Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(144)

Side by Side Diff: jfdctint.c

Issue 1934113002: Update libjpeg_turbo to 1.4.90 from https://github.com/libjpeg-turbo/ (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/libjpeg_turbo.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * jfdctint.c 2 * jfdctint.c
3 * 3 *
4 * This file was part of the Independent JPEG Group's software.
4 * Copyright (C) 1991-1996, Thomas G. Lane. 5 * Copyright (C) 1991-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software. 6 * libjpeg-turbo Modifications:
6 * For conditions of distribution and use, see the accompanying README file. 7 * Copyright (C) 2015, D. R. Commander
8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
7 * 10 *
8 * This file contains a slow-but-accurate integer implementation of the 11 * This file contains a slow-but-accurate integer implementation of the
9 * forward DCT (Discrete Cosine Transform). 12 * forward DCT (Discrete Cosine Transform).
10 * 13 *
11 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT 14 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
12 * on each column. Direct algorithms are also available, but they are 15 * on each column. Direct algorithms are also available, but they are
13 * much more complex and seem not to be any faster when reduced to code. 16 * much more complex and seem not to be any faster when reduced to code.
14 * 17 *
15 * This implementation is based on an algorithm described in 18 * This implementation is based on an algorithm described in
16 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT 19 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
17 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, 20 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
18 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. 21 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
19 * The primary algorithm described there uses 11 multiplies and 29 adds. 22 * The primary algorithm described there uses 11 multiplies and 29 adds.
20 * We use their alternate method with 12 multiplies and 32 adds. 23 * We use their alternate method with 12 multiplies and 32 adds.
21 * The advantage of this method is that no data path contains more than one 24 * The advantage of this method is that no data path contains more than one
22 * multiplication; this allows a very simple and accurate implementation in 25 * multiplication; this allows a very simple and accurate implementation in
23 * scaled fixed-point arithmetic, with a minimal number of shifts. 26 * scaled fixed-point arithmetic, with a minimal number of shifts.
24 */ 27 */
25 28
26 #define JPEG_INTERNALS 29 #define JPEG_INTERNALS
27 #include "jinclude.h" 30 #include "jinclude.h"
28 #include "jpeglib.h" 31 #include "jpeglib.h"
29 #include "jdct.h"» » /* Private declarations for DCT subsystem */ 32 #include "jdct.h" /* Private declarations for DCT subsystem */
30 33
31 #ifdef DCT_ISLOW_SUPPORTED 34 #ifdef DCT_ISLOW_SUPPORTED
32 35
33 36
34 /* 37 /*
35 * This module is specialized to the case DCTSIZE = 8. 38 * This module is specialized to the case DCTSIZE = 8.
36 */ 39 */
37 40
38 #if DCTSIZE != 8 41 #if DCTSIZE != 8
39 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 42 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
(...skipping 20 matching lines...) Expand all
60 * multiplication we have to divide the product by CONST_SCALE, with proper 63 * multiplication we have to divide the product by CONST_SCALE, with proper
61 * rounding, to produce the correct output. This division can be done 64 * rounding, to produce the correct output. This division can be done
62 * cheaply as a right shift of CONST_BITS bits. We postpone shifting 65 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
63 * as long as possible so that partial sums can be added together with 66 * as long as possible so that partial sums can be added together with
64 * full fractional precision. 67 * full fractional precision.
65 * 68 *
66 * The outputs of the first pass are scaled up by PASS1_BITS bits so that 69 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
67 * they are represented to better-than-integral precision. These outputs 70 * they are represented to better-than-integral precision. These outputs
68 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word 71 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
69 * with the recommended scaling. (For 12-bit sample data, the intermediate 72 * with the recommended scaling. (For 12-bit sample data, the intermediate
70 * array is INT32 anyway.) 73 * array is JLONG anyway.)
71 * 74 *
72 * To avoid overflow of the 32-bit intermediate results in pass 2, we must 75 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
73 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis 76 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
74 * shows that the values given below are the most effective. 77 * shows that the values given below are the most effective.
75 */ 78 */
76 79
77 #if BITS_IN_JSAMPLE == 8 80 #if BITS_IN_JSAMPLE == 8
78 #define CONST_BITS 13 81 #define CONST_BITS 13
79 #define PASS1_BITS 2 82 #define PASS1_BITS 2
80 #else 83 #else
81 #define CONST_BITS 13 84 #define CONST_BITS 13
82 #define PASS1_BITS 1» » /* lose a little precision to avoid overflow */ 85 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
83 #endif 86 #endif
84 87
85 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus 88 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
86 * causing a lot of useless floating-point operations at run time. 89 * causing a lot of useless floating-point operations at run time.
87 * To get around this we use the following pre-calculated constants. 90 * To get around this we use the following pre-calculated constants.
88 * If you change CONST_BITS you may want to add appropriate values. 91 * If you change CONST_BITS you may want to add appropriate values.
89 * (With a reasonable C compiler, you can just rely on the FIX() macro...) 92 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
90 */ 93 */
91 94
92 #if CONST_BITS == 13 95 #if CONST_BITS == 13
93 #define FIX_0_298631336 ((INT32) 2446)» /* FIX(0.298631336) */ 96 #define FIX_0_298631336 ((JLONG) 2446) /* FIX(0.298631336) */
94 #define FIX_0_390180644 ((INT32) 3196)» /* FIX(0.390180644) */ 97 #define FIX_0_390180644 ((JLONG) 3196) /* FIX(0.390180644) */
95 #define FIX_0_541196100 ((INT32) 4433)» /* FIX(0.541196100) */ 98 #define FIX_0_541196100 ((JLONG) 4433) /* FIX(0.541196100) */
96 #define FIX_0_765366865 ((INT32) 6270)» /* FIX(0.765366865) */ 99 #define FIX_0_765366865 ((JLONG) 6270) /* FIX(0.765366865) */
97 #define FIX_0_899976223 ((INT32) 7373)» /* FIX(0.899976223) */ 100 #define FIX_0_899976223 ((JLONG) 7373) /* FIX(0.899976223) */
98 #define FIX_1_175875602 ((INT32) 9633)» /* FIX(1.175875602) */ 101 #define FIX_1_175875602 ((JLONG) 9633) /* FIX(1.175875602) */
99 #define FIX_1_501321110 ((INT32) 12299)» /* FIX(1.501321110) */ 102 #define FIX_1_501321110 ((JLONG) 12299) /* FIX(1.501321110) */
100 #define FIX_1_847759065 ((INT32) 15137)» /* FIX(1.847759065) */ 103 #define FIX_1_847759065 ((JLONG) 15137) /* FIX(1.847759065) */
101 #define FIX_1_961570560 ((INT32) 16069)» /* FIX(1.961570560) */ 104 #define FIX_1_961570560 ((JLONG) 16069) /* FIX(1.961570560) */
102 #define FIX_2_053119869 ((INT32) 16819)» /* FIX(2.053119869) */ 105 #define FIX_2_053119869 ((JLONG) 16819) /* FIX(2.053119869) */
103 #define FIX_2_562915447 ((INT32) 20995)» /* FIX(2.562915447) */ 106 #define FIX_2_562915447 ((JLONG) 20995) /* FIX(2.562915447) */
104 #define FIX_3_072711026 ((INT32) 25172)» /* FIX(3.072711026) */ 107 #define FIX_3_072711026 ((JLONG) 25172) /* FIX(3.072711026) */
105 #else 108 #else
106 #define FIX_0_298631336 FIX(0.298631336) 109 #define FIX_0_298631336 FIX(0.298631336)
107 #define FIX_0_390180644 FIX(0.390180644) 110 #define FIX_0_390180644 FIX(0.390180644)
108 #define FIX_0_541196100 FIX(0.541196100) 111 #define FIX_0_541196100 FIX(0.541196100)
109 #define FIX_0_765366865 FIX(0.765366865) 112 #define FIX_0_765366865 FIX(0.765366865)
110 #define FIX_0_899976223 FIX(0.899976223) 113 #define FIX_0_899976223 FIX(0.899976223)
111 #define FIX_1_175875602 FIX(1.175875602) 114 #define FIX_1_175875602 FIX(1.175875602)
112 #define FIX_1_501321110 FIX(1.501321110) 115 #define FIX_1_501321110 FIX(1.501321110)
113 #define FIX_1_847759065 FIX(1.847759065) 116 #define FIX_1_847759065 FIX(1.847759065)
114 #define FIX_1_961570560 FIX(1.961570560) 117 #define FIX_1_961570560 FIX(1.961570560)
115 #define FIX_2_053119869 FIX(2.053119869) 118 #define FIX_2_053119869 FIX(2.053119869)
116 #define FIX_2_562915447 FIX(2.562915447) 119 #define FIX_2_562915447 FIX(2.562915447)
117 #define FIX_3_072711026 FIX(3.072711026) 120 #define FIX_3_072711026 FIX(3.072711026)
118 #endif 121 #endif
119 122
120 123
121 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. 124 /* Multiply an JLONG variable by an JLONG constant to yield an JLONG result.
122 * For 8-bit samples with the recommended scaling, all the variable 125 * For 8-bit samples with the recommended scaling, all the variable
123 * and constant values involved are no more than 16 bits wide, so a 126 * and constant values involved are no more than 16 bits wide, so a
124 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. 127 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
125 * For 12-bit samples, a full 32-bit multiplication will be needed. 128 * For 12-bit samples, a full 32-bit multiplication will be needed.
126 */ 129 */
127 130
128 #if BITS_IN_JSAMPLE == 8 131 #if BITS_IN_JSAMPLE == 8
129 #define MULTIPLY(var,const) MULTIPLY16C16(var,const) 132 #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
130 #else 133 #else
131 #define MULTIPLY(var,const) ((var) * (const)) 134 #define MULTIPLY(var,const) ((var) * (const))
132 #endif 135 #endif
133 136
134 137
135 /* 138 /*
136 * Perform the forward DCT on one block of samples. 139 * Perform the forward DCT on one block of samples.
137 */ 140 */
138 141
139 GLOBAL(void) 142 GLOBAL(void)
140 jpeg_fdct_islow (DCTELEM * data) 143 jpeg_fdct_islow (DCTELEM *data)
141 { 144 {
142 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 145 JLONG tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
143 INT32 tmp10, tmp11, tmp12, tmp13; 146 JLONG tmp10, tmp11, tmp12, tmp13;
144 INT32 z1, z2, z3, z4, z5; 147 JLONG z1, z2, z3, z4, z5;
145 DCTELEM *dataptr; 148 DCTELEM *dataptr;
146 int ctr; 149 int ctr;
147 SHIFT_TEMPS 150 SHIFT_TEMPS
148 151
149 /* Pass 1: process rows. */ 152 /* Pass 1: process rows. */
150 /* Note results are scaled up by sqrt(8) compared to a true DCT; */ 153 /* Note results are scaled up by sqrt(8) compared to a true DCT; */
151 /* furthermore, we scale the results by 2**PASS1_BITS. */ 154 /* furthermore, we scale the results by 2**PASS1_BITS. */
152 155
153 dataptr = data; 156 dataptr = data;
154 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 157 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
155 tmp0 = dataptr[0] + dataptr[7]; 158 tmp0 = dataptr[0] + dataptr[7];
156 tmp7 = dataptr[0] - dataptr[7]; 159 tmp7 = dataptr[0] - dataptr[7];
157 tmp1 = dataptr[1] + dataptr[6]; 160 tmp1 = dataptr[1] + dataptr[6];
158 tmp6 = dataptr[1] - dataptr[6]; 161 tmp6 = dataptr[1] - dataptr[6];
159 tmp2 = dataptr[2] + dataptr[5]; 162 tmp2 = dataptr[2] + dataptr[5];
160 tmp5 = dataptr[2] - dataptr[5]; 163 tmp5 = dataptr[2] - dataptr[5];
161 tmp3 = dataptr[3] + dataptr[4]; 164 tmp3 = dataptr[3] + dataptr[4];
162 tmp4 = dataptr[3] - dataptr[4]; 165 tmp4 = dataptr[3] - dataptr[4];
163 166
164 /* Even part per LL&M figure 1 --- note that published figure is faulty; 167 /* Even part per LL&M figure 1 --- note that published figure is faulty;
165 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". 168 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
166 */ 169 */
167 170
168 tmp10 = tmp0 + tmp3; 171 tmp10 = tmp0 + tmp3;
169 tmp13 = tmp0 - tmp3; 172 tmp13 = tmp0 - tmp3;
170 tmp11 = tmp1 + tmp2; 173 tmp11 = tmp1 + tmp2;
171 tmp12 = tmp1 - tmp2; 174 tmp12 = tmp1 - tmp2;
172 175
173 dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); 176 dataptr[0] = (DCTELEM) LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS);
174 dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); 177 dataptr[4] = (DCTELEM) LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS);
175 178
176 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); 179 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
177 dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), 180 dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
178 » » » » CONST_BITS-PASS1_BITS); 181 CONST_BITS-PASS1_BITS);
179 dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), 182 dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
180 » » » » CONST_BITS-PASS1_BITS); 183 CONST_BITS-PASS1_BITS);
181 184
182 /* Odd part per figure 8 --- note paper omits factor of sqrt(2). 185 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
183 * cK represents cos(K*pi/16). 186 * cK represents cos(K*pi/16).
184 * i0..i3 in the paper are tmp4..tmp7 here. 187 * i0..i3 in the paper are tmp4..tmp7 here.
185 */ 188 */
186 189
187 z1 = tmp4 + tmp7; 190 z1 = tmp4 + tmp7;
188 z2 = tmp5 + tmp6; 191 z2 = tmp5 + tmp6;
189 z3 = tmp4 + tmp6; 192 z3 = tmp4 + tmp6;
190 z4 = tmp5 + tmp7; 193 z4 = tmp5 + tmp7;
191 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ 194 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
192 195
193 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ 196 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
194 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ 197 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
195 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ 198 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
196 tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ 199 tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
197 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ 200 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
198 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ 201 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
199 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ 202 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
200 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ 203 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
201 204
202 z3 += z5; 205 z3 += z5;
203 z4 += z5; 206 z4 += z5;
204 207
205 dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); 208 dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
206 dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); 209 dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
207 dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); 210 dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
208 dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); 211 dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
209 212
210 dataptr += DCTSIZE;»» /* advance pointer to next row */ 213 dataptr += DCTSIZE; /* advance pointer to next row */
211 } 214 }
212 215
213 /* Pass 2: process columns. 216 /* Pass 2: process columns.
214 * We remove the PASS1_BITS scaling, but leave the results scaled up 217 * We remove the PASS1_BITS scaling, but leave the results scaled up
215 * by an overall factor of 8. 218 * by an overall factor of 8.
216 */ 219 */
217 220
218 dataptr = data; 221 dataptr = data;
219 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 222 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
220 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; 223 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
221 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; 224 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
222 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; 225 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
223 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; 226 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
224 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; 227 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
225 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; 228 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
226 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; 229 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
227 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; 230 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
228 231
229 /* Even part per LL&M figure 1 --- note that published figure is faulty; 232 /* Even part per LL&M figure 1 --- note that published figure is faulty;
230 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". 233 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
231 */ 234 */
232 235
233 tmp10 = tmp0 + tmp3; 236 tmp10 = tmp0 + tmp3;
234 tmp13 = tmp0 - tmp3; 237 tmp13 = tmp0 - tmp3;
235 tmp11 = tmp1 + tmp2; 238 tmp11 = tmp1 + tmp2;
236 tmp12 = tmp1 - tmp2; 239 tmp12 = tmp1 - tmp2;
237 240
238 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); 241 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
239 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); 242 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
240 243
241 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); 244 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
242 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865) , 245 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865) ,
243 » » » » » CONST_BITS+PASS1_BITS); 246 CONST_BITS+PASS1_BITS);
244 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_84775906 5), 247 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_84775906 5),
245 » » » » » CONST_BITS+PASS1_BITS); 248 CONST_BITS+PASS1_BITS);
246 249
247 /* Odd part per figure 8 --- note paper omits factor of sqrt(2). 250 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
248 * cK represents cos(K*pi/16). 251 * cK represents cos(K*pi/16).
249 * i0..i3 in the paper are tmp4..tmp7 here. 252 * i0..i3 in the paper are tmp4..tmp7 here.
250 */ 253 */
251 254
252 z1 = tmp4 + tmp7; 255 z1 = tmp4 + tmp7;
253 z2 = tmp5 + tmp6; 256 z2 = tmp5 + tmp6;
254 z3 = tmp4 + tmp6; 257 z3 = tmp4 + tmp6;
255 z4 = tmp5 + tmp7; 258 z4 = tmp5 + tmp7;
256 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ 259 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
257 260
258 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ 261 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
259 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ 262 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
260 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ 263 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
261 tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ 264 tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
262 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ 265 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
263 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ 266 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
264 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ 267 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
265 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ 268 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
266 269
267 z3 += z5; 270 z3 += z5;
268 z4 += z5; 271 z4 += z5;
269 272
270 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, 273 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
271 » » » » » CONST_BITS+PASS1_BITS); 274 CONST_BITS+PASS1_BITS);
272 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, 275 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
273 » » » » » CONST_BITS+PASS1_BITS); 276 CONST_BITS+PASS1_BITS);
274 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, 277 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
275 » » » » » CONST_BITS+PASS1_BITS); 278 CONST_BITS+PASS1_BITS);
276 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, 279 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
277 » » » » » CONST_BITS+PASS1_BITS); 280 CONST_BITS+PASS1_BITS);
278 281
279 dataptr++;» » » /* advance pointer to next column */ 282 dataptr++; /* advance pointer to next column */
280 } 283 }
281 } 284 }
282 285
283 #endif /* DCT_ISLOW_SUPPORTED */ 286 #endif /* DCT_ISLOW_SUPPORTED */
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698