| Index: mojo/services/media/common/cpp/linear_function.h
|
| diff --git a/mojo/services/media/common/cpp/linear_function.h b/mojo/services/media/common/cpp/linear_function.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..be66bb308156d944d5acb931cb84d442549cffa0
|
| --- /dev/null
|
| +++ b/mojo/services/media/common/cpp/linear_function.h
|
| @@ -0,0 +1,123 @@
|
| +// Copyright 2016 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#ifndef MOJO_SERVICES_MEDIA_COMMON_CPP_LINEAR_FUNCTION_H_
|
| +#define MOJO_SERVICES_MEDIA_COMMON_CPP_LINEAR_FUNCTION_H_
|
| +
|
| +#include "mojo/public/cpp/environment/logging.h"
|
| +#include "mojo/services/media/common/cpp/ratio.h"
|
| +
|
| +namespace mojo {
|
| +namespace media {
|
| +
|
| +// TODO(dalesat): Consider always allowing inexact results.
|
| +
|
| +// A linear function from int64_t to int64_t with non-negative slope. The
|
| +// representation is in point-slope form. The point is represented as two
|
| +// int64_t values (domain_basis, range_basis), and the slope is represented as
|
| +// the ratio of two uint32_t values (range_delta / domain_delta). 'Domain'
|
| +// refers to the input space, and 'range' refers to the output space.
|
| +struct LinearFunction {
|
| + // Applies a linear function.
|
| + static int64_t Apply(int64_t domain_basis,
|
| + int64_t range_basis,
|
| + const Ratio& slope, // range_delta / domain_delta
|
| + int64_t domain_input);
|
| +
|
| + // Applies the inverse of a linear function.
|
| + static int64_t ApplyInverse(int64_t domain_basis,
|
| + int64_t range_basis,
|
| + const Ratio& slope, // range_delta / domain_delta
|
| + int64_t range_input) {
|
| + MOJO_DCHECK(slope.denominator() != 0u);
|
| + return Apply(range_basis, domain_basis, slope.Inverse(), range_input);
|
| + }
|
| +
|
| + // Composes two linear functions B->C and A->B producing A->C. If exact is
|
| + // true, DCHECKs on loss of precision.
|
| + static LinearFunction Compose(const LinearFunction& bc,
|
| + const LinearFunction& ab,
|
| + bool exact = true);
|
| +
|
| + LinearFunction() : domain_basis_(0), range_basis_(0) {}
|
| +
|
| + LinearFunction(int64_t domain_basis,
|
| + int64_t range_basis,
|
| + uint32_t domain_delta,
|
| + uint32_t range_delta)
|
| + : domain_basis_(domain_basis),
|
| + range_basis_(range_basis),
|
| + slope_(range_delta, domain_delta) {}
|
| +
|
| + LinearFunction(int64_t domain_basis,
|
| + int64_t range_basis,
|
| + const Ratio& slope) // range_delta / domain_delta
|
| + : domain_basis_(domain_basis),
|
| + range_basis_(range_basis),
|
| + slope_(slope) {}
|
| +
|
| + explicit LinearFunction(const Ratio& slope) // range_delta / domain_delta
|
| + : domain_basis_(0),
|
| + range_basis_(0),
|
| + slope_(slope) {}
|
| +
|
| + // Applies the function. Returns Ratio::kOverflow on overflow.
|
| + int64_t Apply(int64_t domain_input) const {
|
| + return Apply(domain_basis_, range_basis_, slope_, domain_input);
|
| + }
|
| +
|
| + // Applies the inverse of the function. Returns Ratio::kOverflow on overflow.
|
| + int64_t ApplyInverse(int64_t range_input) const {
|
| + MOJO_DCHECK(slope_.denominator() != 0u);
|
| + return ApplyInverse(domain_basis_, range_basis_, slope_, range_input);
|
| + }
|
| +
|
| + // Applies the function. Returns Ratio::kOverflow on overflow.
|
| + int64_t operator()(int64_t domain_input) const { return Apply(domain_input); }
|
| +
|
| + // Returns a linear function that is the inverse if this linear function.
|
| + LinearFunction Inverse() const {
|
| + MOJO_DCHECK(slope_.denominator() != 0u);
|
| + return LinearFunction(range_basis_, domain_basis_, slope_.Inverse());
|
| + }
|
| +
|
| + int64_t domain_basis() const { return domain_basis_; }
|
| +
|
| + int64_t range_basis() const { return range_basis_; }
|
| +
|
| + const Ratio& slope() const { return slope_; }
|
| +
|
| + uint32_t domain_delta() const { return slope_.denominator(); }
|
| +
|
| + uint32_t range_delta() const { return slope_.numerator(); }
|
| +
|
| + int64_t domain_basis_;
|
| + int64_t range_basis_;
|
| + Ratio slope_; // range_delta / domain_delta
|
| +};
|
| +
|
| +// Tests two linear functions for equality. Equality requires equal basis
|
| +// values.
|
| +inline bool operator==(const LinearFunction& a, const LinearFunction& b) {
|
| + return a.domain_basis() == b.domain_basis() &&
|
| + a.range_basis() == b.range_basis() && a.slope() == b.slope();
|
| +}
|
| +
|
| +// Tests two linear functions for inequality. Equality requires equal basis
|
| +// values.
|
| +inline bool operator!=(const LinearFunction& a, const LinearFunction& b) {
|
| + return !(a == b);
|
| +}
|
| +
|
| +// Composes two linear functions B->C and A->B producing A->C. DCHECKs on
|
| +// loss of precision.
|
| +inline LinearFunction operator*(const LinearFunction& bc,
|
| + const LinearFunction& ab) {
|
| + return LinearFunction::Compose(bc, ab);
|
| +}
|
| +
|
| +} // namespace media
|
| +} // namespace mojo
|
| +
|
| +#endif // MOJO_SERVICES_MEDIA_COMMON_CPP_LINEAR_FUNCTION_H_
|
|
|