Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(526)

Side by Side Diff: jdcoefct.c

Issue 1934113002: Update libjpeg_turbo to 1.4.90 from https://github.com/libjpeg-turbo/ (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/libjpeg_turbo.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * jdcoefct.c 2 * jdcoefct.c
3 * 3 *
4 * This file was part of the Independent JPEG Group's software: 4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1994-1997, Thomas G. Lane. 5 * Copyright (C) 1994-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications: 6 * libjpeg-turbo Modifications:
7 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 7 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
8 * Copyright (C) 2010, D. R. Commander. 8 * Copyright (C) 2010, 2015-2016, D. R. Commander.
9 * For conditions of distribution and use, see the accompanying README file. 9 * Copyright (C) 2015, Google, Inc.
10 * For conditions of distribution and use, see the accompanying README.ijg
11 * file.
10 * 12 *
11 * This file contains the coefficient buffer controller for decompression. 13 * This file contains the coefficient buffer controller for decompression.
12 * This controller is the top level of the JPEG decompressor proper. 14 * This controller is the top level of the JPEG decompressor proper.
13 * The coefficient buffer lies between entropy decoding and inverse-DCT steps. 15 * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
14 * 16 *
15 * In buffered-image mode, this controller is the interface between 17 * In buffered-image mode, this controller is the interface between
16 * input-oriented processing and output-oriented processing. 18 * input-oriented processing and output-oriented processing.
17 * Also, the input side (only) is used when reading a file for transcoding. 19 * Also, the input side (only) is used when reading a file for transcoding.
18 */ 20 */
19 21
22 #include "jinclude.h"
20 #include "jdcoefct.h" 23 #include "jdcoefct.h"
21 #include "jpegcomp.h" 24 #include "jpegcomp.h"
22 25
23 26
24 /* Forward declarations */ 27 /* Forward declarations */
25 METHODDEF(int) decompress_onepass 28 METHODDEF(int) decompress_onepass
26 » JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); 29 (j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
27 #ifdef D_MULTISCAN_FILES_SUPPORTED 30 #ifdef D_MULTISCAN_FILES_SUPPORTED
28 METHODDEF(int) decompress_data 31 METHODDEF(int) decompress_data
29 » JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); 32 (j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
30 #endif 33 #endif
31 #ifdef BLOCK_SMOOTHING_SUPPORTED 34 #ifdef BLOCK_SMOOTHING_SUPPORTED
32 LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); 35 LOCAL(boolean) smoothing_ok (j_decompress_ptr cinfo);
33 METHODDEF(int) decompress_smooth_data 36 METHODDEF(int) decompress_smooth_data
34 » JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); 37 (j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
35 #endif 38 #endif
36 39
37 40
38 /* 41 /*
39 * Initialize for an input processing pass. 42 * Initialize for an input processing pass.
40 */ 43 */
41 44
42 METHODDEF(void) 45 METHODDEF(void)
43 start_input_pass (j_decompress_ptr cinfo) 46 start_input_pass (j_decompress_ptr cinfo)
44 { 47 {
(...skipping 31 matching lines...) Expand 10 before | Expand all | Expand 10 after
76 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. 79 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
77 * 80 *
78 * NB: output_buf contains a plane for each component in image, 81 * NB: output_buf contains a plane for each component in image,
79 * which we index according to the component's SOF position. 82 * which we index according to the component's SOF position.
80 */ 83 */
81 84
82 METHODDEF(int) 85 METHODDEF(int)
83 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) 86 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
84 { 87 {
85 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 88 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
86 JDIMENSION MCU_col_num;» /* index of current MCU within row */ 89 JDIMENSION MCU_col_num; /* index of current MCU within row */
87 JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; 90 JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
88 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; 91 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
89 int blkn, ci, xindex, yindex, yoffset, useful_width; 92 int blkn, ci, xindex, yindex, yoffset, useful_width;
90 JSAMPARRAY output_ptr; 93 JSAMPARRAY output_ptr;
91 JDIMENSION start_col, output_col; 94 JDIMENSION start_col, output_col;
92 jpeg_component_info *compptr; 95 jpeg_component_info *compptr;
93 inverse_DCT_method_ptr inverse_DCT; 96 inverse_DCT_method_ptr inverse_DCT;
94 97
95 /* Loop to process as much as one whole iMCU row */ 98 /* Loop to process as much as one whole iMCU row */
96 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; 99 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
97 yoffset++) { 100 yoffset++) {
98 for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; 101 for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
99 » MCU_col_num++) { 102 MCU_col_num++) {
100 /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ 103 /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
101 jzero_far((void FAR *) coef->MCU_buffer[0], 104 jzero_far((void *) coef->MCU_buffer[0],
102 » » (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); 105 (size_t) (cinfo->blocks_in_MCU * sizeof(JBLOCK)));
103 if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { 106 if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
104 » /* Suspension forced; update state counters and exit */ 107 /* Suspension forced; update state counters and exit */
105 » coef->MCU_vert_offset = yoffset; 108 coef->MCU_vert_offset = yoffset;
106 » coef->MCU_ctr = MCU_col_num; 109 coef->MCU_ctr = MCU_col_num;
107 » return JPEG_SUSPENDED; 110 return JPEG_SUSPENDED;
108 } 111 }
109 /* Determine where data should go in output_buf and do the IDCT thing. 112
110 * We skip dummy blocks at the right and bottom edges (but blkn gets 113 /* Only perform the IDCT on blocks that are contained within the desired
111 * incremented past them!). Note the inner loop relies on having 114 * cropping region.
112 * allocated the MCU_buffer[] blocks sequentially.
113 */ 115 */
114 blkn = 0;»» » /* index of current DCT block within MCU */ 116 if (MCU_col_num >= cinfo->master->first_iMCU_col &&
115 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 117 MCU_col_num <= cinfo->master->last_iMCU_col) {
116 » compptr = cinfo->cur_comp_info[ci]; 118 /* Determine where data should go in output_buf and do the IDCT thing.
117 » /* Don't bother to IDCT an uninteresting component. */ 119 * We skip dummy blocks at the right and bottom edges (but blkn gets
118 » if (! compptr->component_needed) { 120 * incremented past them!). Note the inner loop relies on having
119 » blkn += compptr->MCU_blocks; 121 * allocated the MCU_buffer[] blocks sequentially.
120 » continue; 122 */
121 » } 123 blkn = 0; /* index of current DCT block within MCU */
122 » inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; 124 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
123 » useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width 125 compptr = cinfo->cur_comp_info[ci];
124 » » » » » » : compptr->last_col_width; 126 /* Don't bother to IDCT an uninteresting component. */
125 » output_ptr = output_buf[compptr->component_index] + 127 if (! compptr->component_needed) {
126 » yoffset * compptr->_DCT_scaled_size; 128 blkn += compptr->MCU_blocks;
127 » start_col = MCU_col_num * compptr->MCU_sample_width; 129 continue;
128 » for (yindex = 0; yindex < compptr->MCU_height; yindex++) { 130 }
129 » if (cinfo->input_iMCU_row < last_iMCU_row || 131 inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
130 » yoffset+yindex < compptr->last_row_height) { 132 useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
131 » output_col = start_col; 133 : compptr->last_col_width;
132 » for (xindex = 0; xindex < useful_width; xindex++) { 134 output_ptr = output_buf[compptr->component_index] +
133 » (*inverse_DCT) (cinfo, compptr, 135 yoffset * compptr->_DCT_scaled_size;
134 » » » (JCOEFPTR) coef->MCU_buffer[blkn+xindex], 136 start_col = (MCU_col_num - cinfo->master->first_iMCU_col) *
135 » » » output_ptr, output_col); 137 compptr->MCU_sample_width;
136 » output_col += compptr->_DCT_scaled_size; 138 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
137 » } 139 if (cinfo->input_iMCU_row < last_iMCU_row ||
138 » } 140 yoffset+yindex < compptr->last_row_height) {
139 » blkn += compptr->MCU_width; 141 output_col = start_col;
140 » output_ptr += compptr->_DCT_scaled_size; 142 for (xindex = 0; xindex < useful_width; xindex++) {
141 » } 143 (*inverse_DCT) (cinfo, compptr,
144 (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
145 output_ptr, output_col);
146 output_col += compptr->_DCT_scaled_size;
147 }
148 }
149 blkn += compptr->MCU_width;
150 output_ptr += compptr->_DCT_scaled_size;
151 }
152 }
142 } 153 }
143 } 154 }
144 /* Completed an MCU row, but perhaps not an iMCU row */ 155 /* Completed an MCU row, but perhaps not an iMCU row */
145 coef->MCU_ctr = 0; 156 coef->MCU_ctr = 0;
146 } 157 }
147 /* Completed the iMCU row, advance counters for next one */ 158 /* Completed the iMCU row, advance counters for next one */
148 cinfo->output_iMCU_row++; 159 cinfo->output_iMCU_row++;
149 if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { 160 if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
150 start_iMCU_row(cinfo); 161 start_iMCU_row(cinfo);
151 return JPEG_ROW_COMPLETED; 162 return JPEG_ROW_COMPLETED;
152 } 163 }
153 /* Completed the scan */ 164 /* Completed the scan */
154 (*cinfo->inputctl->finish_input_pass) (cinfo); 165 (*cinfo->inputctl->finish_input_pass) (cinfo);
155 return JPEG_SCAN_COMPLETED; 166 return JPEG_SCAN_COMPLETED;
156 } 167 }
157 168
158 169
159 /* 170 /*
160 * Dummy consume-input routine for single-pass operation. 171 * Dummy consume-input routine for single-pass operation.
161 */ 172 */
162 173
163 METHODDEF(int) 174 METHODDEF(int)
164 dummy_consume_data (j_decompress_ptr cinfo) 175 dummy_consume_data (j_decompress_ptr cinfo)
165 { 176 {
166 return JPEG_SUSPENDED;» /* Always indicate nothing was done */ 177 return JPEG_SUSPENDED; /* Always indicate nothing was done */
167 } 178 }
168 179
169 180
170 #ifdef D_MULTISCAN_FILES_SUPPORTED 181 #ifdef D_MULTISCAN_FILES_SUPPORTED
171 182
172 /* 183 /*
173 * Consume input data and store it in the full-image coefficient buffer. 184 * Consume input data and store it in the full-image coefficient buffer.
174 * We read as much as one fully interleaved MCU row ("iMCU" row) per call, 185 * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
175 * ie, v_samp_factor block rows for each component in the scan. 186 * ie, v_samp_factor block rows for each component in the scan.
176 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. 187 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
177 */ 188 */
178 189
179 METHODDEF(int) 190 METHODDEF(int)
180 consume_data (j_decompress_ptr cinfo) 191 consume_data (j_decompress_ptr cinfo)
181 { 192 {
182 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 193 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
183 JDIMENSION MCU_col_num;» /* index of current MCU within row */ 194 JDIMENSION MCU_col_num; /* index of current MCU within row */
184 int blkn, ci, xindex, yindex, yoffset; 195 int blkn, ci, xindex, yindex, yoffset;
185 JDIMENSION start_col; 196 JDIMENSION start_col;
186 JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; 197 JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
187 JBLOCKROW buffer_ptr; 198 JBLOCKROW buffer_ptr;
188 jpeg_component_info *compptr; 199 jpeg_component_info *compptr;
189 200
190 /* Align the virtual buffers for the components used in this scan. */ 201 /* Align the virtual buffers for the components used in this scan. */
191 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 202 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
192 compptr = cinfo->cur_comp_info[ci]; 203 compptr = cinfo->cur_comp_info[ci];
193 buffer[ci] = (*cinfo->mem->access_virt_barray) 204 buffer[ci] = (*cinfo->mem->access_virt_barray)
194 ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], 205 ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
195 cinfo->input_iMCU_row * compptr->v_samp_factor, 206 cinfo->input_iMCU_row * compptr->v_samp_factor,
196 (JDIMENSION) compptr->v_samp_factor, TRUE); 207 (JDIMENSION) compptr->v_samp_factor, TRUE);
197 /* Note: entropy decoder expects buffer to be zeroed, 208 /* Note: entropy decoder expects buffer to be zeroed,
198 * but this is handled automatically by the memory manager 209 * but this is handled automatically by the memory manager
199 * because we requested a pre-zeroed array. 210 * because we requested a pre-zeroed array.
200 */ 211 */
201 } 212 }
202 213
203 /* Loop to process one whole iMCU row */ 214 /* Loop to process one whole iMCU row */
204 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; 215 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
205 yoffset++) { 216 yoffset++) {
206 for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; 217 for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
207 » MCU_col_num++) { 218 MCU_col_num++) {
208 /* Construct list of pointers to DCT blocks belonging to this MCU */ 219 /* Construct list of pointers to DCT blocks belonging to this MCU */
209 blkn = 0;»» » /* index of current DCT block within MCU */ 220 blkn = 0; /* index of current DCT block within MCU */
210 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 221 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
211 » compptr = cinfo->cur_comp_info[ci]; 222 compptr = cinfo->cur_comp_info[ci];
212 » start_col = MCU_col_num * compptr->MCU_width; 223 start_col = MCU_col_num * compptr->MCU_width;
213 » for (yindex = 0; yindex < compptr->MCU_height; yindex++) { 224 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
214 » buffer_ptr = buffer[ci][yindex+yoffset] + start_col; 225 buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
215 » for (xindex = 0; xindex < compptr->MCU_width; xindex++) { 226 for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
216 » coef->MCU_buffer[blkn++] = buffer_ptr++; 227 coef->MCU_buffer[blkn++] = buffer_ptr++;
217 » } 228 }
218 » } 229 }
219 } 230 }
220 /* Try to fetch the MCU. */ 231 /* Try to fetch the MCU. */
221 if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { 232 if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
222 » /* Suspension forced; update state counters and exit */ 233 /* Suspension forced; update state counters and exit */
223 » coef->MCU_vert_offset = yoffset; 234 coef->MCU_vert_offset = yoffset;
224 » coef->MCU_ctr = MCU_col_num; 235 coef->MCU_ctr = MCU_col_num;
225 » return JPEG_SUSPENDED; 236 return JPEG_SUSPENDED;
226 } 237 }
227 } 238 }
228 /* Completed an MCU row, but perhaps not an iMCU row */ 239 /* Completed an MCU row, but perhaps not an iMCU row */
229 coef->MCU_ctr = 0; 240 coef->MCU_ctr = 0;
230 } 241 }
231 /* Completed the iMCU row, advance counters for next one */ 242 /* Completed the iMCU row, advance counters for next one */
232 if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { 243 if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
233 start_iMCU_row(cinfo); 244 start_iMCU_row(cinfo);
234 return JPEG_ROW_COMPLETED; 245 return JPEG_ROW_COMPLETED;
235 } 246 }
(...skipping 20 matching lines...) Expand all
256 int ci, block_row, block_rows; 267 int ci, block_row, block_rows;
257 JBLOCKARRAY buffer; 268 JBLOCKARRAY buffer;
258 JBLOCKROW buffer_ptr; 269 JBLOCKROW buffer_ptr;
259 JSAMPARRAY output_ptr; 270 JSAMPARRAY output_ptr;
260 JDIMENSION output_col; 271 JDIMENSION output_col;
261 jpeg_component_info *compptr; 272 jpeg_component_info *compptr;
262 inverse_DCT_method_ptr inverse_DCT; 273 inverse_DCT_method_ptr inverse_DCT;
263 274
264 /* Force some input to be done if we are getting ahead of the input. */ 275 /* Force some input to be done if we are getting ahead of the input. */
265 while (cinfo->input_scan_number < cinfo->output_scan_number || 276 while (cinfo->input_scan_number < cinfo->output_scan_number ||
266 » (cinfo->input_scan_number == cinfo->output_scan_number && 277 (cinfo->input_scan_number == cinfo->output_scan_number &&
267 » cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { 278 cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
268 if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) 279 if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
269 return JPEG_SUSPENDED; 280 return JPEG_SUSPENDED;
270 } 281 }
271 282
272 /* OK, output from the virtual arrays. */ 283 /* OK, output from the virtual arrays. */
273 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 284 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
274 ci++, compptr++) { 285 ci++, compptr++) {
275 /* Don't bother to IDCT an uninteresting component. */ 286 /* Don't bother to IDCT an uninteresting component. */
276 if (! compptr->component_needed) 287 if (! compptr->component_needed)
277 continue; 288 continue;
278 /* Align the virtual buffer for this component. */ 289 /* Align the virtual buffer for this component. */
279 buffer = (*cinfo->mem->access_virt_barray) 290 buffer = (*cinfo->mem->access_virt_barray)
280 ((j_common_ptr) cinfo, coef->whole_image[ci], 291 ((j_common_ptr) cinfo, coef->whole_image[ci],
281 cinfo->output_iMCU_row * compptr->v_samp_factor, 292 cinfo->output_iMCU_row * compptr->v_samp_factor,
282 (JDIMENSION) compptr->v_samp_factor, FALSE); 293 (JDIMENSION) compptr->v_samp_factor, FALSE);
283 /* Count non-dummy DCT block rows in this iMCU row. */ 294 /* Count non-dummy DCT block rows in this iMCU row. */
284 if (cinfo->output_iMCU_row < last_iMCU_row) 295 if (cinfo->output_iMCU_row < last_iMCU_row)
285 block_rows = compptr->v_samp_factor; 296 block_rows = compptr->v_samp_factor;
286 else { 297 else {
287 /* NB: can't use last_row_height here; it is input-side-dependent! */ 298 /* NB: can't use last_row_height here; it is input-side-dependent! */
288 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); 299 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
289 if (block_rows == 0) block_rows = compptr->v_samp_factor; 300 if (block_rows == 0) block_rows = compptr->v_samp_factor;
290 } 301 }
291 inverse_DCT = cinfo->idct->inverse_DCT[ci]; 302 inverse_DCT = cinfo->idct->inverse_DCT[ci];
292 output_ptr = output_buf[ci]; 303 output_ptr = output_buf[ci];
293 /* Loop over all DCT blocks to be processed. */ 304 /* Loop over all DCT blocks to be processed. */
294 for (block_row = 0; block_row < block_rows; block_row++) { 305 for (block_row = 0; block_row < block_rows; block_row++) {
295 buffer_ptr = buffer[block_row]; 306 buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
296 output_col = 0; 307 output_col = 0;
297 for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { 308 for (block_num = cinfo->master->first_MCU_col[ci];
298 » (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, 309 block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
299 » » » output_ptr, output_col); 310 (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
300 » buffer_ptr++; 311 output_ptr, output_col);
301 » output_col += compptr->_DCT_scaled_size; 312 buffer_ptr++;
313 output_col += compptr->_DCT_scaled_size;
302 } 314 }
303 output_ptr += compptr->_DCT_scaled_size; 315 output_ptr += compptr->_DCT_scaled_size;
304 } 316 }
305 } 317 }
306 318
307 if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) 319 if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
308 return JPEG_ROW_COMPLETED; 320 return JPEG_ROW_COMPLETED;
309 return JPEG_SCAN_COMPLETED; 321 return JPEG_SCAN_COMPLETED;
310 } 322 }
311 323
(...skipping 25 matching lines...) Expand all
337 * more accurately than they really are. 349 * more accurately than they really are.
338 */ 350 */
339 351
340 LOCAL(boolean) 352 LOCAL(boolean)
341 smoothing_ok (j_decompress_ptr cinfo) 353 smoothing_ok (j_decompress_ptr cinfo)
342 { 354 {
343 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 355 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
344 boolean smoothing_useful = FALSE; 356 boolean smoothing_useful = FALSE;
345 int ci, coefi; 357 int ci, coefi;
346 jpeg_component_info *compptr; 358 jpeg_component_info *compptr;
347 JQUANT_TBL * qtable; 359 JQUANT_TBL *qtable;
348 int * coef_bits; 360 int *coef_bits;
349 int * coef_bits_latch; 361 int *coef_bits_latch;
350 362
351 if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) 363 if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
352 return FALSE; 364 return FALSE;
353 365
354 /* Allocate latch area if not already done */ 366 /* Allocate latch area if not already done */
355 if (coef->coef_bits_latch == NULL) 367 if (coef->coef_bits_latch == NULL)
356 coef->coef_bits_latch = (int *) 368 coef->coef_bits_latch = (int *)
357 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 369 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
358 » » » » cinfo->num_components * 370 cinfo->num_components *
359 » » » » (SAVED_COEFS * SIZEOF(int))); 371 (SAVED_COEFS * sizeof(int)));
360 coef_bits_latch = coef->coef_bits_latch; 372 coef_bits_latch = coef->coef_bits_latch;
361 373
362 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 374 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
363 ci++, compptr++) { 375 ci++, compptr++) {
364 /* All components' quantization values must already be latched. */ 376 /* All components' quantization values must already be latched. */
365 if ((qtable = compptr->quant_table) == NULL) 377 if ((qtable = compptr->quant_table) == NULL)
366 return FALSE; 378 return FALSE;
367 /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ 379 /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
368 if (qtable->quantval[0] == 0 || 380 if (qtable->quantval[0] == 0 ||
369 » qtable->quantval[Q01_POS] == 0 || 381 qtable->quantval[Q01_POS] == 0 ||
370 » qtable->quantval[Q10_POS] == 0 || 382 qtable->quantval[Q10_POS] == 0 ||
371 » qtable->quantval[Q20_POS] == 0 || 383 qtable->quantval[Q20_POS] == 0 ||
372 » qtable->quantval[Q11_POS] == 0 || 384 qtable->quantval[Q11_POS] == 0 ||
373 » qtable->quantval[Q02_POS] == 0) 385 qtable->quantval[Q02_POS] == 0)
374 return FALSE; 386 return FALSE;
375 /* DC values must be at least partly known for all components. */ 387 /* DC values must be at least partly known for all components. */
376 coef_bits = cinfo->coef_bits[ci]; 388 coef_bits = cinfo->coef_bits[ci];
377 if (coef_bits[0] < 0) 389 if (coef_bits[0] < 0)
378 return FALSE; 390 return FALSE;
379 /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ 391 /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
380 for (coefi = 1; coefi <= 5; coefi++) { 392 for (coefi = 1; coefi <= 5; coefi++) {
381 coef_bits_latch[coefi] = coef_bits[coefi]; 393 coef_bits_latch[coefi] = coef_bits[coefi];
382 if (coef_bits[coefi] != 0) 394 if (coef_bits[coefi] != 0)
383 » smoothing_useful = TRUE; 395 smoothing_useful = TRUE;
384 } 396 }
385 coef_bits_latch += SAVED_COEFS; 397 coef_bits_latch += SAVED_COEFS;
386 } 398 }
387 399
388 return smoothing_useful; 400 return smoothing_useful;
389 } 401 }
390 402
391 403
392 /* 404 /*
393 * Variant of decompress_data for use when doing block smoothing. 405 * Variant of decompress_data for use when doing block smoothing.
394 */ 406 */
395 407
396 METHODDEF(int) 408 METHODDEF(int)
397 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) 409 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
398 { 410 {
399 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 411 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
400 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; 412 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
401 JDIMENSION block_num, last_block_column; 413 JDIMENSION block_num, last_block_column;
402 int ci, block_row, block_rows, access_rows; 414 int ci, block_row, block_rows, access_rows;
403 JBLOCKARRAY buffer; 415 JBLOCKARRAY buffer;
404 JBLOCKROW buffer_ptr, prev_block_row, next_block_row; 416 JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
405 JSAMPARRAY output_ptr; 417 JSAMPARRAY output_ptr;
406 JDIMENSION output_col; 418 JDIMENSION output_col;
407 jpeg_component_info *compptr; 419 jpeg_component_info *compptr;
408 inverse_DCT_method_ptr inverse_DCT; 420 inverse_DCT_method_ptr inverse_DCT;
409 boolean first_row, last_row; 421 boolean first_row, last_row;
410 JCOEF * workspace; 422 JCOEF *workspace;
411 int *coef_bits; 423 int *coef_bits;
412 JQUANT_TBL *quanttbl; 424 JQUANT_TBL *quanttbl;
413 INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; 425 JLONG Q00,Q01,Q02,Q10,Q11,Q20, num;
414 int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; 426 int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
415 int Al, pred; 427 int Al, pred;
416 428
417 /* Keep a local variable to avoid looking it up more than once */ 429 /* Keep a local variable to avoid looking it up more than once */
418 workspace = coef->workspace; 430 workspace = coef->workspace;
419 431
420 /* Force some input to be done if we are getting ahead of the input. */ 432 /* Force some input to be done if we are getting ahead of the input. */
421 while (cinfo->input_scan_number <= cinfo->output_scan_number && 433 while (cinfo->input_scan_number <= cinfo->output_scan_number &&
422 » ! cinfo->inputctl->eoi_reached) { 434 ! cinfo->inputctl->eoi_reached) {
423 if (cinfo->input_scan_number == cinfo->output_scan_number) { 435 if (cinfo->input_scan_number == cinfo->output_scan_number) {
424 /* If input is working on current scan, we ordinarily want it to 436 /* If input is working on current scan, we ordinarily want it to
425 * have completed the current row. But if input scan is DC, 437 * have completed the current row. But if input scan is DC,
426 * we want it to keep one row ahead so that next block row's DC 438 * we want it to keep one row ahead so that next block row's DC
427 * values are up to date. 439 * values are up to date.
428 */ 440 */
429 JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; 441 JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
430 if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) 442 if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
431 » break; 443 break;
432 } 444 }
433 if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) 445 if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
434 return JPEG_SUSPENDED; 446 return JPEG_SUSPENDED;
435 } 447 }
436 448
437 /* OK, output from the virtual arrays. */ 449 /* OK, output from the virtual arrays. */
438 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 450 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
439 ci++, compptr++) { 451 ci++, compptr++) {
440 /* Don't bother to IDCT an uninteresting component. */ 452 /* Don't bother to IDCT an uninteresting component. */
441 if (! compptr->component_needed) 453 if (! compptr->component_needed)
442 continue; 454 continue;
443 /* Count non-dummy DCT block rows in this iMCU row. */ 455 /* Count non-dummy DCT block rows in this iMCU row. */
444 if (cinfo->output_iMCU_row < last_iMCU_row) { 456 if (cinfo->output_iMCU_row < last_iMCU_row) {
445 block_rows = compptr->v_samp_factor; 457 block_rows = compptr->v_samp_factor;
446 access_rows = block_rows * 2; /* this and next iMCU row */ 458 access_rows = block_rows * 2; /* this and next iMCU row */
447 last_row = FALSE; 459 last_row = FALSE;
448 } else { 460 } else {
449 /* NB: can't use last_row_height here; it is input-side-dependent! */ 461 /* NB: can't use last_row_height here; it is input-side-dependent! */
450 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); 462 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
451 if (block_rows == 0) block_rows = compptr->v_samp_factor; 463 if (block_rows == 0) block_rows = compptr->v_samp_factor;
452 access_rows = block_rows; /* this iMCU row only */ 464 access_rows = block_rows; /* this iMCU row only */
453 last_row = TRUE; 465 last_row = TRUE;
454 } 466 }
455 /* Align the virtual buffer for this component. */ 467 /* Align the virtual buffer for this component. */
456 if (cinfo->output_iMCU_row > 0) { 468 if (cinfo->output_iMCU_row > 0) {
457 access_rows += compptr->v_samp_factor; /* prior iMCU row too */ 469 access_rows += compptr->v_samp_factor; /* prior iMCU row too */
458 buffer = (*cinfo->mem->access_virt_barray) 470 buffer = (*cinfo->mem->access_virt_barray)
459 » ((j_common_ptr) cinfo, coef->whole_image[ci], 471 ((j_common_ptr) cinfo, coef->whole_image[ci],
460 » (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, 472 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
461 » (JDIMENSION) access_rows, FALSE); 473 (JDIMENSION) access_rows, FALSE);
462 buffer += compptr->v_samp_factor;»/* point to current iMCU row */ 474 buffer += compptr->v_samp_factor; /* point to current iMCU row */
463 first_row = FALSE; 475 first_row = FALSE;
464 } else { 476 } else {
465 buffer = (*cinfo->mem->access_virt_barray) 477 buffer = (*cinfo->mem->access_virt_barray)
466 » ((j_common_ptr) cinfo, coef->whole_image[ci], 478 ((j_common_ptr) cinfo, coef->whole_image[ci],
467 » (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); 479 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
468 first_row = TRUE; 480 first_row = TRUE;
469 } 481 }
470 /* Fetch component-dependent info */ 482 /* Fetch component-dependent info */
471 coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); 483 coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
472 quanttbl = compptr->quant_table; 484 quanttbl = compptr->quant_table;
473 Q00 = quanttbl->quantval[0]; 485 Q00 = quanttbl->quantval[0];
474 Q01 = quanttbl->quantval[Q01_POS]; 486 Q01 = quanttbl->quantval[Q01_POS];
475 Q10 = quanttbl->quantval[Q10_POS]; 487 Q10 = quanttbl->quantval[Q10_POS];
476 Q20 = quanttbl->quantval[Q20_POS]; 488 Q20 = quanttbl->quantval[Q20_POS];
477 Q11 = quanttbl->quantval[Q11_POS]; 489 Q11 = quanttbl->quantval[Q11_POS];
478 Q02 = quanttbl->quantval[Q02_POS]; 490 Q02 = quanttbl->quantval[Q02_POS];
479 inverse_DCT = cinfo->idct->inverse_DCT[ci]; 491 inverse_DCT = cinfo->idct->inverse_DCT[ci];
480 output_ptr = output_buf[ci]; 492 output_ptr = output_buf[ci];
481 /* Loop over all DCT blocks to be processed. */ 493 /* Loop over all DCT blocks to be processed. */
482 for (block_row = 0; block_row < block_rows; block_row++) { 494 for (block_row = 0; block_row < block_rows; block_row++) {
483 buffer_ptr = buffer[block_row]; 495 buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
484 if (first_row && block_row == 0) 496 if (first_row && block_row == 0)
485 » prev_block_row = buffer_ptr; 497 prev_block_row = buffer_ptr;
486 else 498 else
487 » prev_block_row = buffer[block_row-1]; 499 prev_block_row = buffer[block_row-1];
488 if (last_row && block_row == block_rows-1) 500 if (last_row && block_row == block_rows-1)
489 » next_block_row = buffer_ptr; 501 next_block_row = buffer_ptr;
490 else 502 else
491 » next_block_row = buffer[block_row+1]; 503 next_block_row = buffer[block_row+1];
492 /* We fetch the surrounding DC values using a sliding-register approach. 504 /* We fetch the surrounding DC values using a sliding-register approach.
493 * Initialize all nine here so as to do the right thing on narrow pics. 505 * Initialize all nine here so as to do the right thing on narrow pics.
494 */ 506 */
495 DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; 507 DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
496 DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; 508 DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
497 DC7 = DC8 = DC9 = (int) next_block_row[0][0]; 509 DC7 = DC8 = DC9 = (int) next_block_row[0][0];
498 output_col = 0; 510 output_col = 0;
499 last_block_column = compptr->width_in_blocks - 1; 511 last_block_column = compptr->width_in_blocks - 1;
500 for (block_num = 0; block_num <= last_block_column; block_num++) { 512 for (block_num = cinfo->master->first_MCU_col[ci];
501 » /* Fetch current DCT block into workspace so we can modify it. */ 513 block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
502 » jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); 514 /* Fetch current DCT block into workspace so we can modify it. */
503 » /* Update DC values */ 515 jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
504 » if (block_num < last_block_column) { 516 /* Update DC values */
505 » DC3 = (int) prev_block_row[1][0]; 517 if (block_num < last_block_column) {
506 » DC6 = (int) buffer_ptr[1][0]; 518 DC3 = (int) prev_block_row[1][0];
507 » DC9 = (int) next_block_row[1][0]; 519 DC6 = (int) buffer_ptr[1][0];
508 » } 520 DC9 = (int) next_block_row[1][0];
509 » /* Compute coefficient estimates per K.8. 521 }
510 » * An estimate is applied only if coefficient is still zero, 522 /* Compute coefficient estimates per K.8.
511 » * and is not known to be fully accurate. 523 * An estimate is applied only if coefficient is still zero,
512 » */ 524 * and is not known to be fully accurate.
513 » /* AC01 */ 525 */
514 » if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { 526 /* AC01 */
515 » num = 36 * Q00 * (DC4 - DC6); 527 if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
516 » if (num >= 0) { 528 num = 36 * Q00 * (DC4 - DC6);
517 » pred = (int) (((Q01<<7) + num) / (Q01<<8)); 529 if (num >= 0) {
518 » if (Al > 0 && pred >= (1<<Al)) 530 pred = (int) (((Q01<<7) + num) / (Q01<<8));
519 » pred = (1<<Al)-1; 531 if (Al > 0 && pred >= (1<<Al))
520 » } else { 532 pred = (1<<Al)-1;
521 » pred = (int) (((Q01<<7) - num) / (Q01<<8)); 533 } else {
522 » if (Al > 0 && pred >= (1<<Al)) 534 pred = (int) (((Q01<<7) - num) / (Q01<<8));
523 » pred = (1<<Al)-1; 535 if (Al > 0 && pred >= (1<<Al))
524 » pred = -pred; 536 pred = (1<<Al)-1;
525 » } 537 pred = -pred;
526 » workspace[1] = (JCOEF) pred; 538 }
527 » } 539 workspace[1] = (JCOEF) pred;
528 » /* AC10 */ 540 }
529 » if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { 541 /* AC10 */
530 » num = 36 * Q00 * (DC2 - DC8); 542 if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
531 » if (num >= 0) { 543 num = 36 * Q00 * (DC2 - DC8);
532 » pred = (int) (((Q10<<7) + num) / (Q10<<8)); 544 if (num >= 0) {
533 » if (Al > 0 && pred >= (1<<Al)) 545 pred = (int) (((Q10<<7) + num) / (Q10<<8));
534 » pred = (1<<Al)-1; 546 if (Al > 0 && pred >= (1<<Al))
535 » } else { 547 pred = (1<<Al)-1;
536 » pred = (int) (((Q10<<7) - num) / (Q10<<8)); 548 } else {
537 » if (Al > 0 && pred >= (1<<Al)) 549 pred = (int) (((Q10<<7) - num) / (Q10<<8));
538 » pred = (1<<Al)-1; 550 if (Al > 0 && pred >= (1<<Al))
539 » pred = -pred; 551 pred = (1<<Al)-1;
540 » } 552 pred = -pred;
541 » workspace[8] = (JCOEF) pred; 553 }
542 » } 554 workspace[8] = (JCOEF) pred;
543 » /* AC20 */ 555 }
544 » if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { 556 /* AC20 */
545 » num = 9 * Q00 * (DC2 + DC8 - 2*DC5); 557 if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
546 » if (num >= 0) { 558 num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
547 » pred = (int) (((Q20<<7) + num) / (Q20<<8)); 559 if (num >= 0) {
548 » if (Al > 0 && pred >= (1<<Al)) 560 pred = (int) (((Q20<<7) + num) / (Q20<<8));
549 » pred = (1<<Al)-1; 561 if (Al > 0 && pred >= (1<<Al))
550 » } else { 562 pred = (1<<Al)-1;
551 » pred = (int) (((Q20<<7) - num) / (Q20<<8)); 563 } else {
552 » if (Al > 0 && pred >= (1<<Al)) 564 pred = (int) (((Q20<<7) - num) / (Q20<<8));
553 » pred = (1<<Al)-1; 565 if (Al > 0 && pred >= (1<<Al))
554 » pred = -pred; 566 pred = (1<<Al)-1;
555 » } 567 pred = -pred;
556 » workspace[16] = (JCOEF) pred; 568 }
557 » } 569 workspace[16] = (JCOEF) pred;
558 » /* AC11 */ 570 }
559 » if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { 571 /* AC11 */
560 » num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); 572 if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
561 » if (num >= 0) { 573 num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
562 » pred = (int) (((Q11<<7) + num) / (Q11<<8)); 574 if (num >= 0) {
563 » if (Al > 0 && pred >= (1<<Al)) 575 pred = (int) (((Q11<<7) + num) / (Q11<<8));
564 » pred = (1<<Al)-1; 576 if (Al > 0 && pred >= (1<<Al))
565 » } else { 577 pred = (1<<Al)-1;
566 » pred = (int) (((Q11<<7) - num) / (Q11<<8)); 578 } else {
567 » if (Al > 0 && pred >= (1<<Al)) 579 pred = (int) (((Q11<<7) - num) / (Q11<<8));
568 » pred = (1<<Al)-1; 580 if (Al > 0 && pred >= (1<<Al))
569 » pred = -pred; 581 pred = (1<<Al)-1;
570 » } 582 pred = -pred;
571 » workspace[9] = (JCOEF) pred; 583 }
572 » } 584 workspace[9] = (JCOEF) pred;
573 » /* AC02 */ 585 }
574 » if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { 586 /* AC02 */
575 » num = 9 * Q00 * (DC4 + DC6 - 2*DC5); 587 if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
576 » if (num >= 0) { 588 num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
577 » pred = (int) (((Q02<<7) + num) / (Q02<<8)); 589 if (num >= 0) {
578 » if (Al > 0 && pred >= (1<<Al)) 590 pred = (int) (((Q02<<7) + num) / (Q02<<8));
579 » pred = (1<<Al)-1; 591 if (Al > 0 && pred >= (1<<Al))
580 » } else { 592 pred = (1<<Al)-1;
581 » pred = (int) (((Q02<<7) - num) / (Q02<<8)); 593 } else {
582 » if (Al > 0 && pred >= (1<<Al)) 594 pred = (int) (((Q02<<7) - num) / (Q02<<8));
583 » pred = (1<<Al)-1; 595 if (Al > 0 && pred >= (1<<Al))
584 » pred = -pred; 596 pred = (1<<Al)-1;
585 » } 597 pred = -pred;
586 » workspace[2] = (JCOEF) pred; 598 }
587 » } 599 workspace[2] = (JCOEF) pred;
588 » /* OK, do the IDCT */ 600 }
589 » (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, 601 /* OK, do the IDCT */
590 » » » output_ptr, output_col); 602 (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
591 » /* Advance for next column */ 603 output_ptr, output_col);
592 » DC1 = DC2; DC2 = DC3; 604 /* Advance for next column */
593 » DC4 = DC5; DC5 = DC6; 605 DC1 = DC2; DC2 = DC3;
594 » DC7 = DC8; DC8 = DC9; 606 DC4 = DC5; DC5 = DC6;
595 » buffer_ptr++, prev_block_row++, next_block_row++; 607 DC7 = DC8; DC8 = DC9;
596 » output_col += compptr->_DCT_scaled_size; 608 buffer_ptr++, prev_block_row++, next_block_row++;
609 output_col += compptr->_DCT_scaled_size;
597 } 610 }
598 output_ptr += compptr->_DCT_scaled_size; 611 output_ptr += compptr->_DCT_scaled_size;
599 } 612 }
600 } 613 }
601 614
602 if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) 615 if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
603 return JPEG_ROW_COMPLETED; 616 return JPEG_ROW_COMPLETED;
604 return JPEG_SCAN_COMPLETED; 617 return JPEG_SCAN_COMPLETED;
605 } 618 }
606 619
607 #endif /* BLOCK_SMOOTHING_SUPPORTED */ 620 #endif /* BLOCK_SMOOTHING_SUPPORTED */
608 621
609 622
610 /* 623 /*
611 * Initialize coefficient buffer controller. 624 * Initialize coefficient buffer controller.
612 */ 625 */
613 626
614 GLOBAL(void) 627 GLOBAL(void)
615 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) 628 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
616 { 629 {
617 my_coef_ptr coef; 630 my_coef_ptr coef;
618 631
619 coef = (my_coef_ptr) 632 coef = (my_coef_ptr)
620 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 633 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
621 » » » » SIZEOF(my_coef_controller)); 634 sizeof(my_coef_controller));
622 cinfo->coef = (struct jpeg_d_coef_controller *) coef; 635 cinfo->coef = (struct jpeg_d_coef_controller *) coef;
623 coef->pub.start_input_pass = start_input_pass; 636 coef->pub.start_input_pass = start_input_pass;
624 coef->pub.start_output_pass = start_output_pass; 637 coef->pub.start_output_pass = start_output_pass;
625 #ifdef BLOCK_SMOOTHING_SUPPORTED 638 #ifdef BLOCK_SMOOTHING_SUPPORTED
626 coef->coef_bits_latch = NULL; 639 coef->coef_bits_latch = NULL;
627 #endif 640 #endif
628 641
629 /* Create the coefficient buffer. */ 642 /* Create the coefficient buffer. */
630 if (need_full_buffer) { 643 if (need_full_buffer) {
631 #ifdef D_MULTISCAN_FILES_SUPPORTED 644 #ifdef D_MULTISCAN_FILES_SUPPORTED
632 /* Allocate a full-image virtual array for each component, */ 645 /* Allocate a full-image virtual array for each component, */
633 /* padded to a multiple of samp_factor DCT blocks in each direction. */ 646 /* padded to a multiple of samp_factor DCT blocks in each direction. */
634 /* Note we ask for a pre-zeroed array. */ 647 /* Note we ask for a pre-zeroed array. */
635 int ci, access_rows; 648 int ci, access_rows;
636 jpeg_component_info *compptr; 649 jpeg_component_info *compptr;
637 650
638 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 651 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
639 » ci++, compptr++) { 652 ci++, compptr++) {
640 access_rows = compptr->v_samp_factor; 653 access_rows = compptr->v_samp_factor;
641 #ifdef BLOCK_SMOOTHING_SUPPORTED 654 #ifdef BLOCK_SMOOTHING_SUPPORTED
642 /* If block smoothing could be used, need a bigger window */ 655 /* If block smoothing could be used, need a bigger window */
643 if (cinfo->progressive_mode) 656 if (cinfo->progressive_mode)
644 » access_rows *= 3; 657 access_rows *= 3;
645 #endif 658 #endif
646 coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) 659 coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
647 » ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, 660 ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
648 » (JDIMENSION) jround_up((long) compptr->width_in_blocks, 661 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
649 » » » » (long) compptr->h_samp_factor), 662 (long) compptr->h_samp_factor),
650 » (JDIMENSION) jround_up((long) compptr->height_in_blocks, 663 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
651 » » » » (long) compptr->v_samp_factor), 664 (long) compptr->v_samp_factor),
652 » (JDIMENSION) access_rows); 665 (JDIMENSION) access_rows);
653 } 666 }
654 coef->pub.consume_data = consume_data; 667 coef->pub.consume_data = consume_data;
655 coef->pub.decompress_data = decompress_data; 668 coef->pub.decompress_data = decompress_data;
656 coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ 669 coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
657 #else 670 #else
658 ERREXIT(cinfo, JERR_NOT_COMPILED); 671 ERREXIT(cinfo, JERR_NOT_COMPILED);
659 #endif 672 #endif
660 } else { 673 } else {
661 /* We only need a single-MCU buffer. */ 674 /* We only need a single-MCU buffer. */
662 JBLOCKROW buffer; 675 JBLOCKROW buffer;
663 int i; 676 int i;
664 677
665 buffer = (JBLOCKROW) 678 buffer = (JBLOCKROW)
666 (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, 679 (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
667 » » » » D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); 680 D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
668 for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { 681 for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
669 coef->MCU_buffer[i] = buffer + i; 682 coef->MCU_buffer[i] = buffer + i;
670 } 683 }
671 coef->pub.consume_data = dummy_consume_data; 684 coef->pub.consume_data = dummy_consume_data;
672 coef->pub.decompress_data = decompress_onepass; 685 coef->pub.decompress_data = decompress_onepass;
673 coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ 686 coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
674 } 687 }
675 688
676 /* Allocate the workspace buffer */ 689 /* Allocate the workspace buffer */
677 coef->workspace = (JCOEF *) 690 coef->workspace = (JCOEF *)
678 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 691 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
679 SIZEOF(JCOEF) * DCTSIZE2); 692 sizeof(JCOEF) * DCTSIZE2);
680 } 693 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698