Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(603)

Side by Side Diff: simd/jfdctfst-sse2-64.asm

Issue 1934113002: Update libjpeg_turbo to 1.4.90 from https://github.com/libjpeg-turbo/ (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/libjpeg_turbo.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 ;
2 ; jfdctfst.asm - fast integer FDCT (64-bit SSE2)
3 ;
4 ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
5 ; Copyright 2009 D. R. Commander
6 ;
7 ; Based on
8 ; x86 SIMD extension for IJG JPEG library
9 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
10 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
11 ;
12 ; This file should be assembled with NASM (Netwide Assembler),
13 ; can *not* be assembled with Microsoft's MASM or any compatible
14 ; assembler (including Borland's Turbo Assembler).
15 ; NASM is available from http://nasm.sourceforge.net/ or
16 ; http://sourceforge.net/project/showfiles.php?group_id=6208
17 ;
18 ; This file contains a fast, not so accurate integer implementation of
19 ; the forward DCT (Discrete Cosine Transform). The following code is
20 ; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c
21 ; for more details.
22 ;
23 ; [TAB8]
24
25 %include "jsimdext.inc"
26 %include "jdct.inc"
27
28 ; --------------------------------------------------------------------------
29
30 %define CONST_BITS 8 ; 14 is also OK.
31
32 %if CONST_BITS == 8
33 F_0_382 equ 98 ; FIX(0.382683433)
34 F_0_541 equ 139 ; FIX(0.541196100)
35 F_0_707 equ 181 ; FIX(0.707106781)
36 F_1_306 equ 334 ; FIX(1.306562965)
37 %else
38 ; NASM cannot do compile-time arithmetic on floating-point constants.
39 %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n))
40 F_0_382 equ DESCALE( 410903207,30-CONST_BITS) ; FIX(0.382683433)
41 F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100)
42 F_0_707 equ DESCALE( 759250124,30-CONST_BITS) ; FIX(0.707106781)
43 F_1_306 equ DESCALE(1402911301,30-CONST_BITS) ; FIX(1.306562965)
44 %endif
45
46 ; --------------------------------------------------------------------------
47 SECTION SEG_CONST
48
49 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
50 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
51
52 %define PRE_MULTIPLY_SCALE_BITS 2
53 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
54
55 alignz 16
56 global EXTN(jconst_fdct_ifast_sse2)
57
58 EXTN(jconst_fdct_ifast_sse2):
59
60 PW_F0707 times 8 dw F_0_707 << CONST_SHIFT
61 PW_F0382 times 8 dw F_0_382 << CONST_SHIFT
62 PW_F0541 times 8 dw F_0_541 << CONST_SHIFT
63 PW_F1306 times 8 dw F_1_306 << CONST_SHIFT
64
65 alignz 16
66
67 ; --------------------------------------------------------------------------
68 SECTION SEG_TEXT
69 BITS 64
70 ;
71 ; Perform the forward DCT on one block of samples.
72 ;
73 ; GLOBAL(void)
74 ; jsimd_fdct_ifast_sse2 (DCTELEM *data)
75 ;
76
77 ; r10 = DCTELEM *data
78
79 %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM]
80 %define WK_NUM 2
81
82 align 16
83 global EXTN(jsimd_fdct_ifast_sse2)
84
85 EXTN(jsimd_fdct_ifast_sse2):
86 push rbp
87 mov rax,rsp ; rax = original rbp
88 sub rsp, byte 4
89 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
90 mov [rsp],rax
91 mov rbp,rsp ; rbp = aligned rbp
92 lea rsp, [wk(0)]
93 collect_args
94
95 ; ---- Pass 1: process rows.
96
97 mov rdx, r10 ; (DCTELEM *)
98
99 movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)]
100 movdqa xmm1, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)]
101 movdqa xmm2, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)]
102 movdqa xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)]
103
104 ; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27)
105 ; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37)
106
107 movdqa xmm4,xmm0 ; transpose coefficients(phase 1)
108 punpcklwd xmm0,xmm1 ; xmm0=(00 10 01 11 02 12 03 13)
109 punpckhwd xmm4,xmm1 ; xmm4=(04 14 05 15 06 16 07 17)
110 movdqa xmm5,xmm2 ; transpose coefficients(phase 1)
111 punpcklwd xmm2,xmm3 ; xmm2=(20 30 21 31 22 32 23 33)
112 punpckhwd xmm5,xmm3 ; xmm5=(24 34 25 35 26 36 27 37)
113
114 movdqa xmm6, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)]
115 movdqa xmm7, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)]
116 movdqa xmm1, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)]
117 movdqa xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)]
118
119 ; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62)
120 ; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63)
121
122 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33)
123 movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37)
124
125 movdqa xmm2,xmm6 ; transpose coefficients(phase 1)
126 punpcklwd xmm6,xmm7 ; xmm6=(40 50 41 51 42 52 43 53)
127 punpckhwd xmm2,xmm7 ; xmm2=(44 54 45 55 46 56 47 57)
128 movdqa xmm5,xmm1 ; transpose coefficients(phase 1)
129 punpcklwd xmm1,xmm3 ; xmm1=(60 70 61 71 62 72 63 73)
130 punpckhwd xmm5,xmm3 ; xmm5=(64 74 65 75 66 76 67 77)
131
132 movdqa xmm7,xmm6 ; transpose coefficients(phase 2)
133 punpckldq xmm6,xmm1 ; xmm6=(40 50 60 70 41 51 61 71)
134 punpckhdq xmm7,xmm1 ; xmm7=(42 52 62 72 43 53 63 73)
135 movdqa xmm3,xmm2 ; transpose coefficients(phase 2)
136 punpckldq xmm2,xmm5 ; xmm2=(44 54 64 74 45 55 65 75)
137 punpckhdq xmm3,xmm5 ; xmm3=(46 56 66 76 47 57 67 77)
138
139 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33)
140 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37)
141 movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(42 52 62 72 43 53 63 73)
142 movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=(44 54 64 74 45 55 65 75)
143
144 movdqa xmm7,xmm0 ; transpose coefficients(phase 2)
145 punpckldq xmm0,xmm1 ; xmm0=(00 10 20 30 01 11 21 31)
146 punpckhdq xmm7,xmm1 ; xmm7=(02 12 22 32 03 13 23 33)
147 movdqa xmm2,xmm4 ; transpose coefficients(phase 2)
148 punpckldq xmm4,xmm5 ; xmm4=(04 14 24 34 05 15 25 35)
149 punpckhdq xmm2,xmm5 ; xmm2=(06 16 26 36 07 17 27 37)
150
151 movdqa xmm1,xmm0 ; transpose coefficients(phase 3)
152 punpcklqdq xmm0,xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0
153 punpckhqdq xmm1,xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1
154 movdqa xmm5,xmm2 ; transpose coefficients(phase 3)
155 punpcklqdq xmm2,xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6
156 punpckhqdq xmm5,xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7
157
158 movdqa xmm6,xmm1
159 movdqa xmm3,xmm0
160 psubw xmm1,xmm2 ; xmm1=data1-data6=tmp6
161 psubw xmm0,xmm5 ; xmm0=data0-data7=tmp7
162 paddw xmm6,xmm2 ; xmm6=data1+data6=tmp1
163 paddw xmm3,xmm5 ; xmm3=data0+data7=tmp0
164
165 movdqa xmm2, XMMWORD [wk(0)] ; xmm2=(42 52 62 72 43 53 63 73)
166 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(44 54 64 74 45 55 65 75)
167 movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6
168 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7
169
170 movdqa xmm1,xmm7 ; transpose coefficients(phase 3)
171 punpcklqdq xmm7,xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2
172 punpckhqdq xmm1,xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3
173 movdqa xmm0,xmm4 ; transpose coefficients(phase 3)
174 punpcklqdq xmm4,xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4
175 punpckhqdq xmm0,xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5
176
177 movdqa xmm2,xmm1
178 movdqa xmm5,xmm7
179 paddw xmm1,xmm4 ; xmm1=data3+data4=tmp3
180 paddw xmm7,xmm0 ; xmm7=data2+data5=tmp2
181 psubw xmm2,xmm4 ; xmm2=data3-data4=tmp4
182 psubw xmm5,xmm0 ; xmm5=data2-data5=tmp5
183
184 ; -- Even part
185
186 movdqa xmm4,xmm3
187 movdqa xmm0,xmm6
188 psubw xmm3,xmm1 ; xmm3=tmp13
189 psubw xmm6,xmm7 ; xmm6=tmp12
190 paddw xmm4,xmm1 ; xmm4=tmp10
191 paddw xmm0,xmm7 ; xmm0=tmp11
192
193 paddw xmm6,xmm3
194 psllw xmm6,PRE_MULTIPLY_SCALE_BITS
195 pmulhw xmm6,[rel PW_F0707] ; xmm6=z1
196
197 movdqa xmm1,xmm4
198 movdqa xmm7,xmm3
199 psubw xmm4,xmm0 ; xmm4=data4
200 psubw xmm3,xmm6 ; xmm3=data6
201 paddw xmm1,xmm0 ; xmm1=data0
202 paddw xmm7,xmm6 ; xmm7=data2
203
204 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=tmp6
205 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp7
206 movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=data4
207 movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=data6
208
209 ; -- Odd part
210
211 paddw xmm2,xmm5 ; xmm2=tmp10
212 paddw xmm5,xmm0 ; xmm5=tmp11
213 paddw xmm0,xmm6 ; xmm0=tmp12, xmm6=tmp7
214
215 psllw xmm2,PRE_MULTIPLY_SCALE_BITS
216 psllw xmm0,PRE_MULTIPLY_SCALE_BITS
217
218 psllw xmm5,PRE_MULTIPLY_SCALE_BITS
219 pmulhw xmm5,[rel PW_F0707] ; xmm5=z3
220
221 movdqa xmm4,xmm2 ; xmm4=tmp10
222 psubw xmm2,xmm0
223 pmulhw xmm2,[rel PW_F0382] ; xmm2=z5
224 pmulhw xmm4,[rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196)
225 pmulhw xmm0,[rel PW_F1306] ; xmm0=MULTIPLY(tmp12,FIX_1_306562)
226 paddw xmm4,xmm2 ; xmm4=z2
227 paddw xmm0,xmm2 ; xmm0=z4
228
229 movdqa xmm3,xmm6
230 psubw xmm6,xmm5 ; xmm6=z13
231 paddw xmm3,xmm5 ; xmm3=z11
232
233 movdqa xmm2,xmm6
234 movdqa xmm5,xmm3
235 psubw xmm6,xmm4 ; xmm6=data3
236 psubw xmm3,xmm0 ; xmm3=data7
237 paddw xmm2,xmm4 ; xmm2=data5
238 paddw xmm5,xmm0 ; xmm5=data1
239
240 ; ---- Pass 2: process columns.
241
242 ; xmm1=(00 10 20 30 40 50 60 70), xmm7=(02 12 22 32 42 52 62 72)
243 ; xmm5=(01 11 21 31 41 51 61 71), xmm6=(03 13 23 33 43 53 63 73)
244
245 movdqa xmm4,xmm1 ; transpose coefficients(phase 1)
246 punpcklwd xmm1,xmm5 ; xmm1=(00 01 10 11 20 21 30 31)
247 punpckhwd xmm4,xmm5 ; xmm4=(40 41 50 51 60 61 70 71)
248 movdqa xmm0,xmm7 ; transpose coefficients(phase 1)
249 punpcklwd xmm7,xmm6 ; xmm7=(02 03 12 13 22 23 32 33)
250 punpckhwd xmm0,xmm6 ; xmm0=(42 43 52 53 62 63 72 73)
251
252 movdqa xmm5, XMMWORD [wk(0)] ; xmm5=col4
253 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=col6
254
255 ; xmm5=(04 14 24 34 44 54 64 74), xmm6=(06 16 26 36 46 56 66 76)
256 ; xmm2=(05 15 25 35 45 55 65 75), xmm3=(07 17 27 37 47 57 67 77)
257
258 movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(02 03 12 13 22 23 32 33)
259 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(42 43 52 53 62 63 72 73)
260
261 movdqa xmm7,xmm5 ; transpose coefficients(phase 1)
262 punpcklwd xmm5,xmm2 ; xmm5=(04 05 14 15 24 25 34 35)
263 punpckhwd xmm7,xmm2 ; xmm7=(44 45 54 55 64 65 74 75)
264 movdqa xmm0,xmm6 ; transpose coefficients(phase 1)
265 punpcklwd xmm6,xmm3 ; xmm6=(06 07 16 17 26 27 36 37)
266 punpckhwd xmm0,xmm3 ; xmm0=(46 47 56 57 66 67 76 77)
267
268 movdqa xmm2,xmm5 ; transpose coefficients(phase 2)
269 punpckldq xmm5,xmm6 ; xmm5=(04 05 06 07 14 15 16 17)
270 punpckhdq xmm2,xmm6 ; xmm2=(24 25 26 27 34 35 36 37)
271 movdqa xmm3,xmm7 ; transpose coefficients(phase 2)
272 punpckldq xmm7,xmm0 ; xmm7=(44 45 46 47 54 55 56 57)
273 punpckhdq xmm3,xmm0 ; xmm3=(64 65 66 67 74 75 76 77)
274
275 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=(02 03 12 13 22 23 32 33)
276 movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(42 43 52 53 62 63 72 73)
277 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(24 25 26 27 34 35 36 37)
278 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(44 45 46 47 54 55 56 57)
279
280 movdqa xmm2,xmm1 ; transpose coefficients(phase 2)
281 punpckldq xmm1,xmm6 ; xmm1=(00 01 02 03 10 11 12 13)
282 punpckhdq xmm2,xmm6 ; xmm2=(20 21 22 23 30 31 32 33)
283 movdqa xmm7,xmm4 ; transpose coefficients(phase 2)
284 punpckldq xmm4,xmm0 ; xmm4=(40 41 42 43 50 51 52 53)
285 punpckhdq xmm7,xmm0 ; xmm7=(60 61 62 63 70 71 72 73)
286
287 movdqa xmm6,xmm1 ; transpose coefficients(phase 3)
288 punpcklqdq xmm1,xmm5 ; xmm1=(00 01 02 03 04 05 06 07)=data0
289 punpckhqdq xmm6,xmm5 ; xmm6=(10 11 12 13 14 15 16 17)=data1
290 movdqa xmm0,xmm7 ; transpose coefficients(phase 3)
291 punpcklqdq xmm7,xmm3 ; xmm7=(60 61 62 63 64 65 66 67)=data6
292 punpckhqdq xmm0,xmm3 ; xmm0=(70 71 72 73 74 75 76 77)=data7
293
294 movdqa xmm5,xmm6
295 movdqa xmm3,xmm1
296 psubw xmm6,xmm7 ; xmm6=data1-data6=tmp6
297 psubw xmm1,xmm0 ; xmm1=data0-data7=tmp7
298 paddw xmm5,xmm7 ; xmm5=data1+data6=tmp1
299 paddw xmm3,xmm0 ; xmm3=data0+data7=tmp0
300
301 movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(24 25 26 27 34 35 36 37)
302 movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(44 45 46 47 54 55 56 57)
303 movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=tmp6
304 movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=tmp7
305
306 movdqa xmm6,xmm2 ; transpose coefficients(phase 3)
307 punpcklqdq xmm2,xmm7 ; xmm2=(20 21 22 23 24 25 26 27)=data2
308 punpckhqdq xmm6,xmm7 ; xmm6=(30 31 32 33 34 35 36 37)=data3
309 movdqa xmm1,xmm4 ; transpose coefficients(phase 3)
310 punpcklqdq xmm4,xmm0 ; xmm4=(40 41 42 43 44 45 46 47)=data4
311 punpckhqdq xmm1,xmm0 ; xmm1=(50 51 52 53 54 55 56 57)=data5
312
313 movdqa xmm7,xmm6
314 movdqa xmm0,xmm2
315 paddw xmm6,xmm4 ; xmm6=data3+data4=tmp3
316 paddw xmm2,xmm1 ; xmm2=data2+data5=tmp2
317 psubw xmm7,xmm4 ; xmm7=data3-data4=tmp4
318 psubw xmm0,xmm1 ; xmm0=data2-data5=tmp5
319
320 ; -- Even part
321
322 movdqa xmm4,xmm3
323 movdqa xmm1,xmm5
324 psubw xmm3,xmm6 ; xmm3=tmp13
325 psubw xmm5,xmm2 ; xmm5=tmp12
326 paddw xmm4,xmm6 ; xmm4=tmp10
327 paddw xmm1,xmm2 ; xmm1=tmp11
328
329 paddw xmm5,xmm3
330 psllw xmm5,PRE_MULTIPLY_SCALE_BITS
331 pmulhw xmm5,[rel PW_F0707] ; xmm5=z1
332
333 movdqa xmm6,xmm4
334 movdqa xmm2,xmm3
335 psubw xmm4,xmm1 ; xmm4=data4
336 psubw xmm3,xmm5 ; xmm3=data6
337 paddw xmm6,xmm1 ; xmm6=data0
338 paddw xmm2,xmm5 ; xmm2=data2
339
340 movdqa XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)], xmm4
341 movdqa XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)], xmm3
342 movdqa XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)], xmm6
343 movdqa XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)], xmm2
344
345 ; -- Odd part
346
347 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=tmp6
348 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7
349
350 paddw xmm7,xmm0 ; xmm7=tmp10
351 paddw xmm0,xmm1 ; xmm0=tmp11
352 paddw xmm1,xmm5 ; xmm1=tmp12, xmm5=tmp7
353
354 psllw xmm7,PRE_MULTIPLY_SCALE_BITS
355 psllw xmm1,PRE_MULTIPLY_SCALE_BITS
356
357 psllw xmm0,PRE_MULTIPLY_SCALE_BITS
358 pmulhw xmm0,[rel PW_F0707] ; xmm0=z3
359
360 movdqa xmm4,xmm7 ; xmm4=tmp10
361 psubw xmm7,xmm1
362 pmulhw xmm7,[rel PW_F0382] ; xmm7=z5
363 pmulhw xmm4,[rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196)
364 pmulhw xmm1,[rel PW_F1306] ; xmm1=MULTIPLY(tmp12,FIX_1_306562)
365 paddw xmm4,xmm7 ; xmm4=z2
366 paddw xmm1,xmm7 ; xmm1=z4
367
368 movdqa xmm3,xmm5
369 psubw xmm5,xmm0 ; xmm5=z13
370 paddw xmm3,xmm0 ; xmm3=z11
371
372 movdqa xmm6,xmm5
373 movdqa xmm2,xmm3
374 psubw xmm5,xmm4 ; xmm5=data3
375 psubw xmm3,xmm1 ; xmm3=data7
376 paddw xmm6,xmm4 ; xmm6=data5
377 paddw xmm2,xmm1 ; xmm2=data1
378
379 movdqa XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)], xmm5
380 movdqa XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)], xmm3
381 movdqa XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)], xmm6
382 movdqa XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)], xmm2
383
384 uncollect_args
385 mov rsp,rbp ; rsp <- aligned rbp
386 pop rsp ; rsp <- original rbp
387 pop rbp
388 ret
389
390 ; For some reason, the OS X linker does not honor the request to align the
391 ; segment unless we do this.
392 align 16
OLDNEW
« simd/jccolext-sse2-64.asm ('K') | « simd/jfdctfst-sse2.asm ('k') | simd/jfdctint-altivec.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698