Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(568)

Side by Side Diff: jdhuff.c

Issue 1934113002: Update libjpeg_turbo to 1.4.90 from https://github.com/libjpeg-turbo/ (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/libjpeg_turbo.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * jdhuff.c 2 * jdhuff.c
3 * 3 *
4 * This file was part of the Independent JPEG Group's software: 4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane. 5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications: 6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009-2011, 2015, D. R. Commander. 7 * Copyright (C) 2009-2011, 2016, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README file. 8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
9 * 10 *
10 * This file contains Huffman entropy decoding routines. 11 * This file contains Huffman entropy decoding routines.
11 * 12 *
12 * Much of the complexity here has to do with supporting input suspension. 13 * Much of the complexity here has to do with supporting input suspension.
13 * If the data source module demands suspension, we want to be able to back 14 * If the data source module demands suspension, we want to be able to back
14 * up to the start of the current MCU. To do this, we copy state variables 15 * up to the start of the current MCU. To do this, we copy state variables
15 * into local working storage, and update them back to the permanent 16 * into local working storage, and update them back to the permanent
16 * storage only upon successful completion of an MCU. 17 * storage only upon successful completion of an MCU.
17 */ 18 */
18 19
19 #define JPEG_INTERNALS 20 #define JPEG_INTERNALS
20 #include "jinclude.h" 21 #include "jinclude.h"
21 #include "jpeglib.h" 22 #include "jpeglib.h"
22 #include "jdhuff.h"» » /* Declarations shared with jdphuff.c */ 23 #include "jdhuff.h" /* Declarations shared with jdphuff.c */
23 #include "jpegcomp.h" 24 #include "jpegcomp.h"
25 #include "jstdhuff.c"
24 26
25 27
26 /* 28 /*
27 * Expanded entropy decoder object for Huffman decoding. 29 * Expanded entropy decoder object for Huffman decoding.
28 * 30 *
29 * The savable_state subrecord contains fields that change within an MCU, 31 * The savable_state subrecord contains fields that change within an MCU,
30 * but must not be updated permanently until we complete the MCU. 32 * but must not be updated permanently until we complete the MCU.
31 */ 33 */
32 34
33 typedef struct { 35 typedef struct {
34 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ 36 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
35 } savable_state; 37 } savable_state;
36 38
37 /* This macro is to work around compilers with missing or broken 39 /* This macro is to work around compilers with missing or broken
38 * structure assignment. You'll need to fix this code if you have 40 * structure assignment. You'll need to fix this code if you have
39 * such a compiler and you change MAX_COMPS_IN_SCAN. 41 * such a compiler and you change MAX_COMPS_IN_SCAN.
40 */ 42 */
41 43
42 #ifndef NO_STRUCT_ASSIGN 44 #ifndef NO_STRUCT_ASSIGN
43 #define ASSIGN_STATE(dest,src) ((dest) = (src)) 45 #define ASSIGN_STATE(dest,src) ((dest) = (src))
44 #else 46 #else
45 #if MAX_COMPS_IN_SCAN == 4 47 #if MAX_COMPS_IN_SCAN == 4
46 #define ASSIGN_STATE(dest,src) \ 48 #define ASSIGN_STATE(dest,src) \
47 » ((dest).last_dc_val[0] = (src).last_dc_val[0], \ 49 ((dest).last_dc_val[0] = (src).last_dc_val[0], \
48 » (dest).last_dc_val[1] = (src).last_dc_val[1], \ 50 (dest).last_dc_val[1] = (src).last_dc_val[1], \
49 » (dest).last_dc_val[2] = (src).last_dc_val[2], \ 51 (dest).last_dc_val[2] = (src).last_dc_val[2], \
50 » (dest).last_dc_val[3] = (src).last_dc_val[3]) 52 (dest).last_dc_val[3] = (src).last_dc_val[3])
51 #endif 53 #endif
52 #endif 54 #endif
53 55
54 56
55 typedef struct { 57 typedef struct {
56 struct jpeg_entropy_decoder pub; /* public fields */ 58 struct jpeg_entropy_decoder pub; /* public fields */
57 59
58 /* These fields are loaded into local variables at start of each MCU. 60 /* These fields are loaded into local variables at start of each MCU.
59 * In case of suspension, we exit WITHOUT updating them. 61 * In case of suspension, we exit WITHOUT updating them.
60 */ 62 */
61 bitread_perm_state bitstate;» /* Bit buffer at start of MCU */ 63 bitread_perm_state bitstate; /* Bit buffer at start of MCU */
62 savable_state saved;» » /* Other state at start of MCU */ 64 savable_state saved; /* Other state at start of MCU */
63 65
64 /* These fields are NOT loaded into local working state. */ 66 /* These fields are NOT loaded into local working state. */
65 unsigned int restarts_to_go;» /* MCUs left in this restart interval */ 67 unsigned int restarts_to_go; /* MCUs left in this restart interval */
66 68
67 /* Pointers to derived tables (these workspaces have image lifespan) */ 69 /* Pointers to derived tables (these workspaces have image lifespan) */
68 d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; 70 d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
69 d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; 71 d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
70 72
71 /* Precalculated info set up by start_pass for use in decode_mcu: */ 73 /* Precalculated info set up by start_pass for use in decode_mcu: */
72 74
73 /* Pointers to derived tables to be used for each block within an MCU */ 75 /* Pointers to derived tables to be used for each block within an MCU */
74 d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; 76 d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
75 d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; 77 d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
76 /* Whether we care about the DC and AC coefficient values for each block */ 78 /* Whether we care about the DC and AC coefficient values for each block */
77 boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; 79 boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
78 boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; 80 boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
79 } huff_entropy_decoder; 81 } huff_entropy_decoder;
80 82
81 typedef huff_entropy_decoder * huff_entropy_ptr; 83 typedef huff_entropy_decoder *huff_entropy_ptr;
82 84
83 85
84 /* 86 /*
85 * Initialize for a Huffman-compressed scan. 87 * Initialize for a Huffman-compressed scan.
86 */ 88 */
87 89
88 METHODDEF(void) 90 METHODDEF(void)
89 start_pass_huff_decoder (j_decompress_ptr cinfo) 91 start_pass_huff_decoder (j_decompress_ptr cinfo)
90 { 92 {
91 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 93 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
92 int ci, blkn, dctbl, actbl; 94 int ci, blkn, dctbl, actbl;
93 jpeg_component_info * compptr; 95 d_derived_tbl **pdtbl;
96 jpeg_component_info *compptr;
94 97
95 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. 98 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
96 * This ought to be an error condition, but we make it a warning because 99 * This ought to be an error condition, but we make it a warning because
97 * there are some baseline files out there with all zeroes in these bytes. 100 * there are some baseline files out there with all zeroes in these bytes.
98 */ 101 */
99 if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || 102 if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
100 cinfo->Ah != 0 || cinfo->Al != 0) 103 cinfo->Ah != 0 || cinfo->Al != 0)
101 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); 104 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
102 105
103 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 106 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
104 compptr = cinfo->cur_comp_info[ci]; 107 compptr = cinfo->cur_comp_info[ci];
105 dctbl = compptr->dc_tbl_no; 108 dctbl = compptr->dc_tbl_no;
106 actbl = compptr->ac_tbl_no; 109 actbl = compptr->ac_tbl_no;
107 /* Compute derived values for Huffman tables */ 110 /* Compute derived values for Huffman tables */
108 /* We may do this more than once for a table, but it's not expensive */ 111 /* We may do this more than once for a table, but it's not expensive */
109 jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, 112 pdtbl = entropy->dc_derived_tbls + dctbl;
110 » » » & entropy->dc_derived_tbls[dctbl]); 113 jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
111 jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, 114 pdtbl = entropy->ac_derived_tbls + actbl;
112 » » » & entropy->ac_derived_tbls[actbl]); 115 jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
113 /* Initialize DC predictions to 0 */ 116 /* Initialize DC predictions to 0 */
114 entropy->saved.last_dc_val[ci] = 0; 117 entropy->saved.last_dc_val[ci] = 0;
115 } 118 }
116 119
117 /* Precalculate decoding info for each block in an MCU of this scan */ 120 /* Precalculate decoding info for each block in an MCU of this scan */
118 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 121 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
119 ci = cinfo->MCU_membership[blkn]; 122 ci = cinfo->MCU_membership[blkn];
120 compptr = cinfo->cur_comp_info[ci]; 123 compptr = cinfo->cur_comp_info[ci];
121 /* Precalculate which table to use for each block */ 124 /* Precalculate which table to use for each block */
122 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; 125 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
(...skipping 20 matching lines...) Expand all
143 146
144 /* 147 /*
145 * Compute the derived values for a Huffman table. 148 * Compute the derived values for a Huffman table.
146 * This routine also performs some validation checks on the table. 149 * This routine also performs some validation checks on the table.
147 * 150 *
148 * Note this is also used by jdphuff.c. 151 * Note this is also used by jdphuff.c.
149 */ 152 */
150 153
151 GLOBAL(void) 154 GLOBAL(void)
152 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, 155 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
153 » » » d_derived_tbl ** pdtbl) 156 d_derived_tbl **pdtbl)
154 { 157 {
155 JHUFF_TBL *htbl; 158 JHUFF_TBL *htbl;
156 d_derived_tbl *dtbl; 159 d_derived_tbl *dtbl;
157 int p, i, l, si, numsymbols; 160 int p, i, l, si, numsymbols;
158 int lookbits, ctr; 161 int lookbits, ctr;
159 char huffsize[257]; 162 char huffsize[257];
160 unsigned int huffcode[257]; 163 unsigned int huffcode[257];
161 unsigned int code; 164 unsigned int code;
162 165
163 /* Note that huffsize[] and huffcode[] are filled in code-length order, 166 /* Note that huffsize[] and huffcode[] are filled in code-length order,
164 * paralleling the order of the symbols themselves in htbl->huffval[]. 167 * paralleling the order of the symbols themselves in htbl->huffval[].
165 */ 168 */
166 169
167 /* Find the input Huffman table */ 170 /* Find the input Huffman table */
168 if (tblno < 0 || tblno >= NUM_HUFF_TBLS) 171 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
169 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); 172 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
170 htbl = 173 htbl =
171 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; 174 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
172 if (htbl == NULL) 175 if (htbl == NULL)
173 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); 176 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
174 177
175 /* Allocate a workspace if we haven't already done so. */ 178 /* Allocate a workspace if we haven't already done so. */
176 if (*pdtbl == NULL) 179 if (*pdtbl == NULL)
177 *pdtbl = (d_derived_tbl *) 180 *pdtbl = (d_derived_tbl *)
178 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 181 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
179 » » » » SIZEOF(d_derived_tbl)); 182 sizeof(d_derived_tbl));
180 dtbl = *pdtbl; 183 dtbl = *pdtbl;
181 dtbl->pub = htbl;» » /* fill in back link */ 184 dtbl->pub = htbl; /* fill in back link */
182 185
183 /* Figure C.1: make table of Huffman code length for each symbol */ 186 /* Figure C.1: make table of Huffman code length for each symbol */
184 187
185 p = 0; 188 p = 0;
186 for (l = 1; l <= 16; l++) { 189 for (l = 1; l <= 16; l++) {
187 i = (int) htbl->bits[l]; 190 i = (int) htbl->bits[l];
188 if (i < 0 || p + i > 256)» /* protect against table overrun */ 191 if (i < 0 || p + i > 256) /* protect against table overrun */
189 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 192 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
190 while (i--) 193 while (i--)
191 huffsize[p++] = (char) l; 194 huffsize[p++] = (char) l;
192 } 195 }
193 huffsize[p] = 0; 196 huffsize[p] = 0;
194 numsymbols = p; 197 numsymbols = p;
195 198
196 /* Figure C.2: generate the codes themselves */ 199 /* Figure C.2: generate the codes themselves */
197 /* We also validate that the counts represent a legal Huffman code tree. */ 200 /* We also validate that the counts represent a legal Huffman code tree. */
198 201
199 code = 0; 202 code = 0;
200 si = huffsize[0]; 203 si = huffsize[0];
201 p = 0; 204 p = 0;
202 while (huffsize[p]) { 205 while (huffsize[p]) {
203 while (((int) huffsize[p]) == si) { 206 while (((int) huffsize[p]) == si) {
204 huffcode[p++] = code; 207 huffcode[p++] = code;
205 code++; 208 code++;
206 } 209 }
207 /* code is now 1 more than the last code used for codelength si; but 210 /* code is now 1 more than the last code used for codelength si; but
208 * it must still fit in si bits, since no code is allowed to be all ones. 211 * it must still fit in si bits, since no code is allowed to be all ones.
209 */ 212 */
210 if (((INT32) code) >= (((INT32) 1) << si)) 213 if (((JLONG) code) >= (((JLONG) 1) << si))
211 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 214 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
212 code <<= 1; 215 code <<= 1;
213 si++; 216 si++;
214 } 217 }
215 218
216 /* Figure F.15: generate decoding tables for bit-sequential decoding */ 219 /* Figure F.15: generate decoding tables for bit-sequential decoding */
217 220
218 p = 0; 221 p = 0;
219 for (l = 1; l <= 16; l++) { 222 for (l = 1; l <= 16; l++) {
220 if (htbl->bits[l]) { 223 if (htbl->bits[l]) {
221 /* valoffset[l] = huffval[] index of 1st symbol of code length l, 224 /* valoffset[l] = huffval[] index of 1st symbol of code length l,
222 * minus the minimum code of length l 225 * minus the minimum code of length l
223 */ 226 */
224 dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; 227 dtbl->valoffset[l] = (JLONG) p - (JLONG) huffcode[p];
225 p += htbl->bits[l]; 228 p += htbl->bits[l];
226 dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ 229 dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
227 } else { 230 } else {
228 dtbl->maxcode[l] = -1;» /* -1 if no codes of this length */ 231 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
229 } 232 }
230 } 233 }
231 dtbl->valoffset[17] = 0; 234 dtbl->valoffset[17] = 0;
232 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ 235 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
233 236
234 /* Compute lookahead tables to speed up decoding. 237 /* Compute lookahead tables to speed up decoding.
235 * First we set all the table entries to 0, indicating "too long"; 238 * First we set all the table entries to 0, indicating "too long";
236 * then we iterate through the Huffman codes that are short enough and 239 * then we iterate through the Huffman codes that are short enough and
237 * fill in all the entries that correspond to bit sequences starting 240 * fill in all the entries that correspond to bit sequences starting
238 * with that code. 241 * with that code.
239 */ 242 */
240 243
241 for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++) 244 for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
242 dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD; 245 dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
243 246
244 p = 0; 247 p = 0;
245 for (l = 1; l <= HUFF_LOOKAHEAD; l++) { 248 for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
246 for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { 249 for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
247 /* l = current code's length, p = its index in huffcode[] & huffval[]. */ 250 /* l = current code's length, p = its index in huffcode[] & huffval[]. */
248 /* Generate left-justified code followed by all possible bit sequences */ 251 /* Generate left-justified code followed by all possible bit sequences */
249 lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); 252 lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
250 for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { 253 for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
251 » dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p]; 254 dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
252 » lookbits++; 255 lookbits++;
253 } 256 }
254 } 257 }
255 } 258 }
256 259
257 /* Validate symbols as being reasonable. 260 /* Validate symbols as being reasonable.
258 * For AC tables, we make no check, but accept all byte values 0..255. 261 * For AC tables, we make no check, but accept all byte values 0..255.
259 * For DC tables, we require the symbols to be in range 0..15. 262 * For DC tables, we require the symbols to be in range 0..15.
260 * (Tighter bounds could be applied depending on the data depth and mode, 263 * (Tighter bounds could be applied depending on the data depth and mode,
261 * but this is sufficient to ensure safe decoding.) 264 * but this is sufficient to ensure safe decoding.)
262 */ 265 */
263 if (isDC) { 266 if (isDC) {
264 for (i = 0; i < numsymbols; i++) { 267 for (i = 0; i < numsymbols; i++) {
265 int sym = htbl->huffval[i]; 268 int sym = htbl->huffval[i];
266 if (sym < 0 || sym > 15) 269 if (sym < 0 || sym > 15)
267 » ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 270 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
268 } 271 }
269 } 272 }
270 } 273 }
271 274
272 275
273 /* 276 /*
274 * Out-of-line code for bit fetching (shared with jdphuff.c). 277 * Out-of-line code for bit fetching (shared with jdphuff.c).
275 * See jdhuff.h for info about usage. 278 * See jdhuff.h for info about usage.
276 * Note: current values of get_buffer and bits_left are passed as parameters, 279 * Note: current values of get_buffer and bits_left are passed as parameters,
277 * but are returned in the corresponding fields of the state struct. 280 * but are returned in the corresponding fields of the state struct.
278 * 281 *
279 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width 282 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
280 * of get_buffer to be used. (On machines with wider words, an even larger 283 * of get_buffer to be used. (On machines with wider words, an even larger
281 * buffer could be used.) However, on some machines 32-bit shifts are 284 * buffer could be used.) However, on some machines 32-bit shifts are
282 * quite slow and take time proportional to the number of places shifted. 285 * quite slow and take time proportional to the number of places shifted.
283 * (This is true with most PC compilers, for instance.) In this case it may 286 * (This is true with most PC compilers, for instance.) In this case it may
284 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the 287 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
285 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. 288 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
286 */ 289 */
287 290
288 #ifdef SLOW_SHIFT_32 291 #ifdef SLOW_SHIFT_32
289 #define MIN_GET_BITS 15» /* minimum allowable value */ 292 #define MIN_GET_BITS 15 /* minimum allowable value */
290 #else 293 #else
291 #define MIN_GET_BITS (BIT_BUF_SIZE-7) 294 #define MIN_GET_BITS (BIT_BUF_SIZE-7)
292 #endif 295 #endif
293 296
294 297
295 GLOBAL(boolean) 298 GLOBAL(boolean)
296 jpeg_fill_bit_buffer (bitread_working_state * state, 299 jpeg_fill_bit_buffer (bitread_working_state *state,
297 » » register bit_buf_type get_buffer, register int bits_left, 300 register bit_buf_type get_buffer, register int bits_left,
298 » » int nbits) 301 int nbits)
299 /* Load up the bit buffer to a depth of at least nbits */ 302 /* Load up the bit buffer to a depth of at least nbits */
300 { 303 {
301 /* Copy heavily used state fields into locals (hopefully registers) */ 304 /* Copy heavily used state fields into locals (hopefully registers) */
302 register const JOCTET * next_input_byte = state->next_input_byte; 305 register const JOCTET *next_input_byte = state->next_input_byte;
303 register size_t bytes_in_buffer = state->bytes_in_buffer; 306 register size_t bytes_in_buffer = state->bytes_in_buffer;
304 j_decompress_ptr cinfo = state->cinfo; 307 j_decompress_ptr cinfo = state->cinfo;
305 308
306 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ 309 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
307 /* (It is assumed that no request will be for more than that many bits.) */ 310 /* (It is assumed that no request will be for more than that many bits.) */
308 /* We fail to do so only if we hit a marker or are forced to suspend. */ 311 /* We fail to do so only if we hit a marker or are forced to suspend. */
309 312
310 if (cinfo->unread_marker == 0) {» /* cannot advance past a marker */ 313 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
311 while (bits_left < MIN_GET_BITS) { 314 while (bits_left < MIN_GET_BITS) {
312 register int c; 315 register int c;
313 316
314 /* Attempt to read a byte */ 317 /* Attempt to read a byte */
315 if (bytes_in_buffer == 0) { 318 if (bytes_in_buffer == 0) {
316 » if (! (*cinfo->src->fill_input_buffer) (cinfo)) 319 if (! (*cinfo->src->fill_input_buffer) (cinfo))
317 » return FALSE; 320 return FALSE;
318 » next_input_byte = cinfo->src->next_input_byte; 321 next_input_byte = cinfo->src->next_input_byte;
319 » bytes_in_buffer = cinfo->src->bytes_in_buffer; 322 bytes_in_buffer = cinfo->src->bytes_in_buffer;
320 } 323 }
321 bytes_in_buffer--; 324 bytes_in_buffer--;
322 c = GETJOCTET(*next_input_byte++); 325 c = GETJOCTET(*next_input_byte++);
323 326
324 /* If it's 0xFF, check and discard stuffed zero byte */ 327 /* If it's 0xFF, check and discard stuffed zero byte */
325 if (c == 0xFF) { 328 if (c == 0xFF) {
326 » /* Loop here to discard any padding FF's on terminating marker, 329 /* Loop here to discard any padding FF's on terminating marker,
327 » * so that we can save a valid unread_marker value. NOTE: we will 330 * so that we can save a valid unread_marker value. NOTE: we will
328 » * accept multiple FF's followed by a 0 as meaning a single FF data 331 * accept multiple FF's followed by a 0 as meaning a single FF data
329 » * byte. This data pattern is not valid according to the standard. 332 * byte. This data pattern is not valid according to the standard.
330 » */ 333 */
331 » do { 334 do {
332 » if (bytes_in_buffer == 0) { 335 if (bytes_in_buffer == 0) {
333 » if (! (*cinfo->src->fill_input_buffer) (cinfo)) 336 if (! (*cinfo->src->fill_input_buffer) (cinfo))
334 » return FALSE; 337 return FALSE;
335 » next_input_byte = cinfo->src->next_input_byte; 338 next_input_byte = cinfo->src->next_input_byte;
336 » bytes_in_buffer = cinfo->src->bytes_in_buffer; 339 bytes_in_buffer = cinfo->src->bytes_in_buffer;
337 » } 340 }
338 » bytes_in_buffer--; 341 bytes_in_buffer--;
339 » c = GETJOCTET(*next_input_byte++); 342 c = GETJOCTET(*next_input_byte++);
340 » } while (c == 0xFF); 343 } while (c == 0xFF);
341 344
342 » if (c == 0) { 345 if (c == 0) {
343 » /* Found FF/00, which represents an FF data byte */ 346 /* Found FF/00, which represents an FF data byte */
344 » c = 0xFF; 347 c = 0xFF;
345 » } else { 348 } else {
346 » /* Oops, it's actually a marker indicating end of compressed data. 349 /* Oops, it's actually a marker indicating end of compressed data.
347 » * Save the marker code for later use. 350 * Save the marker code for later use.
348 » * Fine point: it might appear that we should save the marker into 351 * Fine point: it might appear that we should save the marker into
349 » * bitread working state, not straight into permanent state. But 352 * bitread working state, not straight into permanent state. But
350 » * once we have hit a marker, we cannot need to suspend within the 353 * once we have hit a marker, we cannot need to suspend within the
351 » * current MCU, because we will read no more bytes from the data 354 * current MCU, because we will read no more bytes from the data
352 » * source. So it is OK to update permanent state right away. 355 * source. So it is OK to update permanent state right away.
353 » */ 356 */
354 » cinfo->unread_marker = c; 357 cinfo->unread_marker = c;
355 » /* See if we need to insert some fake zero bits. */ 358 /* See if we need to insert some fake zero bits. */
356 » goto no_more_bytes; 359 goto no_more_bytes;
357 » } 360 }
358 } 361 }
359 362
360 /* OK, load c into get_buffer */ 363 /* OK, load c into get_buffer */
361 get_buffer = (get_buffer << 8) | c; 364 get_buffer = (get_buffer << 8) | c;
362 bits_left += 8; 365 bits_left += 8;
363 } /* end while */ 366 } /* end while */
364 } else { 367 } else {
365 no_more_bytes: 368 no_more_bytes:
366 /* We get here if we've read the marker that terminates the compressed 369 /* We get here if we've read the marker that terminates the compressed
367 * data segment. There should be enough bits in the buffer register 370 * data segment. There should be enough bits in the buffer register
368 * to satisfy the request; if so, no problem. 371 * to satisfy the request; if so, no problem.
369 */ 372 */
370 if (nbits > bits_left) { 373 if (nbits > bits_left) {
371 /* Uh-oh. Report corrupted data to user and stuff zeroes into 374 /* Uh-oh. Report corrupted data to user and stuff zeroes into
372 * the data stream, so that we can produce some kind of image. 375 * the data stream, so that we can produce some kind of image.
373 * We use a nonvolatile flag to ensure that only one warning message 376 * We use a nonvolatile flag to ensure that only one warning message
374 * appears per data segment. 377 * appears per data segment.
375 */ 378 */
376 if (! cinfo->entropy->insufficient_data) { 379 if (! cinfo->entropy->insufficient_data) {
377 » WARNMS(cinfo, JWRN_HIT_MARKER); 380 WARNMS(cinfo, JWRN_HIT_MARKER);
378 » cinfo->entropy->insufficient_data = TRUE; 381 cinfo->entropy->insufficient_data = TRUE;
379 } 382 }
380 /* Fill the buffer with zero bits */ 383 /* Fill the buffer with zero bits */
381 get_buffer <<= MIN_GET_BITS - bits_left; 384 get_buffer <<= MIN_GET_BITS - bits_left;
382 bits_left = MIN_GET_BITS; 385 bits_left = MIN_GET_BITS;
383 } 386 }
384 } 387 }
385 388
386 /* Unload the local registers */ 389 /* Unload the local registers */
387 state->next_input_byte = next_input_byte; 390 state->next_input_byte = next_input_byte;
388 state->bytes_in_buffer = bytes_in_buffer; 391 state->bytes_in_buffer = bytes_in_buffer;
(...skipping 22 matching lines...) Expand all
411 if (c1 != 0) { \ 414 if (c1 != 0) { \
412 /* Oops, it's actually a marker indicating end of compressed data. */ \ 415 /* Oops, it's actually a marker indicating end of compressed data. */ \
413 cinfo->unread_marker = c1; \ 416 cinfo->unread_marker = c1; \
414 /* Back out pre-execution and fill the buffer with zero bits */ \ 417 /* Back out pre-execution and fill the buffer with zero bits */ \
415 buffer -= 2; \ 418 buffer -= 2; \
416 get_buffer &= ~0xFF; \ 419 get_buffer &= ~0xFF; \
417 } \ 420 } \
418 } \ 421 } \
419 } 422 }
420 423
421 #if __WORDSIZE == 64 || defined(_WIN64) 424 #if SIZEOF_SIZE_T==8 || defined(_WIN64)
422 425
423 /* Pre-fetch 48 bytes, because the holding register is 64-bit */ 426 /* Pre-fetch 48 bytes, because the holding register is 64-bit */
424 #define FILL_BIT_BUFFER_FAST \ 427 #define FILL_BIT_BUFFER_FAST \
425 if (bits_left < 16) { \ 428 if (bits_left <= 16) { \
426 GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \ 429 GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
427 } 430 }
428 431
429 #else 432 #else
430 433
431 /* Pre-fetch 16 bytes, because the holding register is 32-bit */ 434 /* Pre-fetch 16 bytes, because the holding register is 32-bit */
432 #define FILL_BIT_BUFFER_FAST \ 435 #define FILL_BIT_BUFFER_FAST \
433 if (bits_left < 16) { \ 436 if (bits_left <= 16) { \
434 GET_BYTE GET_BYTE \ 437 GET_BYTE GET_BYTE \
435 } 438 }
436 439
437 #endif 440 #endif
438 441
439 442
440 /* 443 /*
441 * Out-of-line code for Huffman code decoding. 444 * Out-of-line code for Huffman code decoding.
442 * See jdhuff.h for info about usage. 445 * See jdhuff.h for info about usage.
443 */ 446 */
444 447
445 GLOBAL(int) 448 GLOBAL(int)
446 jpeg_huff_decode (bitread_working_state * state, 449 jpeg_huff_decode (bitread_working_state *state,
447 » » register bit_buf_type get_buffer, register int bits_left, 450 register bit_buf_type get_buffer, register int bits_left,
448 » » d_derived_tbl * htbl, int min_bits) 451 d_derived_tbl *htbl, int min_bits)
449 { 452 {
450 register int l = min_bits; 453 register int l = min_bits;
451 register INT32 code; 454 register JLONG code;
452 455
453 /* HUFF_DECODE has determined that the code is at least min_bits */ 456 /* HUFF_DECODE has determined that the code is at least min_bits */
454 /* bits long, so fetch that many bits in one swoop. */ 457 /* bits long, so fetch that many bits in one swoop. */
455 458
456 CHECK_BIT_BUFFER(*state, l, return -1); 459 CHECK_BIT_BUFFER(*state, l, return -1);
457 code = GET_BITS(l); 460 code = GET_BITS(l);
458 461
459 /* Collect the rest of the Huffman code one bit at a time. */ 462 /* Collect the rest of the Huffman code one bit at a time. */
460 /* This is per Figure F.16 in the JPEG spec. */ 463 /* This is per Figure F.16 in the JPEG spec. */
461 464
462 while (code > htbl->maxcode[l]) { 465 while (code > htbl->maxcode[l]) {
463 code <<= 1; 466 code <<= 1;
464 CHECK_BIT_BUFFER(*state, 1, return -1); 467 CHECK_BIT_BUFFER(*state, 1, return -1);
465 code |= GET_BITS(1); 468 code |= GET_BITS(1);
466 l++; 469 l++;
467 } 470 }
468 471
469 /* Unload the local registers */ 472 /* Unload the local registers */
470 state->get_buffer = get_buffer; 473 state->get_buffer = get_buffer;
471 state->bits_left = bits_left; 474 state->bits_left = bits_left;
472 475
473 /* With garbage input we may reach the sentinel value l = 17. */ 476 /* With garbage input we may reach the sentinel value l = 17. */
474 477
475 if (l > 16) { 478 if (l > 16) {
476 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); 479 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
477 return 0;» » » /* fake a zero as the safest result */ 480 return 0; /* fake a zero as the safest result */
478 } 481 }
479 482
480 return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; 483 return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
481 } 484 }
482 485
483 486
484 /* 487 /*
485 * Figure F.12: extend sign bit. 488 * Figure F.12: extend sign bit.
486 * On some machines, a shift and add will be faster than a table lookup. 489 * On some machines, a shift and add will be faster than a table lookup.
487 */ 490 */
488 491
489 #define AVOID_TABLES 492 #define AVOID_TABLES
490 #ifdef AVOID_TABLES 493 #ifdef AVOID_TABLES
491 494
492 #define HUFF_EXTEND(x,s) ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((-1)<<(s)) + 1))) 495 #define NEG_1 ((unsigned int)-1)
496 #define HUFF_EXTEND(x,s) ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((NEG_1)<<(s)) + 1)))
493 497
494 #else 498 #else
495 499
496 #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) 500 #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
497 501
498 static const int extend_test[16] = /* entry n is 2**(n-1) */ 502 static const int extend_test[16] = /* entry n is 2**(n-1) */
499 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 503 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
500 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; 504 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
501 505
502 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ 506 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
(...skipping 52 matching lines...) Expand 10 before | Expand all | Expand 10 after
555 int blkn; 559 int blkn;
556 savable_state state; 560 savable_state state;
557 /* Outer loop handles each block in the MCU */ 561 /* Outer loop handles each block in the MCU */
558 562
559 /* Load up working state */ 563 /* Load up working state */
560 BITREAD_LOAD_STATE(cinfo,entropy->bitstate); 564 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
561 ASSIGN_STATE(state, entropy->saved); 565 ASSIGN_STATE(state, entropy->saved);
562 566
563 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 567 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
564 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; 568 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
565 d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; 569 d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
566 d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; 570 d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
567 register int s, k, r; 571 register int s, k, r;
568 572
569 /* Decode a single block's worth of coefficients */ 573 /* Decode a single block's worth of coefficients */
570 574
571 /* Section F.2.2.1: decode the DC coefficient difference */ 575 /* Section F.2.2.1: decode the DC coefficient difference */
572 HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); 576 HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
573 if (s) { 577 if (s) {
574 CHECK_BIT_BUFFER(br_state, s, return FALSE); 578 CHECK_BIT_BUFFER(br_state, s, return FALSE);
575 r = GET_BITS(s); 579 r = GET_BITS(s);
576 s = HUFF_EXTEND(r, s); 580 s = HUFF_EXTEND(r, s);
(...skipping 12 matching lines...) Expand all
589 593
590 if (entropy->ac_needed[blkn] && block) { 594 if (entropy->ac_needed[blkn] && block) {
591 595
592 /* Section F.2.2.2: decode the AC coefficients */ 596 /* Section F.2.2.2: decode the AC coefficients */
593 /* Since zeroes are skipped, output area must be cleared beforehand */ 597 /* Since zeroes are skipped, output area must be cleared beforehand */
594 for (k = 1; k < DCTSIZE2; k++) { 598 for (k = 1; k < DCTSIZE2; k++) {
595 HUFF_DECODE(s, br_state, actbl, return FALSE, label2); 599 HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
596 600
597 r = s >> 4; 601 r = s >> 4;
598 s &= 15; 602 s &= 15;
599 603
600 if (s) { 604 if (s) {
601 k += r; 605 k += r;
602 CHECK_BIT_BUFFER(br_state, s, return FALSE); 606 CHECK_BIT_BUFFER(br_state, s, return FALSE);
603 r = GET_BITS(s); 607 r = GET_BITS(s);
604 s = HUFF_EXTEND(r, s); 608 s = HUFF_EXTEND(r, s);
605 /* Output coefficient in natural (dezigzagged) order. 609 /* Output coefficient in natural (dezigzagged) order.
606 * Note: the extra entries in jpeg_natural_order[] will save us 610 * Note: the extra entries in jpeg_natural_order[] will save us
607 * if k >= DCTSIZE2, which could happen if the data is corrupted. 611 * if k >= DCTSIZE2, which could happen if the data is corrupted.
608 */ 612 */
609 (*block)[jpeg_natural_order[k]] = (JCOEF) s; 613 (*block)[jpeg_natural_order[k]] = (JCOEF) s;
(...skipping 44 matching lines...) Expand 10 before | Expand all | Expand 10 after
654 savable_state state; 658 savable_state state;
655 /* Outer loop handles each block in the MCU */ 659 /* Outer loop handles each block in the MCU */
656 660
657 /* Load up working state */ 661 /* Load up working state */
658 BITREAD_LOAD_STATE(cinfo,entropy->bitstate); 662 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
659 buffer = (JOCTET *) br_state.next_input_byte; 663 buffer = (JOCTET *) br_state.next_input_byte;
660 ASSIGN_STATE(state, entropy->saved); 664 ASSIGN_STATE(state, entropy->saved);
661 665
662 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 666 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
663 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; 667 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
664 d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; 668 d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
665 d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; 669 d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
666 register int s, k, r, l; 670 register int s, k, r, l;
667 671
668 HUFF_DECODE_FAST(s, l, dctbl, slow_decode_mcu); 672 HUFF_DECODE_FAST(s, l, dctbl);
669 if (s) { 673 if (s) {
670 FILL_BIT_BUFFER_FAST 674 FILL_BIT_BUFFER_FAST
671 r = GET_BITS(s); 675 r = GET_BITS(s);
672 s = HUFF_EXTEND(r, s); 676 s = HUFF_EXTEND(r, s);
673 } 677 }
674 678
675 if (entropy->dc_needed[blkn]) { 679 if (entropy->dc_needed[blkn]) {
676 int ci = cinfo->MCU_membership[blkn]; 680 int ci = cinfo->MCU_membership[blkn];
677 s += state.last_dc_val[ci]; 681 s += state.last_dc_val[ci];
678 state.last_dc_val[ci] = s; 682 state.last_dc_val[ci] = s;
679 if (block) 683 if (block)
680 (*block)[0] = (JCOEF) s; 684 (*block)[0] = (JCOEF) s;
681 } 685 }
682 686
683 if (entropy->ac_needed[blkn] && block) { 687 if (entropy->ac_needed[blkn] && block) {
684 688
685 for (k = 1; k < DCTSIZE2; k++) { 689 for (k = 1; k < DCTSIZE2; k++) {
686 HUFF_DECODE_FAST(s, l, actbl, slow_decode_mcu); 690 HUFF_DECODE_FAST(s, l, actbl);
687 r = s >> 4; 691 r = s >> 4;
688 s &= 15; 692 s &= 15;
689 693
690 if (s) { 694 if (s) {
691 k += r; 695 k += r;
692 FILL_BIT_BUFFER_FAST 696 FILL_BIT_BUFFER_FAST
693 r = GET_BITS(s); 697 r = GET_BITS(s);
694 s = HUFF_EXTEND(r, s); 698 s = HUFF_EXTEND(r, s);
695 (*block)[jpeg_natural_order[k]] = (JCOEF) s; 699 (*block)[jpeg_natural_order[k]] = (JCOEF) s;
696 } else { 700 } else {
697 if (r != 15) break; 701 if (r != 15) break;
698 k += 15; 702 k += 15;
699 } 703 }
700 } 704 }
701 705
702 } else { 706 } else {
703 707
704 for (k = 1; k < DCTSIZE2; k++) { 708 for (k = 1; k < DCTSIZE2; k++) {
705 HUFF_DECODE_FAST(s, l, actbl, slow_decode_mcu); 709 HUFF_DECODE_FAST(s, l, actbl);
706 r = s >> 4; 710 r = s >> 4;
707 s &= 15; 711 s &= 15;
708 712
709 if (s) { 713 if (s) {
710 k += r; 714 k += r;
711 FILL_BIT_BUFFER_FAST 715 FILL_BIT_BUFFER_FAST
712 DROP_BITS(s); 716 DROP_BITS(s);
713 } else { 717 } else {
714 if (r != 15) break; 718 if (r != 15) break;
715 k += 15; 719 k += 15;
716 } 720 }
717 } 721 }
718 } 722 }
719 } 723 }
720 724
721 if (cinfo->unread_marker != 0) { 725 if (cinfo->unread_marker != 0) {
722 slow_decode_mcu:
723 cinfo->unread_marker = 0; 726 cinfo->unread_marker = 0;
724 return FALSE; 727 return FALSE;
725 } 728 }
726 729
727 br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte); 730 br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
728 br_state.next_input_byte = buffer; 731 br_state.next_input_byte = buffer;
729 BITREAD_SAVE_STATE(cinfo,entropy->bitstate); 732 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
730 ASSIGN_STATE(entropy->saved, state); 733 ASSIGN_STATE(entropy->saved, state);
731 return TRUE; 734 return TRUE;
732 } 735 }
733 736
734 737
735 /* 738 /*
736 * Decode and return one MCU's worth of Huffman-compressed coefficients. 739 * Decode and return one MCU's worth of Huffman-compressed coefficients.
737 * The coefficients are reordered from zigzag order into natural array order, 740 * The coefficients are reordered from zigzag order into natural array order,
738 * but are not dequantized. 741 * but are not dequantized.
739 * 742 *
740 * The i'th block of the MCU is stored into the block pointed to by 743 * The i'th block of the MCU is stored into the block pointed to by
741 * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. 744 * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
742 * (Wholesale zeroing is usually a little faster than retail...) 745 * (Wholesale zeroing is usually a little faster than retail...)
743 * 746 *
744 * Returns FALSE if data source requested suspension. In that case no 747 * Returns FALSE if data source requested suspension. In that case no
745 * changes have been made to permanent state. (Exception: some output 748 * changes have been made to permanent state. (Exception: some output
746 * coefficients may already have been assigned. This is harmless for 749 * coefficients may already have been assigned. This is harmless for
747 * this module, since we'll just re-assign them on the next call.) 750 * this module, since we'll just re-assign them on the next call.)
748 */ 751 */
749 752
750 #define BUFSIZE (DCTSIZE2 * 2u) 753 #define BUFSIZE (DCTSIZE2 * 8)
751 754
752 METHODDEF(boolean) 755 METHODDEF(boolean)
753 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 756 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
754 { 757 {
755 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 758 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
756 int usefast = 1; 759 int usefast = 1;
757 760
758 /* Process restart marker if needed; may have to suspend */ 761 /* Process restart marker if needed; may have to suspend */
759 if (cinfo->restart_interval) { 762 if (cinfo->restart_interval) {
760 if (entropy->restarts_to_go == 0) 763 if (entropy->restarts_to_go == 0)
761 if (! process_restart(cinfo)) 764 if (! process_restart(cinfo))
762 » return FALSE; 765 return FALSE;
763 usefast = 0; 766 usefast = 0;
764 } 767 }
765 768
766 if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU 769 if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU
767 || cinfo->unread_marker != 0) 770 || cinfo->unread_marker != 0)
768 usefast = 0; 771 usefast = 0;
769 772
770 /* If we've run out of data, just leave the MCU set to zeroes. 773 /* If we've run out of data, just leave the MCU set to zeroes.
771 * This way, we return uniform gray for the remainder of the segment. 774 * This way, we return uniform gray for the remainder of the segment.
772 */ 775 */
(...skipping 19 matching lines...) Expand all
792 /* 795 /*
793 * Module initialization routine for Huffman entropy decoding. 796 * Module initialization routine for Huffman entropy decoding.
794 */ 797 */
795 798
796 GLOBAL(void) 799 GLOBAL(void)
797 jinit_huff_decoder (j_decompress_ptr cinfo) 800 jinit_huff_decoder (j_decompress_ptr cinfo)
798 { 801 {
799 huff_entropy_ptr entropy; 802 huff_entropy_ptr entropy;
800 int i; 803 int i;
801 804
805 /* Motion JPEG frames typically do not include the Huffman tables if they
806 are the default tables. Thus, if the tables are not set by the time
807 the Huffman decoder is initialized (usually within the body of
808 jpeg_start_decompress()), we set them to default values. */
809 std_huff_tables((j_common_ptr) cinfo);
810
802 entropy = (huff_entropy_ptr) 811 entropy = (huff_entropy_ptr)
803 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 812 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
804 » » » » SIZEOF(huff_entropy_decoder)); 813 sizeof(huff_entropy_decoder));
805 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; 814 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
806 entropy->pub.start_pass = start_pass_huff_decoder; 815 entropy->pub.start_pass = start_pass_huff_decoder;
807 entropy->pub.decode_mcu = decode_mcu; 816 entropy->pub.decode_mcu = decode_mcu;
808 817
809 /* Mark tables unallocated */ 818 /* Mark tables unallocated */
810 for (i = 0; i < NUM_HUFF_TBLS; i++) { 819 for (i = 0; i < NUM_HUFF_TBLS; i++) {
811 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; 820 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
812 } 821 }
813 } 822 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698