Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(158)

Side by Side Diff: jdarith.c

Issue 1934113002: Update libjpeg_turbo to 1.4.90 from https://github.com/libjpeg-turbo/ (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/libjpeg_turbo.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * jdarith.c 2 * jdarith.c
3 * 3 *
4 * This file is part of the Independent JPEG Group's software: 4 * This file was part of the Independent JPEG Group's software:
5 * Developed 1997-2009 by Guido Vollbeding. 5 * Developed 1997-2015 by Guido Vollbeding.
6 * libjpeg-turbo Modifications: 6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2015, D. R. Commander. 7 * Copyright (C) 2015, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README file. 8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
9 * 10 *
10 * This file contains portable arithmetic entropy decoding routines for JPEG 11 * This file contains portable arithmetic entropy decoding routines for JPEG
11 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). 12 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
12 * 13 *
13 * Both sequential and progressive modes are supported in this single module. 14 * Both sequential and progressive modes are supported in this single module.
14 * 15 *
15 * Suspension is not currently supported in this module. 16 * Suspension is not currently supported in this module.
16 */ 17 */
17 18
18 #define JPEG_INTERNALS 19 #define JPEG_INTERNALS
19 #include "jinclude.h" 20 #include "jinclude.h"
20 #include "jpeglib.h" 21 #include "jpeglib.h"
21 22
22 23
23 /* Expanded entropy decoder object for arithmetic decoding. */ 24 /* Expanded entropy decoder object for arithmetic decoding. */
24 25
25 typedef struct { 26 typedef struct {
26 struct jpeg_entropy_decoder pub; /* public fields */ 27 struct jpeg_entropy_decoder pub; /* public fields */
27 28
28 INT32 c; /* C register, base of coding interval + input bit buffer */ 29 JLONG c; /* C register, base of coding interval + input bit buffer */
29 INT32 a; /* A register, normalized size of coding interval */ 30 JLONG a; /* A register, normalized size of coding interval */
30 int ct; /* bit shift counter, # of bits left in bit buffer part of C */ 31 int ct; /* bit shift counter, # of bits left in bit buffer part of C */
31 /* init: ct = -16 */ 32 /* init: ct = -16 */
32 /* run: ct = 0..7 */ 33 /* run: ct = 0..7 */
33 /* error: ct = -1 */ 34 /* error: ct = -1 */
34 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ 35 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
35 int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ 36 int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
36 37
37 unsigned int restarts_to_go;» /* MCUs left in this restart interval */ 38 unsigned int restarts_to_go; /* MCUs left in this restart interval */
38 39
39 /* Pointers to statistics areas (these workspaces have image lifespan) */ 40 /* Pointers to statistics areas (these workspaces have image lifespan) */
40 unsigned char * dc_stats[NUM_ARITH_TBLS]; 41 unsigned char *dc_stats[NUM_ARITH_TBLS];
41 unsigned char * ac_stats[NUM_ARITH_TBLS]; 42 unsigned char *ac_stats[NUM_ARITH_TBLS];
42 43
43 /* Statistics bin for coding with fixed probability 0.5 */ 44 /* Statistics bin for coding with fixed probability 0.5 */
44 unsigned char fixed_bin[4]; 45 unsigned char fixed_bin[4];
45 } arith_entropy_decoder; 46 } arith_entropy_decoder;
46 47
47 typedef arith_entropy_decoder * arith_entropy_ptr; 48 typedef arith_entropy_decoder *arith_entropy_ptr;
48 49
49 /* The following two definitions specify the allocation chunk size 50 /* The following two definitions specify the allocation chunk size
50 * for the statistics area. 51 * for the statistics area.
51 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least 52 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
52 * 49 statistics bins for DC, and 245 statistics bins for AC coding. 53 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
53 * 54 *
54 * We use a compact representation with 1 byte per statistics bin, 55 * We use a compact representation with 1 byte per statistics bin,
55 * thus the numbers directly represent byte sizes. 56 * thus the numbers directly represent byte sizes.
56 * This 1 byte per statistics bin contains the meaning of the MPS 57 * This 1 byte per statistics bin contains the meaning of the MPS
57 * (more probable symbol) in the highest bit (mask 0x80), and the 58 * (more probable symbol) in the highest bit (mask 0x80), and the
58 * index into the probability estimation state machine table 59 * index into the probability estimation state machine table
59 * in the lower bits (mask 0x7F). 60 * in the lower bits (mask 0x7F).
60 */ 61 */
61 62
62 #define DC_STAT_BINS 64 63 #define DC_STAT_BINS 64
63 #define AC_STAT_BINS 256 64 #define AC_STAT_BINS 256
64 65
65 66
66 LOCAL(int) 67 LOCAL(int)
67 get_byte (j_decompress_ptr cinfo) 68 get_byte (j_decompress_ptr cinfo)
68 /* Read next input byte; we do not support suspension in this module. */ 69 /* Read next input byte; we do not support suspension in this module. */
69 { 70 {
70 struct jpeg_source_mgr * src = cinfo->src; 71 struct jpeg_source_mgr *src = cinfo->src;
71 72
72 if (src->bytes_in_buffer == 0) 73 if (src->bytes_in_buffer == 0)
73 if (! (*src->fill_input_buffer) (cinfo)) 74 if (! (*src->fill_input_buffer) (cinfo))
74 ERREXIT(cinfo, JERR_CANT_SUSPEND); 75 ERREXIT(cinfo, JERR_CANT_SUSPEND);
75 src->bytes_in_buffer--; 76 src->bytes_in_buffer--;
76 return GETJOCTET(*src->next_input_byte++); 77 return GETJOCTET(*src->next_input_byte++);
77 } 78 }
78 79
79 80
80 /* 81 /*
81 * The core arithmetic decoding routine (common in JPEG and JBIG). 82 * The core arithmetic decoding routine (common in JPEG and JBIG).
82 * This needs to go as fast as possible. 83 * This needs to go as fast as possible.
83 * Machine-dependent optimization facilities 84 * Machine-dependent optimization facilities
84 * are not utilized in this portable implementation. 85 * are not utilized in this portable implementation.
85 * However, this code should be fairly efficient and 86 * However, this code should be fairly efficient and
86 * may be a good base for further optimizations anyway. 87 * may be a good base for further optimizations anyway.
87 * 88 *
88 * Return value is 0 or 1 (binary decision). 89 * Return value is 0 or 1 (binary decision).
89 * 90 *
90 * Note: I've changed the handling of the code base & bit 91 * Note: I've changed the handling of the code base & bit
91 * buffer register C compared to other implementations 92 * buffer register C compared to other implementations
92 * based on the standards layout & procedures. 93 * based on the standards layout & procedures.
93 * While it also contains both the actual base of the 94 * While it also contains both the actual base of the
94 * coding interval (16 bits) and the next-bits buffer, 95 * coding interval (16 bits) and the next-bits buffer,
95 * the cut-point between these two parts is floating 96 * the cut-point between these two parts is floating
96 * (instead of fixed) with the bit shift counter CT. 97 * (instead of fixed) with the bit shift counter CT.
97 * Thus, we also need only one (variable instead of 98 * Thus, we also need only one (variable instead of
98 * fixed size) shift for the LPS/MPS decision, and 99 * fixed size) shift for the LPS/MPS decision, and
99 * we can get away with any renormalization update 100 * we can do away with any renormalization update
100 * of C (except for new data insertion, of course). 101 * of C (except for new data insertion, of course).
101 * 102 *
102 * I've also introduced a new scheme for accessing 103 * I've also introduced a new scheme for accessing
103 * the probability estimation state machine table, 104 * the probability estimation state machine table,
104 * derived from Markus Kuhn's JBIG implementation. 105 * derived from Markus Kuhn's JBIG implementation.
105 */ 106 */
106 107
107 LOCAL(int) 108 LOCAL(int)
108 arith_decode (j_decompress_ptr cinfo, unsigned char *st) 109 arith_decode (j_decompress_ptr cinfo, unsigned char *st)
109 { 110 {
110 register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; 111 register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
111 register unsigned char nl, nm; 112 register unsigned char nl, nm;
112 register INT32 qe, temp; 113 register JLONG qe, temp;
113 register int sv, data; 114 register int sv, data;
114 115
115 /* Renormalization & data input per section D.2.6 */ 116 /* Renormalization & data input per section D.2.6 */
116 while (e->a < 0x8000L) { 117 while (e->a < 0x8000L) {
117 if (--e->ct < 0) { 118 if (--e->ct < 0) {
118 /* Need to fetch next data byte */ 119 /* Need to fetch next data byte */
119 if (cinfo->unread_marker) 120 if (cinfo->unread_marker)
120 » data = 0;» » /* stuff zero data */ 121 data = 0; /* stuff zero data */
121 else { 122 else {
122 » data = get_byte(cinfo);»/* read next input byte */ 123 data = get_byte(cinfo); /* read next input byte */
123 » if (data == 0xFF) {» /* zero stuff or marker code */ 124 if (data == 0xFF) { /* zero stuff or marker code */
124 » do data = get_byte(cinfo); 125 do data = get_byte(cinfo);
125 » while (data == 0xFF);»/* swallow extra 0xFF bytes */ 126 while (data == 0xFF); /* swallow extra 0xFF bytes */
126 » if (data == 0) 127 if (data == 0)
127 » data = 0xFF;» /* discard stuffed zero byte */ 128 data = 0xFF; /* discard stuffed zero byte */
128 » else { 129 else {
129 » /* Note: Different from the Huffman decoder, hitting 130 /* Note: Different from the Huffman decoder, hitting
130 » * a marker while processing the compressed data 131 * a marker while processing the compressed data
131 » * segment is legal in arithmetic coding. 132 * segment is legal in arithmetic coding.
132 » * The convention is to supply zero data 133 * The convention is to supply zero data
133 » * then until decoding is complete. 134 * then until decoding is complete.
134 » */ 135 */
135 » cinfo->unread_marker = data; 136 cinfo->unread_marker = data;
136 » data = 0; 137 data = 0;
137 » } 138 }
138 » } 139 }
139 } 140 }
140 e->c = (e->c << 8) | data; /* insert data into C register */ 141 e->c = (e->c << 8) | data; /* insert data into C register */
141 if ((e->ct += 8) < 0)» /* update bit shift counter */ 142 if ((e->ct += 8) < 0) /* update bit shift counter */
142 » /* Need more initial bytes */ 143 /* Need more initial bytes */
143 » if (++e->ct == 0) 144 if (++e->ct == 0)
144 » /* Got 2 initial bytes -> re-init A and exit loop */ 145 /* Got 2 initial bytes -> re-init A and exit loop */
145 » e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ 146 e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
146 } 147 }
147 e->a <<= 1; 148 e->a <<= 1;
148 } 149 }
149 150
150 /* Fetch values from our compact representation of Table D.2: 151 /* Fetch values from our compact representation of Table D.2:
151 * Qe values and probability estimation state machine 152 * Qe values and probability estimation state machine
152 */ 153 */
153 sv = *st; 154 sv = *st;
154 qe = jpeg_aritab[sv & 0x7F];» /* => Qe_Value */ 155 qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
155 nl = (unsigned char) qe & 0xFF; qe >>= 8;» /* Next_Index_LPS + Switch_MPS * / 156 nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
156 nm = (unsigned char) qe & 0xFF; qe >>= 8;» /* Next_Index_MPS */ 157 nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
157 158
158 /* Decode & estimation procedures per sections D.2.4 & D.2.5 */ 159 /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
159 temp = e->a - qe; 160 temp = e->a - qe;
160 e->a = temp; 161 e->a = temp;
161 temp <<= e->ct; 162 temp <<= e->ct;
162 if (e->c >= temp) { 163 if (e->c >= temp) {
163 e->c -= temp; 164 e->c -= temp;
164 /* Conditional LPS (less probable symbol) exchange */ 165 /* Conditional LPS (less probable symbol) exchange */
165 if (e->a < qe) { 166 if (e->a < qe) {
166 e->a = qe; 167 e->a = qe;
167 *st = (sv & 0x80) ^ nm;» /* Estimate_after_MPS */ 168 *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
168 } else { 169 } else {
169 e->a = qe; 170 e->a = qe;
170 *st = (sv & 0x80) ^ nl;» /* Estimate_after_LPS */ 171 *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
171 sv ^= 0x80;» » /* Exchange LPS/MPS */ 172 sv ^= 0x80; /* Exchange LPS/MPS */
172 } 173 }
173 } else if (e->a < 0x8000L) { 174 } else if (e->a < 0x8000L) {
174 /* Conditional MPS (more probable symbol) exchange */ 175 /* Conditional MPS (more probable symbol) exchange */
175 if (e->a < qe) { 176 if (e->a < qe) {
176 *st = (sv & 0x80) ^ nl;» /* Estimate_after_LPS */ 177 *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
177 sv ^= 0x80;» » /* Exchange LPS/MPS */ 178 sv ^= 0x80; /* Exchange LPS/MPS */
178 } else { 179 } else {
179 *st = (sv & 0x80) ^ nm;» /* Estimate_after_MPS */ 180 *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
180 } 181 }
181 } 182 }
182 183
183 return sv >> 7; 184 return sv >> 7;
184 } 185 }
185 186
186 187
187 /* 188 /*
188 * Check for a restart marker & resynchronize decoder. 189 * Check for a restart marker & resynchronize decoder.
189 */ 190 */
190 191
191 LOCAL(void) 192 LOCAL(void)
192 process_restart (j_decompress_ptr cinfo) 193 process_restart (j_decompress_ptr cinfo)
193 { 194 {
194 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 195 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
195 int ci; 196 int ci;
196 jpeg_component_info * compptr; 197 jpeg_component_info *compptr;
197 198
198 /* Advance past the RSTn marker */ 199 /* Advance past the RSTn marker */
199 if (! (*cinfo->marker->read_restart_marker) (cinfo)) 200 if (! (*cinfo->marker->read_restart_marker) (cinfo))
200 ERREXIT(cinfo, JERR_CANT_SUSPEND); 201 ERREXIT(cinfo, JERR_CANT_SUSPEND);
201 202
202 /* Re-initialize statistics areas */ 203 /* Re-initialize statistics areas */
203 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 204 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
204 compptr = cinfo->cur_comp_info[ci]; 205 compptr = cinfo->cur_comp_info[ci];
205 if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { 206 if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
206 MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); 207 MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
207 /* Reset DC predictions to 0 */ 208 /* Reset DC predictions to 0 */
208 entropy->last_dc_val[ci] = 0; 209 entropy->last_dc_val[ci] = 0;
209 entropy->dc_context[ci] = 0; 210 entropy->dc_context[ci] = 0;
210 } 211 }
211 if (! cinfo->progressive_mode || cinfo->Ss) { 212 if (!cinfo->progressive_mode || cinfo->Ss) {
212 MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); 213 MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
213 } 214 }
214 } 215 }
215 216
216 /* Reset arithmetic decoding variables */ 217 /* Reset arithmetic decoding variables */
217 entropy->c = 0; 218 entropy->c = 0;
218 entropy->a = 0; 219 entropy->a = 0;
219 entropy->ct = -16;» /* force reading 2 initial bytes to fill C */ 220 entropy->ct = -16; /* force reading 2 initial bytes to fill C */
220 221
221 /* Reset restart counter */ 222 /* Reset restart counter */
222 entropy->restarts_to_go = cinfo->restart_interval; 223 entropy->restarts_to_go = cinfo->restart_interval;
223 } 224 }
224 225
225 226
226 /* 227 /*
227 * Arithmetic MCU decoding. 228 * Arithmetic MCU decoding.
228 * Each of these routines decodes and returns one MCU's worth of 229 * Each of these routines decodes and returns one MCU's worth of
229 * arithmetic-compressed coefficients. 230 * arithmetic-compressed coefficients.
(...skipping 18 matching lines...) Expand all
248 int blkn, ci, tbl, sign; 249 int blkn, ci, tbl, sign;
249 int v, m; 250 int v, m;
250 251
251 /* Process restart marker if needed */ 252 /* Process restart marker if needed */
252 if (cinfo->restart_interval) { 253 if (cinfo->restart_interval) {
253 if (entropy->restarts_to_go == 0) 254 if (entropy->restarts_to_go == 0)
254 process_restart(cinfo); 255 process_restart(cinfo);
255 entropy->restarts_to_go--; 256 entropy->restarts_to_go--;
256 } 257 }
257 258
258 if (entropy->ct == -1) return TRUE;» /* if error do nothing */ 259 if (entropy->ct == -1) return TRUE; /* if error do nothing */
259 260
260 /* Outer loop handles each block in the MCU */ 261 /* Outer loop handles each block in the MCU */
261 262
262 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 263 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
263 block = MCU_data[blkn]; 264 block = MCU_data[blkn];
264 ci = cinfo->MCU_membership[blkn]; 265 ci = cinfo->MCU_membership[blkn];
265 tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; 266 tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
266 267
267 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ 268 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
268 269
269 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ 270 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
270 st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; 271 st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
271 272
272 /* Figure F.19: Decode_DC_DIFF */ 273 /* Figure F.19: Decode_DC_DIFF */
273 if (arith_decode(cinfo, st) == 0) 274 if (arith_decode(cinfo, st) == 0)
274 entropy->dc_context[ci] = 0; 275 entropy->dc_context[ci] = 0;
275 else { 276 else {
276 /* Figure F.21: Decoding nonzero value v */ 277 /* Figure F.21: Decoding nonzero value v */
277 /* Figure F.22: Decoding the sign of v */ 278 /* Figure F.22: Decoding the sign of v */
278 sign = arith_decode(cinfo, st + 1); 279 sign = arith_decode(cinfo, st + 1);
279 st += 2; st += sign; 280 st += 2; st += sign;
280 /* Figure F.23: Decoding the magnitude category of v */ 281 /* Figure F.23: Decoding the magnitude category of v */
281 if ((m = arith_decode(cinfo, st)) != 0) { 282 if ((m = arith_decode(cinfo, st)) != 0) {
282 » st = entropy->dc_stats[tbl] + 20;» /* Table F.4: X1 = 20 */ 283 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
283 » while (arith_decode(cinfo, st)) { 284 while (arith_decode(cinfo, st)) {
284 » if ((m <<= 1) == 0x8000) { 285 if ((m <<= 1) == 0x8000) {
285 » WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 286 WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
286 » entropy->ct = -1;» » » /* magnitude overflow */ 287 entropy->ct = -1; /* magnitude overflow */
287 » return TRUE; 288 return TRUE;
288 » } 289 }
289 » st += 1; 290 st += 1;
290 » } 291 }
291 } 292 }
292 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ 293 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
293 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) 294 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
294 » entropy->dc_context[ci] = 0;» » /* zero diff category */ 295 entropy->dc_context[ci] = 0; /* zero diff category */
295 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) 296 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
296 » entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ 297 entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
297 else 298 else
298 » entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ 299 entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
299 v = m; 300 v = m;
300 /* Figure F.24: Decoding the magnitude bit pattern of v */ 301 /* Figure F.24: Decoding the magnitude bit pattern of v */
301 st += 14; 302 st += 14;
302 while (m >>= 1) 303 while (m >>= 1)
303 » if (arith_decode(cinfo, st)) v |= m; 304 if (arith_decode(cinfo, st)) v |= m;
304 v += 1; if (sign) v = -v; 305 v += 1; if (sign) v = -v;
305 entropy->last_dc_val[ci] += v; 306 entropy->last_dc_val[ci] += v;
306 } 307 }
307 308
308 /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ 309 /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
309 (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al); 310 (*block)[0] = (JCOEF) LEFT_SHIFT(entropy->last_dc_val[ci], cinfo->Al);
310 } 311 }
311 312
312 return TRUE; 313 return TRUE;
313 } 314 }
314 315
315 316
316 /* 317 /*
317 * MCU decoding for AC initial scan (either spectral selection, 318 * MCU decoding for AC initial scan (either spectral selection,
318 * or first pass of successive approximation). 319 * or first pass of successive approximation).
319 */ 320 */
320 321
321 METHODDEF(boolean) 322 METHODDEF(boolean)
322 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 323 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
323 { 324 {
324 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 325 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
325 JBLOCKROW block; 326 JBLOCKROW block;
326 unsigned char *st; 327 unsigned char *st;
327 int tbl, sign, k; 328 int tbl, sign, k;
328 int v, m; 329 int v, m;
329 330
330 /* Process restart marker if needed */ 331 /* Process restart marker if needed */
331 if (cinfo->restart_interval) { 332 if (cinfo->restart_interval) {
332 if (entropy->restarts_to_go == 0) 333 if (entropy->restarts_to_go == 0)
333 process_restart(cinfo); 334 process_restart(cinfo);
334 entropy->restarts_to_go--; 335 entropy->restarts_to_go--;
335 } 336 }
336 337
337 if (entropy->ct == -1) return TRUE;» /* if error do nothing */ 338 if (entropy->ct == -1) return TRUE; /* if error do nothing */
338 339
339 /* There is always only one block per MCU */ 340 /* There is always only one block per MCU */
340 block = MCU_data[0]; 341 block = MCU_data[0];
341 tbl = cinfo->cur_comp_info[0]->ac_tbl_no; 342 tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
342 343
343 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ 344 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
344 345
345 /* Figure F.20: Decode_AC_coefficients */ 346 /* Figure F.20: Decode_AC_coefficients */
346 for (k = cinfo->Ss; k <= cinfo->Se; k++) { 347 for (k = cinfo->Ss; k <= cinfo->Se; k++) {
347 st = entropy->ac_stats[tbl] + 3 * (k - 1); 348 st = entropy->ac_stats[tbl] + 3 * (k - 1);
348 if (arith_decode(cinfo, st)) break;»» /* EOB flag */ 349 if (arith_decode(cinfo, st)) break; /* EOB flag */
349 while (arith_decode(cinfo, st + 1) == 0) { 350 while (arith_decode(cinfo, st + 1) == 0) {
350 st += 3; k++; 351 st += 3; k++;
351 if (k > cinfo->Se) { 352 if (k > cinfo->Se) {
352 » WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 353 WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
353 » entropy->ct = -1;» » » /* spectral overflow */ 354 entropy->ct = -1; /* spectral overflow */
354 » return TRUE; 355 return TRUE;
355 } 356 }
356 } 357 }
357 /* Figure F.21: Decoding nonzero value v */ 358 /* Figure F.21: Decoding nonzero value v */
358 /* Figure F.22: Decoding the sign of v */ 359 /* Figure F.22: Decoding the sign of v */
359 sign = arith_decode(cinfo, entropy->fixed_bin); 360 sign = arith_decode(cinfo, entropy->fixed_bin);
360 st += 2; 361 st += 2;
361 /* Figure F.23: Decoding the magnitude category of v */ 362 /* Figure F.23: Decoding the magnitude category of v */
362 if ((m = arith_decode(cinfo, st)) != 0) { 363 if ((m = arith_decode(cinfo, st)) != 0) {
363 if (arith_decode(cinfo, st)) { 364 if (arith_decode(cinfo, st)) {
364 » m <<= 1; 365 m <<= 1;
365 » st = entropy->ac_stats[tbl] + 366 st = entropy->ac_stats[tbl] +
366 » (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); 367 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
367 » while (arith_decode(cinfo, st)) { 368 while (arith_decode(cinfo, st)) {
368 » if ((m <<= 1) == 0x8000) { 369 if ((m <<= 1) == 0x8000) {
369 » WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 370 WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
370 » entropy->ct = -1;» » » /* magnitude overflow */ 371 entropy->ct = -1; /* magnitude overflow */
371 » return TRUE; 372 return TRUE;
372 » } 373 }
373 » st += 1; 374 st += 1;
374 » } 375 }
375 } 376 }
376 } 377 }
377 v = m; 378 v = m;
378 /* Figure F.24: Decoding the magnitude bit pattern of v */ 379 /* Figure F.24: Decoding the magnitude bit pattern of v */
379 st += 14; 380 st += 14;
380 while (m >>= 1) 381 while (m >>= 1)
381 if (arith_decode(cinfo, st)) v |= m; 382 if (arith_decode(cinfo, st)) v |= m;
382 v += 1; if (sign) v = -v; 383 v += 1; if (sign) v = -v;
383 /* Scale and output coefficient in natural (dezigzagged) order */ 384 /* Scale and output coefficient in natural (dezigzagged) order */
384 (*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al); 385 (*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al);
(...skipping 14 matching lines...) Expand all
399 unsigned char *st; 400 unsigned char *st;
400 int p1, blkn; 401 int p1, blkn;
401 402
402 /* Process restart marker if needed */ 403 /* Process restart marker if needed */
403 if (cinfo->restart_interval) { 404 if (cinfo->restart_interval) {
404 if (entropy->restarts_to_go == 0) 405 if (entropy->restarts_to_go == 0)
405 process_restart(cinfo); 406 process_restart(cinfo);
406 entropy->restarts_to_go--; 407 entropy->restarts_to_go--;
407 } 408 }
408 409
409 st = entropy->fixed_bin;» /* use fixed probability estimation */ 410 st = entropy->fixed_bin; /* use fixed probability estimation */
410 p1 = 1 << cinfo->Al;» » /* 1 in the bit position being coded */ 411 p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
411 412
412 /* Outer loop handles each block in the MCU */ 413 /* Outer loop handles each block in the MCU */
413 414
414 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 415 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
415 /* Encoded data is simply the next bit of the two's-complement DC value */ 416 /* Encoded data is simply the next bit of the two's-complement DC value */
416 if (arith_decode(cinfo, st)) 417 if (arith_decode(cinfo, st))
417 MCU_data[blkn][0][0] |= p1; 418 MCU_data[blkn][0][0] |= p1;
418 } 419 }
419 420
420 return TRUE; 421 return TRUE;
(...skipping 14 matching lines...) Expand all
435 int tbl, k, kex; 436 int tbl, k, kex;
436 int p1, m1; 437 int p1, m1;
437 438
438 /* Process restart marker if needed */ 439 /* Process restart marker if needed */
439 if (cinfo->restart_interval) { 440 if (cinfo->restart_interval) {
440 if (entropy->restarts_to_go == 0) 441 if (entropy->restarts_to_go == 0)
441 process_restart(cinfo); 442 process_restart(cinfo);
442 entropy->restarts_to_go--; 443 entropy->restarts_to_go--;
443 } 444 }
444 445
445 if (entropy->ct == -1) return TRUE;» /* if error do nothing */ 446 if (entropy->ct == -1) return TRUE; /* if error do nothing */
446 447
447 /* There is always only one block per MCU */ 448 /* There is always only one block per MCU */
448 block = MCU_data[0]; 449 block = MCU_data[0];
449 tbl = cinfo->cur_comp_info[0]->ac_tbl_no; 450 tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
450 451
451 p1 = 1 << cinfo->Al;» » /* 1 in the bit position being coded */ 452 p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
452 m1 = (-1) << cinfo->Al;» /* -1 in the bit position being coded */ 453 m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
453 454
454 /* Establish EOBx (previous stage end-of-block) index */ 455 /* Establish EOBx (previous stage end-of-block) index */
455 for (kex = cinfo->Se; kex > 0; kex--) 456 for (kex = cinfo->Se; kex > 0; kex--)
456 if ((*block)[jpeg_natural_order[kex]]) break; 457 if ((*block)[jpeg_natural_order[kex]]) break;
457 458
458 for (k = cinfo->Ss; k <= cinfo->Se; k++) { 459 for (k = cinfo->Ss; k <= cinfo->Se; k++) {
459 st = entropy->ac_stats[tbl] + 3 * (k - 1); 460 st = entropy->ac_stats[tbl] + 3 * (k - 1);
460 if (k > kex) 461 if (k > kex)
461 if (arith_decode(cinfo, st)) break;» /* EOB flag */ 462 if (arith_decode(cinfo, st)) break; /* EOB flag */
462 for (;;) { 463 for (;;) {
463 thiscoef = *block + jpeg_natural_order[k]; 464 thiscoef = *block + jpeg_natural_order[k];
464 if (*thiscoef) {» » » » /* previously nonzero coef */ 465 if (*thiscoef) { /* previously nonzero coef */
465 » if (arith_decode(cinfo, st + 2)) { 466 if (arith_decode(cinfo, st + 2)) {
466 » if (*thiscoef < 0) 467 if (*thiscoef < 0)
467 » *thiscoef += m1; 468 *thiscoef += m1;
468 » else 469 else
469 » *thiscoef += p1; 470 *thiscoef += p1;
470 » } 471 }
471 » break; 472 break;
472 } 473 }
473 if (arith_decode(cinfo, st + 1)) {» /* newly nonzero coef */ 474 if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
474 » if (arith_decode(cinfo, entropy->fixed_bin)) 475 if (arith_decode(cinfo, entropy->fixed_bin))
475 » *thiscoef = m1; 476 *thiscoef = m1;
476 » else 477 else
477 » *thiscoef = p1; 478 *thiscoef = p1;
478 » break; 479 break;
479 } 480 }
480 st += 3; k++; 481 st += 3; k++;
481 if (k > cinfo->Se) { 482 if (k > cinfo->Se) {
482 » WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 483 WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
483 » entropy->ct = -1;» » » /* spectral overflow */ 484 entropy->ct = -1; /* spectral overflow */
484 » return TRUE; 485 return TRUE;
485 } 486 }
486 } 487 }
487 } 488 }
488 489
489 return TRUE; 490 return TRUE;
490 } 491 }
491 492
492 493
493 /* 494 /*
494 * Decode one MCU's worth of arithmetic-compressed coefficients. 495 * Decode one MCU's worth of arithmetic-compressed coefficients.
495 */ 496 */
496 497
497 METHODDEF(boolean) 498 METHODDEF(boolean)
498 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 499 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
499 { 500 {
500 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 501 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
501 jpeg_component_info * compptr; 502 jpeg_component_info *compptr;
502 JBLOCKROW block; 503 JBLOCKROW block;
503 unsigned char *st; 504 unsigned char *st;
504 int blkn, ci, tbl, sign, k; 505 int blkn, ci, tbl, sign, k;
505 int v, m; 506 int v, m;
506 507
507 /* Process restart marker if needed */ 508 /* Process restart marker if needed */
508 if (cinfo->restart_interval) { 509 if (cinfo->restart_interval) {
509 if (entropy->restarts_to_go == 0) 510 if (entropy->restarts_to_go == 0)
510 process_restart(cinfo); 511 process_restart(cinfo);
511 entropy->restarts_to_go--; 512 entropy->restarts_to_go--;
512 } 513 }
513 514
514 if (entropy->ct == -1) return TRUE;» /* if error do nothing */ 515 if (entropy->ct == -1) return TRUE; /* if error do nothing */
515 516
516 /* Outer loop handles each block in the MCU */ 517 /* Outer loop handles each block in the MCU */
517 518
518 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 519 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
519 block = MCU_data ? MCU_data[blkn] : NULL; 520 block = MCU_data ? MCU_data[blkn] : NULL;
520 ci = cinfo->MCU_membership[blkn]; 521 ci = cinfo->MCU_membership[blkn];
521 compptr = cinfo->cur_comp_info[ci]; 522 compptr = cinfo->cur_comp_info[ci];
522 523
523 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ 524 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
524 525
525 tbl = compptr->dc_tbl_no; 526 tbl = compptr->dc_tbl_no;
526 527
527 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ 528 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
528 st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; 529 st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
529 530
530 /* Figure F.19: Decode_DC_DIFF */ 531 /* Figure F.19: Decode_DC_DIFF */
531 if (arith_decode(cinfo, st) == 0) 532 if (arith_decode(cinfo, st) == 0)
532 entropy->dc_context[ci] = 0; 533 entropy->dc_context[ci] = 0;
533 else { 534 else {
534 /* Figure F.21: Decoding nonzero value v */ 535 /* Figure F.21: Decoding nonzero value v */
535 /* Figure F.22: Decoding the sign of v */ 536 /* Figure F.22: Decoding the sign of v */
536 sign = arith_decode(cinfo, st + 1); 537 sign = arith_decode(cinfo, st + 1);
537 st += 2; st += sign; 538 st += 2; st += sign;
538 /* Figure F.23: Decoding the magnitude category of v */ 539 /* Figure F.23: Decoding the magnitude category of v */
539 if ((m = arith_decode(cinfo, st)) != 0) { 540 if ((m = arith_decode(cinfo, st)) != 0) {
540 » st = entropy->dc_stats[tbl] + 20;» /* Table F.4: X1 = 20 */ 541 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
541 » while (arith_decode(cinfo, st)) { 542 while (arith_decode(cinfo, st)) {
542 » if ((m <<= 1) == 0x8000) { 543 if ((m <<= 1) == 0x8000) {
543 » WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 544 WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
544 » entropy->ct = -1;» » » /* magnitude overflow */ 545 entropy->ct = -1; /* magnitude overflow */
545 » return TRUE; 546 return TRUE;
546 » } 547 }
547 » st += 1; 548 st += 1;
548 » } 549 }
549 } 550 }
550 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ 551 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
551 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) 552 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
552 » entropy->dc_context[ci] = 0;» » /* zero diff category */ 553 entropy->dc_context[ci] = 0; /* zero diff category */
553 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) 554 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
554 » entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ 555 entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
555 else 556 else
556 » entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ 557 entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
557 v = m; 558 v = m;
558 /* Figure F.24: Decoding the magnitude bit pattern of v */ 559 /* Figure F.24: Decoding the magnitude bit pattern of v */
559 st += 14; 560 st += 14;
560 while (m >>= 1) 561 while (m >>= 1)
561 » if (arith_decode(cinfo, st)) v |= m; 562 if (arith_decode(cinfo, st)) v |= m;
562 v += 1; if (sign) v = -v; 563 v += 1; if (sign) v = -v;
563 entropy->last_dc_val[ci] += v; 564 entropy->last_dc_val[ci] += v;
564 } 565 }
565 566
566 if (block) 567 if (block)
567 (*block)[0] = (JCOEF) entropy->last_dc_val[ci]; 568 (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
568 569
569 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ 570 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
570 571
571 tbl = compptr->ac_tbl_no; 572 tbl = compptr->ac_tbl_no;
572 573
573 /* Figure F.20: Decode_AC_coefficients */ 574 /* Figure F.20: Decode_AC_coefficients */
574 for (k = 1; k <= DCTSIZE2 - 1; k++) { 575 for (k = 1; k <= DCTSIZE2 - 1; k++) {
575 st = entropy->ac_stats[tbl] + 3 * (k - 1); 576 st = entropy->ac_stats[tbl] + 3 * (k - 1);
576 if (arith_decode(cinfo, st)) break;» /* EOB flag */ 577 if (arith_decode(cinfo, st)) break; /* EOB flag */
577 while (arith_decode(cinfo, st + 1) == 0) { 578 while (arith_decode(cinfo, st + 1) == 0) {
578 » st += 3; k++; 579 st += 3; k++;
579 » if (k > DCTSIZE2 - 1) { 580 if (k > DCTSIZE2 - 1) {
580 » WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 581 WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
581 » entropy->ct = -1;» » » /* spectral overflow */ 582 entropy->ct = -1; /* spectral overflow */
582 » return TRUE; 583 return TRUE;
583 » } 584 }
584 } 585 }
585 /* Figure F.21: Decoding nonzero value v */ 586 /* Figure F.21: Decoding nonzero value v */
586 /* Figure F.22: Decoding the sign of v */ 587 /* Figure F.22: Decoding the sign of v */
587 sign = arith_decode(cinfo, entropy->fixed_bin); 588 sign = arith_decode(cinfo, entropy->fixed_bin);
588 st += 2; 589 st += 2;
589 /* Figure F.23: Decoding the magnitude category of v */ 590 /* Figure F.23: Decoding the magnitude category of v */
590 if ((m = arith_decode(cinfo, st)) != 0) { 591 if ((m = arith_decode(cinfo, st)) != 0) {
591 » if (arith_decode(cinfo, st)) { 592 if (arith_decode(cinfo, st)) {
592 » m <<= 1; 593 m <<= 1;
593 » st = entropy->ac_stats[tbl] + 594 st = entropy->ac_stats[tbl] +
594 » (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); 595 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
595 » while (arith_decode(cinfo, st)) { 596 while (arith_decode(cinfo, st)) {
596 » if ((m <<= 1) == 0x8000) { 597 if ((m <<= 1) == 0x8000) {
597 » WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 598 WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
598 » entropy->ct = -1;»» » /* magnitude overflow */ 599 entropy->ct = -1; /* magnitude overflow */
599 » return TRUE; 600 return TRUE;
600 » } 601 }
601 » st += 1; 602 st += 1;
602 » } 603 }
603 » } 604 }
604 } 605 }
605 v = m; 606 v = m;
606 /* Figure F.24: Decoding the magnitude bit pattern of v */ 607 /* Figure F.24: Decoding the magnitude bit pattern of v */
607 st += 14; 608 st += 14;
608 while (m >>= 1) 609 while (m >>= 1)
609 » if (arith_decode(cinfo, st)) v |= m; 610 if (arith_decode(cinfo, st)) v |= m;
610 v += 1; if (sign) v = -v; 611 v += 1; if (sign) v = -v;
611 if (block) 612 if (block)
612 (*block)[jpeg_natural_order[k]] = (JCOEF) v; 613 (*block)[jpeg_natural_order[k]] = (JCOEF) v;
613 } 614 }
614 } 615 }
615 616
616 return TRUE; 617 return TRUE;
617 } 618 }
618 619
619 620
620 /* 621 /*
621 * Initialize for an arithmetic-compressed scan. 622 * Initialize for an arithmetic-compressed scan.
622 */ 623 */
623 624
624 METHODDEF(void) 625 METHODDEF(void)
625 start_pass (j_decompress_ptr cinfo) 626 start_pass (j_decompress_ptr cinfo)
626 { 627 {
627 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 628 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
628 int ci, tbl; 629 int ci, tbl;
629 jpeg_component_info * compptr; 630 jpeg_component_info *compptr;
630 631
631 if (cinfo->progressive_mode) { 632 if (cinfo->progressive_mode) {
632 /* Validate progressive scan parameters */ 633 /* Validate progressive scan parameters */
633 if (cinfo->Ss == 0) { 634 if (cinfo->Ss == 0) {
634 if (cinfo->Se != 0) 635 if (cinfo->Se != 0)
635 » goto bad; 636 goto bad;
636 } else { 637 } else {
637 /* need not check Ss/Se < 0 since they came from unsigned bytes */ 638 /* need not check Ss/Se < 0 since they came from unsigned bytes */
638 if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1) 639 if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1)
639 » goto bad; 640 goto bad;
640 /* AC scans may have only one component */ 641 /* AC scans may have only one component */
641 if (cinfo->comps_in_scan != 1) 642 if (cinfo->comps_in_scan != 1)
642 » goto bad; 643 goto bad;
643 } 644 }
644 if (cinfo->Ah != 0) { 645 if (cinfo->Ah != 0) {
645 /* Successive approximation refinement scan: must have Al = Ah-1. */ 646 /* Successive approximation refinement scan: must have Al = Ah-1. */
646 if (cinfo->Ah-1 != cinfo->Al) 647 if (cinfo->Ah-1 != cinfo->Al)
647 » goto bad; 648 goto bad;
648 } 649 }
649 if (cinfo->Al > 13) {» /* need not check for < 0 */ 650 if (cinfo->Al > 13) { /* need not check for < 0 */
650 bad: 651 bad:
651 ERREXIT4(cinfo, JERR_BAD_PROGRESSION, 652 ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
652 » cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); 653 cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
653 } 654 }
654 /* Update progression status, and verify that scan order is legal. 655 /* Update progression status, and verify that scan order is legal.
655 * Note that inter-scan inconsistencies are treated as warnings 656 * Note that inter-scan inconsistencies are treated as warnings
656 * not fatal errors ... not clear if this is right way to behave. 657 * not fatal errors ... not clear if this is right way to behave.
657 */ 658 */
658 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 659 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
659 int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; 660 int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
660 int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; 661 int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
661 if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ 662 if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
662 » WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); 663 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
663 for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { 664 for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
664 » int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; 665 int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
665 » if (cinfo->Ah != expected) 666 if (cinfo->Ah != expected)
666 » WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); 667 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
667 » coef_bit_ptr[coefi] = cinfo->Al; 668 coef_bit_ptr[coefi] = cinfo->Al;
668 } 669 }
669 } 670 }
670 /* Select MCU decoding routine */ 671 /* Select MCU decoding routine */
671 if (cinfo->Ah == 0) { 672 if (cinfo->Ah == 0) {
672 if (cinfo->Ss == 0) 673 if (cinfo->Ss == 0)
673 » entropy->pub.decode_mcu = decode_mcu_DC_first; 674 entropy->pub.decode_mcu = decode_mcu_DC_first;
674 else 675 else
675 » entropy->pub.decode_mcu = decode_mcu_AC_first; 676 entropy->pub.decode_mcu = decode_mcu_AC_first;
676 } else { 677 } else {
677 if (cinfo->Ss == 0) 678 if (cinfo->Ss == 0)
678 » entropy->pub.decode_mcu = decode_mcu_DC_refine; 679 entropy->pub.decode_mcu = decode_mcu_DC_refine;
679 else 680 else
680 » entropy->pub.decode_mcu = decode_mcu_AC_refine; 681 entropy->pub.decode_mcu = decode_mcu_AC_refine;
681 } 682 }
682 } else { 683 } else {
683 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. 684 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
684 * This ought to be an error condition, but we make it a warning. 685 * This ought to be an error condition, but we make it a warning.
685 */ 686 */
686 if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || 687 if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
687 » (cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1)) 688 (cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1))
688 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); 689 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
689 /* Select MCU decoding routine */ 690 /* Select MCU decoding routine */
690 entropy->pub.decode_mcu = decode_mcu; 691 entropy->pub.decode_mcu = decode_mcu;
691 } 692 }
692 693
693 /* Allocate & initialize requested statistics areas */ 694 /* Allocate & initialize requested statistics areas */
694 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 695 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
695 compptr = cinfo->cur_comp_info[ci]; 696 compptr = cinfo->cur_comp_info[ci];
696 if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { 697 if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
697 tbl = compptr->dc_tbl_no; 698 tbl = compptr->dc_tbl_no;
698 if (tbl < 0 || tbl >= NUM_ARITH_TBLS) 699 if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
699 » ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); 700 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
700 if (entropy->dc_stats[tbl] == NULL) 701 if (entropy->dc_stats[tbl] == NULL)
701 » entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) 702 entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
702 » ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); 703 ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
703 MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); 704 MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
704 /* Initialize DC predictions to 0 */ 705 /* Initialize DC predictions to 0 */
705 entropy->last_dc_val[ci] = 0; 706 entropy->last_dc_val[ci] = 0;
706 entropy->dc_context[ci] = 0; 707 entropy->dc_context[ci] = 0;
707 } 708 }
708 if (! cinfo->progressive_mode || cinfo->Ss) { 709 if (!cinfo->progressive_mode || cinfo->Ss) {
709 tbl = compptr->ac_tbl_no; 710 tbl = compptr->ac_tbl_no;
710 if (tbl < 0 || tbl >= NUM_ARITH_TBLS) 711 if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
711 » ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); 712 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
712 if (entropy->ac_stats[tbl] == NULL) 713 if (entropy->ac_stats[tbl] == NULL)
713 » entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) 714 entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
714 » ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); 715 ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
715 MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); 716 MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
716 } 717 }
717 } 718 }
718 719
719 /* Initialize arithmetic decoding variables */ 720 /* Initialize arithmetic decoding variables */
720 entropy->c = 0; 721 entropy->c = 0;
721 entropy->a = 0; 722 entropy->a = 0;
722 entropy->ct = -16;» /* force reading 2 initial bytes to fill C */ 723 entropy->ct = -16; /* force reading 2 initial bytes to fill C */
723 724
724 /* Initialize restart counter */ 725 /* Initialize restart counter */
725 entropy->restarts_to_go = cinfo->restart_interval; 726 entropy->restarts_to_go = cinfo->restart_interval;
726 } 727 }
727 728
728 729
729 /* 730 /*
730 * Module initialization routine for arithmetic entropy decoding. 731 * Module initialization routine for arithmetic entropy decoding.
731 */ 732 */
732 733
733 GLOBAL(void) 734 GLOBAL(void)
734 jinit_arith_decoder (j_decompress_ptr cinfo) 735 jinit_arith_decoder (j_decompress_ptr cinfo)
735 { 736 {
736 arith_entropy_ptr entropy; 737 arith_entropy_ptr entropy;
737 int i; 738 int i;
738 739
739 entropy = (arith_entropy_ptr) 740 entropy = (arith_entropy_ptr)
740 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 741 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
741 » » » » SIZEOF(arith_entropy_decoder)); 742 sizeof(arith_entropy_decoder));
742 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; 743 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
743 entropy->pub.start_pass = start_pass; 744 entropy->pub.start_pass = start_pass;
744 745
745 /* Mark tables unallocated */ 746 /* Mark tables unallocated */
746 for (i = 0; i < NUM_ARITH_TBLS; i++) { 747 for (i = 0; i < NUM_ARITH_TBLS; i++) {
747 entropy->dc_stats[i] = NULL; 748 entropy->dc_stats[i] = NULL;
748 entropy->ac_stats[i] = NULL; 749 entropy->ac_stats[i] = NULL;
749 } 750 }
750 751
751 /* Initialize index for fixed probability estimation */ 752 /* Initialize index for fixed probability estimation */
752 entropy->fixed_bin[0] = 113; 753 entropy->fixed_bin[0] = 113;
753 754
754 if (cinfo->progressive_mode) { 755 if (cinfo->progressive_mode) {
755 /* Create progression status table */ 756 /* Create progression status table */
756 int *coef_bit_ptr, ci; 757 int *coef_bit_ptr, ci;
757 cinfo->coef_bits = (int (*)[DCTSIZE2]) 758 cinfo->coef_bits = (int (*)[DCTSIZE2])
758 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 759 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
759 » » » » cinfo->num_components*DCTSIZE2*SIZEOF(int)); 760 cinfo->num_components*DCTSIZE2*sizeof(int));
760 coef_bit_ptr = & cinfo->coef_bits[0][0]; 761 coef_bit_ptr = & cinfo->coef_bits[0][0];
761 for (ci = 0; ci < cinfo->num_components; ci++) 762 for (ci = 0; ci < cinfo->num_components; ci++)
762 for (i = 0; i < DCTSIZE2; i++) 763 for (i = 0; i < DCTSIZE2; i++)
763 » *coef_bit_ptr++ = -1; 764 *coef_bit_ptr++ = -1;
764 } 765 }
765 } 766 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698