /* DCT_IFAST_SUPPORTED */ 227 #endif /* DCT_IFAST_SUPPORTED */
OLDNEW
« no previous file with comments | « jfdctflt.c ('k') | jfdctint.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698