| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2011 Google Inc. | 2 * Copyright 2011 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #ifndef SkMatrix44_DEFINED | 8 #include "../core/SkMatrix4.h" |
| 9 #define SkMatrix44_DEFINED | |
| 10 | |
| 11 #include "SkMatrix.h" | |
| 12 #include "SkScalar.h" | |
| 13 | |
| 14 #ifdef SK_MSCALAR_IS_DOUBLE | |
| 15 #ifdef SK_MSCALAR_IS_FLOAT | |
| 16 #error "can't define MSCALAR both as DOUBLE and FLOAT" | |
| 17 #endif | |
| 18 typedef double SkMScalar; | |
| 19 | |
| 20 static inline double SkFloatToMScalar(float x) { | |
| 21 return static_cast<double>(x); | |
| 22 } | |
| 23 static inline float SkMScalarToFloat(double x) { | |
| 24 return static_cast<float>(x); | |
| 25 } | |
| 26 static inline double SkDoubleToMScalar(double x) { | |
| 27 return x; | |
| 28 } | |
| 29 static inline double SkMScalarToDouble(double x) { | |
| 30 return x; | |
| 31 } | |
| 32 static inline double SkMScalarAbs(double x) { | |
| 33 return fabs(x); | |
| 34 } | |
| 35 static const SkMScalar SK_MScalarPI = 3.141592653589793; | |
| 36 | |
| 37 #define SkMScalarFloor(x) sk_double_floor(x) | |
| 38 #define SkMScalarCeil(x) sk_double_ceil(x) | |
| 39 #define SkMScalarRound(x) sk_double_round(x) | |
| 40 | |
| 41 #define SkMScalarFloorToInt(x) sk_double_floor2int(x) | |
| 42 #define SkMScalarCeilToInt(x) sk_double_ceil2int(x) | |
| 43 #define SkMScalarRoundToInt(x) sk_double_round2int(x) | |
| 44 | |
| 45 | |
| 46 #elif defined SK_MSCALAR_IS_FLOAT | |
| 47 #ifdef SK_MSCALAR_IS_DOUBLE | |
| 48 #error "can't define MSCALAR both as DOUBLE and FLOAT" | |
| 49 #endif | |
| 50 typedef float SkMScalar; | |
| 51 | |
| 52 static inline float SkFloatToMScalar(float x) { | |
| 53 return x; | |
| 54 } | |
| 55 static inline float SkMScalarToFloat(float x) { | |
| 56 return x; | |
| 57 } | |
| 58 static inline float SkDoubleToMScalar(double x) { | |
| 59 return static_cast<float>(x); | |
| 60 } | |
| 61 static inline double SkMScalarToDouble(float x) { | |
| 62 return static_cast<double>(x); | |
| 63 } | |
| 64 static inline float SkMScalarAbs(float x) { | |
| 65 return sk_float_abs(x); | |
| 66 } | |
| 67 static const SkMScalar SK_MScalarPI = 3.14159265f; | |
| 68 | |
| 69 #define SkMScalarFloor(x) sk_float_floor(x) | |
| 70 #define SkMScalarCeil(x) sk_float_ceil(x) | |
| 71 #define SkMScalarRound(x) sk_float_round(x) | |
| 72 | |
| 73 #define SkMScalarFloorToInt(x) sk_float_floor2int(x) | |
| 74 #define SkMScalarCeilToInt(x) sk_float_ceil2int(x) | |
| 75 #define SkMScalarRoundToInt(x) sk_float_round2int(x) | |
| 76 | |
| 77 #endif | |
| 78 | |
| 79 #define SkIntToMScalar(n) static_cast<SkMScalar>(n) | |
| 80 | |
| 81 #define SkMScalarToScalar(x) SkMScalarToFloat(x) | |
| 82 #define SkScalarToMScalar(x) SkFloatToMScalar(x) | |
| 83 | |
| 84 static const SkMScalar SK_MScalar1 = 1; | |
| 85 | |
| 86 /////////////////////////////////////////////////////////////////////////////// | |
| 87 | |
| 88 struct SkVector4 { | |
| 89 SkScalar fData[4]; | |
| 90 | |
| 91 SkVector4() { | |
| 92 this->set(0, 0, 0, 1); | |
| 93 } | |
| 94 SkVector4(const SkVector4& src) { | |
| 95 memcpy(fData, src.fData, sizeof(fData)); | |
| 96 } | |
| 97 SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { | |
| 98 fData[0] = x; | |
| 99 fData[1] = y; | |
| 100 fData[2] = z; | |
| 101 fData[3] = w; | |
| 102 } | |
| 103 | |
| 104 SkVector4& operator=(const SkVector4& src) { | |
| 105 memcpy(fData, src.fData, sizeof(fData)); | |
| 106 return *this; | |
| 107 } | |
| 108 | |
| 109 bool operator==(const SkVector4& v) { | |
| 110 return fData[0] == v.fData[0] && fData[1] == v.fData[1] && | |
| 111 fData[2] == v.fData[2] && fData[3] == v.fData[3]; | |
| 112 } | |
| 113 bool operator!=(const SkVector4& v) { | |
| 114 return !(*this == v); | |
| 115 } | |
| 116 bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { | |
| 117 return fData[0] == x && fData[1] == y && | |
| 118 fData[2] == z && fData[3] == w; | |
| 119 } | |
| 120 | |
| 121 void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { | |
| 122 fData[0] = x; | |
| 123 fData[1] = y; | |
| 124 fData[2] = z; | |
| 125 fData[3] = w; | |
| 126 } | |
| 127 }; | |
| 128 | |
| 129 class SK_API SkMatrix44 { | |
| 130 public: | |
| 131 | |
| 132 enum Uninitialized_Constructor { | |
| 133 kUninitialized_Constructor | |
| 134 }; | |
| 135 enum Identity_Constructor { | |
| 136 kIdentity_Constructor | |
| 137 }; | |
| 138 | |
| 139 SkMatrix44(Uninitialized_Constructor) { } | |
| 140 SkMatrix44(Identity_Constructor) { this->setIdentity(); } | |
| 141 | |
| 142 SK_ATTR_DEPRECATED("use the constructors that take an enum") | |
| 143 SkMatrix44() { this->setIdentity(); } | |
| 144 | |
| 145 SkMatrix44(const SkMatrix44& src) { | |
| 146 memcpy(fMat, src.fMat, sizeof(fMat)); | |
| 147 fTypeMask = src.fTypeMask; | |
| 148 } | |
| 149 | |
| 150 SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) { | |
| 151 this->setConcat(a, b); | |
| 152 } | |
| 153 | |
| 154 SkMatrix44& operator=(const SkMatrix44& src) { | |
| 155 if (&src != this) { | |
| 156 memcpy(fMat, src.fMat, sizeof(fMat)); | |
| 157 fTypeMask = src.fTypeMask; | |
| 158 } | |
| 159 return *this; | |
| 160 } | |
| 161 | |
| 162 bool operator==(const SkMatrix44& other) const; | |
| 163 bool operator!=(const SkMatrix44& other) const { | |
| 164 return !(other == *this); | |
| 165 } | |
| 166 | |
| 167 /* When converting from SkMatrix44 to SkMatrix, the third row and | |
| 168 * column is dropped. When converting from SkMatrix to SkMatrix44 | |
| 169 * the third row and column remain as identity: | |
| 170 * [ a b c ] [ a b 0 c ] | |
| 171 * [ d e f ] -> [ d e 0 f ] | |
| 172 * [ g h i ] [ 0 0 1 0 ] | |
| 173 * [ g h 0 i ] | |
| 174 */ | |
| 175 SkMatrix44(const SkMatrix&); | |
| 176 SkMatrix44& operator=(const SkMatrix& src); | |
| 177 operator SkMatrix() const; | |
| 178 | |
| 179 /** | |
| 180 * Return a reference to a const identity matrix | |
| 181 */ | |
| 182 static const SkMatrix44& I(); | |
| 183 | |
| 184 enum TypeMask { | |
| 185 kIdentity_Mask = 0, | |
| 186 kTranslate_Mask = 0x01, //!< set if the matrix has translation | |
| 187 kScale_Mask = 0x02, //!< set if the matrix has any scale != 1 | |
| 188 kAffine_Mask = 0x04, //!< set if the matrix skews or rotates | |
| 189 kPerspective_Mask = 0x08 //!< set if the matrix is in perspective | |
| 190 }; | |
| 191 | |
| 192 /** | |
| 193 * Returns a bitfield describing the transformations the matrix may | |
| 194 * perform. The bitfield is computed conservatively, so it may include | |
| 195 * false positives. For example, when kPerspective_Mask is true, all | |
| 196 * other bits may be set to true even in the case of a pure perspective | |
| 197 * transform. | |
| 198 */ | |
| 199 inline TypeMask getType() const { | |
| 200 if (fTypeMask & kUnknown_Mask) { | |
| 201 fTypeMask = this->computeTypeMask(); | |
| 202 } | |
| 203 SkASSERT(!(fTypeMask & kUnknown_Mask)); | |
| 204 return (TypeMask)fTypeMask; | |
| 205 } | |
| 206 | |
| 207 /** | |
| 208 * Return true if the matrix is identity. | |
| 209 */ | |
| 210 inline bool isIdentity() const { | |
| 211 return kIdentity_Mask == this->getType(); | |
| 212 } | |
| 213 | |
| 214 /** | |
| 215 * Return true if the matrix contains translate or is identity. | |
| 216 */ | |
| 217 inline bool isTranslate() const { | |
| 218 return !(this->getType() & ~kTranslate_Mask); | |
| 219 } | |
| 220 | |
| 221 /** | |
| 222 * Return true if the matrix only contains scale or translate or is identit
y. | |
| 223 */ | |
| 224 inline bool isScaleTranslate() const { | |
| 225 return !(this->getType() & ~(kScale_Mask | kTranslate_Mask)); | |
| 226 } | |
| 227 | |
| 228 /** | |
| 229 * Returns true if the matrix only contains scale or is identity. | |
| 230 */ | |
| 231 inline bool isScale() const { | |
| 232 return !(this->getType() & ~kScale_Mask); | |
| 233 } | |
| 234 | |
| 235 inline bool hasPerspective() const { | |
| 236 return SkToBool(this->getType() & kPerspective_Mask); | |
| 237 } | |
| 238 | |
| 239 void setIdentity(); | |
| 240 inline void reset() { this->setIdentity();} | |
| 241 | |
| 242 /** | |
| 243 * get a value from the matrix. The row,col parameters work as follows: | |
| 244 * (0, 0) scale-x | |
| 245 * (0, 3) translate-x | |
| 246 * (3, 0) perspective-x | |
| 247 */ | |
| 248 inline SkMScalar get(int row, int col) const { | |
| 249 SkASSERT((unsigned)row <= 3); | |
| 250 SkASSERT((unsigned)col <= 3); | |
| 251 return fMat[col][row]; | |
| 252 } | |
| 253 | |
| 254 /** | |
| 255 * set a value in the matrix. The row,col parameters work as follows: | |
| 256 * (0, 0) scale-x | |
| 257 * (0, 3) translate-x | |
| 258 * (3, 0) perspective-x | |
| 259 */ | |
| 260 inline void set(int row, int col, SkMScalar value) { | |
| 261 SkASSERT((unsigned)row <= 3); | |
| 262 SkASSERT((unsigned)col <= 3); | |
| 263 fMat[col][row] = value; | |
| 264 this->dirtyTypeMask(); | |
| 265 } | |
| 266 | |
| 267 inline double getDouble(int row, int col) const { | |
| 268 return SkMScalarToDouble(this->get(row, col)); | |
| 269 } | |
| 270 inline void setDouble(int row, int col, double value) { | |
| 271 this->set(row, col, SkDoubleToMScalar(value)); | |
| 272 } | |
| 273 inline float getFloat(int row, int col) const { | |
| 274 return SkMScalarToFloat(this->get(row, col)); | |
| 275 } | |
| 276 inline void setFloat(int row, int col, float value) { | |
| 277 this->set(row, col, SkFloatToMScalar(value)); | |
| 278 } | |
| 279 | |
| 280 /** These methods allow one to efficiently read matrix entries into an | |
| 281 * array. The given array must have room for exactly 16 entries. Whenever | |
| 282 * possible, they will try to use memcpy rather than an entry-by-entry | |
| 283 * copy. | |
| 284 */ | |
| 285 void asColMajorf(float[]) const; | |
| 286 void asColMajord(double[]) const; | |
| 287 void asRowMajorf(float[]) const; | |
| 288 void asRowMajord(double[]) const; | |
| 289 | |
| 290 /** These methods allow one to efficiently set all matrix entries from an | |
| 291 * array. The given array must have room for exactly 16 entries. Whenever | |
| 292 * possible, they will try to use memcpy rather than an entry-by-entry | |
| 293 * copy. | |
| 294 */ | |
| 295 void setColMajorf(const float[]); | |
| 296 void setColMajord(const double[]); | |
| 297 void setRowMajorf(const float[]); | |
| 298 void setRowMajord(const double[]); | |
| 299 | |
| 300 #ifdef SK_MSCALAR_IS_FLOAT | |
| 301 void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); } | |
| 302 void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); } | |
| 303 #else | |
| 304 void setColMajor(const SkMScalar data[]) { this->setColMajord(data); } | |
| 305 void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); } | |
| 306 #endif | |
| 307 | |
| 308 /* This sets the top-left of the matrix and clears the translation and | |
| 309 * perspective components (with [3][3] set to 1). */ | |
| 310 void set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02, | |
| 311 SkMScalar m10, SkMScalar m11, SkMScalar m12, | |
| 312 SkMScalar m20, SkMScalar m21, SkMScalar m22); | |
| 313 | |
| 314 void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz); | |
| 315 void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz); | |
| 316 void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz); | |
| 317 | |
| 318 void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz); | |
| 319 void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz); | |
| 320 void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz); | |
| 321 | |
| 322 inline void setScale(SkMScalar scale) { | |
| 323 this->setScale(scale, scale, scale); | |
| 324 } | |
| 325 inline void preScale(SkMScalar scale) { | |
| 326 this->preScale(scale, scale, scale); | |
| 327 } | |
| 328 inline void postScale(SkMScalar scale) { | |
| 329 this->postScale(scale, scale, scale); | |
| 330 } | |
| 331 | |
| 332 void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z, | |
| 333 SkMScalar degrees) { | |
| 334 this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180); | |
| 335 } | |
| 336 | |
| 337 /** Rotate about the vector [x,y,z]. If that vector is not unit-length, | |
| 338 it will be automatically resized. | |
| 339 */ | |
| 340 void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z, | |
| 341 SkMScalar radians); | |
| 342 /** Rotate about the vector [x,y,z]. Does not check the length of the | |
| 343 vector, assuming it is unit-length. | |
| 344 */ | |
| 345 void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z, | |
| 346 SkMScalar radians); | |
| 347 | |
| 348 void setConcat(const SkMatrix44& a, const SkMatrix44& b); | |
| 349 inline void preConcat(const SkMatrix44& m) { | |
| 350 this->setConcat(*this, m); | |
| 351 } | |
| 352 inline void postConcat(const SkMatrix44& m) { | |
| 353 this->setConcat(m, *this); | |
| 354 } | |
| 355 | |
| 356 friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) { | |
| 357 return SkMatrix44(a, b); | |
| 358 } | |
| 359 | |
| 360 /** If this is invertible, return that in inverse and return true. If it is | |
| 361 not invertible, return false and leave the inverse parameter in an | |
| 362 unspecified state. | |
| 363 */ | |
| 364 bool invert(SkMatrix44* inverse) const; | |
| 365 | |
| 366 /** Transpose this matrix in place. */ | |
| 367 void transpose(); | |
| 368 | |
| 369 /** Apply the matrix to the src vector, returning the new vector in dst. | |
| 370 It is legal for src and dst to point to the same memory. | |
| 371 */ | |
| 372 void mapScalars(const SkScalar src[4], SkScalar dst[4]) const; | |
| 373 inline void mapScalars(SkScalar vec[4]) const { | |
| 374 this->mapScalars(vec, vec); | |
| 375 } | |
| 376 | |
| 377 SK_ATTR_DEPRECATED("use mapScalars") | |
| 378 void map(const SkScalar src[4], SkScalar dst[4]) const { | |
| 379 this->mapScalars(src, dst); | |
| 380 } | |
| 381 | |
| 382 SK_ATTR_DEPRECATED("use mapScalars") | |
| 383 void map(SkScalar vec[4]) const { | |
| 384 this->mapScalars(vec, vec); | |
| 385 } | |
| 386 | |
| 387 #ifdef SK_MSCALAR_IS_DOUBLE | |
| 388 void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const; | |
| 389 #elif defined SK_MSCALAR_IS_FLOAT | |
| 390 inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const { | |
| 391 this->mapScalars(src, dst); | |
| 392 } | |
| 393 #endif | |
| 394 inline void mapMScalars(SkMScalar vec[4]) const { | |
| 395 this->mapMScalars(vec, vec); | |
| 396 } | |
| 397 | |
| 398 friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) { | |
| 399 SkVector4 dst; | |
| 400 m.mapScalars(src.fData, dst.fData); | |
| 401 return dst; | |
| 402 } | |
| 403 | |
| 404 /** | |
| 405 * map an array of [x, y, 0, 1] through the matrix, returning an array | |
| 406 * of [x', y', z', w']. | |
| 407 * | |
| 408 * @param src2 array of [x, y] pairs, with implied z=0 and w=1 | |
| 409 * @param count number of [x, y] pairs in src2 | |
| 410 * @param dst4 array of [x', y', z', w'] quads as the output. | |
| 411 */ | |
| 412 void map2(const float src2[], int count, float dst4[]) const; | |
| 413 void map2(const double src2[], int count, double dst4[]) const; | |
| 414 | |
| 415 /** Returns true if transformating an axis-aligned square in 2d by this matr
ix | |
| 416 will produce another 2d axis-aligned square; typically means the matrix | |
| 417 is a scale with perhaps a 90-degree rotation. A 3d rotation through 90 | |
| 418 degrees into a perpendicular plane collapses a square to a line, but | |
| 419 is still considered to be axis-aligned. | |
| 420 | |
| 421 By default, tolerates very slight error due to float imprecisions; | |
| 422 a 90-degree rotation can still end up with 10^-17 of | |
| 423 "non-axis-aligned" result. | |
| 424 */ | |
| 425 bool preserves2dAxisAlignment(SkMScalar epsilon = SK_ScalarNearlyZero) const
; | |
| 426 | |
| 427 void dump() const; | |
| 428 | |
| 429 double determinant() const; | |
| 430 | |
| 431 private: | |
| 432 SkMScalar fMat[4][4]; | |
| 433 mutable unsigned fTypeMask; | |
| 434 | |
| 435 enum { | |
| 436 kUnknown_Mask = 0x80, | |
| 437 | |
| 438 kAllPublic_Masks = 0xF | |
| 439 }; | |
| 440 | |
| 441 SkMScalar transX() const { return fMat[3][0]; } | |
| 442 SkMScalar transY() const { return fMat[3][1]; } | |
| 443 SkMScalar transZ() const { return fMat[3][2]; } | |
| 444 | |
| 445 SkMScalar scaleX() const { return fMat[0][0]; } | |
| 446 SkMScalar scaleY() const { return fMat[1][1]; } | |
| 447 SkMScalar scaleZ() const { return fMat[2][2]; } | |
| 448 | |
| 449 SkMScalar perspX() const { return fMat[0][3]; } | |
| 450 SkMScalar perspY() const { return fMat[1][3]; } | |
| 451 SkMScalar perspZ() const { return fMat[2][3]; } | |
| 452 | |
| 453 int computeTypeMask() const; | |
| 454 | |
| 455 inline void dirtyTypeMask() { | |
| 456 fTypeMask = kUnknown_Mask; | |
| 457 } | |
| 458 | |
| 459 inline void setTypeMask(int mask) { | |
| 460 SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask)); | |
| 461 fTypeMask = mask; | |
| 462 } | |
| 463 | |
| 464 /** | |
| 465 * Does not take the time to 'compute' the typemask. Only returns true if | |
| 466 * we already know that this matrix is identity. | |
| 467 */ | |
| 468 inline bool isTriviallyIdentity() const { | |
| 469 return 0 == fTypeMask; | |
| 470 } | |
| 471 }; | |
| 472 | |
| 473 #endif | |
| OLD | NEW |