Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 #include "SkBitmapScaler.h" | |
| 2 #include "SkBitmapFilter.h" | |
| 3 #include "SkRect.h" | |
| 4 #include "SkTArray.h" | |
| 5 #include "SkErrorInternals.h" | |
| 6 #include "SkConvolver.h" | |
| 7 | |
| 8 // SkResizeFilter -------------------------------------------------------------- -- | |
| 9 | |
| 10 // Encapsulates computation and storage of the filters required for one complete | |
| 11 // resize operation. | |
| 12 class SkResizeFilter { | |
| 13 public: | |
| 14 SkResizeFilter(SkBitmapScaler::ResizeMethod method, | |
| 15 int srcFullWidth, int srcFullHeight, | |
| 16 int destWidth, int destHeight, | |
| 17 const SkIRect& destSubset, | |
| 18 SkConvolutionProcs *convolveProcs); | |
|
reed1
2013/07/19 17:47:23
double nit:
1. if you're passing 1 value, Skia li
| |
| 19 ~SkResizeFilter() { | |
| 20 SkDELETE( fBitmapFilter ); | |
| 21 } | |
| 22 | |
| 23 // Returns the filled filter values. | |
| 24 const SkConvolutionFilter1D& xFilter() { return fXFilter; } | |
| 25 const SkConvolutionFilter1D& yFilter() { return fYFilter; } | |
| 26 | |
| 27 private: | |
| 28 | |
| 29 SkBitmapFilter* fBitmapFilter; | |
| 30 | |
| 31 // Computes one set of filters either horizontally or vertically. The caller | |
| 32 // will specify the "min" and "max" rather than the bottom/top and | |
| 33 // right/bottom so that the same code can be re-used in each dimension. | |
| 34 // | |
| 35 // |srcDependLo| and |srcDependSize| gives the range for the source | |
| 36 // depend rectangle (horizontally or vertically at the caller's discretion | |
| 37 // -- see above for what this means). | |
| 38 // | |
| 39 // Likewise, the range of destination values to compute and the scale factor | |
| 40 // for the transform is also specified. | |
| 41 | |
| 42 void computeFilters(int srcSize, | |
| 43 int destSubsetLo, int destSubsetSize, | |
| 44 float scale, | |
| 45 SkConvolutionFilter1D* output, | |
| 46 SkConvolutionProcs *convolveProcs); | |
| 47 | |
| 48 // Subset of scaled destination bitmap to compute. | |
| 49 SkIRect fOutBounds; | |
| 50 | |
| 51 SkConvolutionFilter1D fXFilter; | |
| 52 SkConvolutionFilter1D fYFilter; | |
| 53 }; | |
| 54 | |
| 55 SkResizeFilter::SkResizeFilter(SkBitmapScaler::ResizeMethod method, | |
| 56 int srcFullWidth, int srcFullHeight, | |
| 57 int destWidth, int destHeight, | |
| 58 const SkIRect& destSubset, | |
| 59 SkConvolutionProcs *convolveProcs) | |
| 60 : fOutBounds(destSubset) { | |
| 61 | |
| 62 // method will only ever refer to an "algorithm method". | |
| 63 SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) && | |
| 64 (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD)); | |
| 65 | |
| 66 switch(method) { | |
| 67 case SkBitmapScaler::RESIZE_BOX: | |
| 68 fBitmapFilter = SkNEW(SkBoxFilter); | |
| 69 break; | |
| 70 case SkBitmapScaler::RESIZE_TRIANGLE: | |
| 71 fBitmapFilter = SkNEW(SkTriangleFilter); | |
| 72 break; | |
| 73 case SkBitmapScaler::RESIZE_MITCHELL: | |
| 74 fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f)); | |
| 75 break; | |
| 76 case SkBitmapScaler::RESIZE_HAMMING: | |
| 77 fBitmapFilter = SkNEW(SkHammingFilter); | |
| 78 break; | |
| 79 case SkBitmapScaler::RESIZE_LANCZOS3: | |
| 80 fBitmapFilter = SkNEW(SkLanczosFilter); | |
| 81 break; | |
| 82 default: | |
| 83 // NOTREACHED: | |
| 84 fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f)); | |
| 85 break; | |
| 86 } | |
| 87 | |
| 88 | |
| 89 float scaleX = static_cast<float>(destWidth) / | |
| 90 static_cast<float>(srcFullWidth); | |
| 91 float scaleY = static_cast<float>(destHeight) / | |
| 92 static_cast<float>(srcFullHeight); | |
| 93 | |
| 94 this->computeFilters(srcFullWidth, destSubset.fLeft, destSubset.width(), | |
| 95 scaleX, &fXFilter, convolveProcs); | |
| 96 this->computeFilters(srcFullHeight, destSubset.fTop, destSubset.height(), | |
| 97 scaleY, &fYFilter, convolveProcs); | |
| 98 } | |
| 99 | |
| 100 // TODO(egouriou): Take advantage of periods in the convolution. | |
| 101 // Practical resizing filters are periodic outside of the border area. | |
| 102 // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the | |
| 103 // source become p pixels in the destination) will have a period of p. | |
| 104 // A nice consequence is a period of 1 when downscaling by an integral | |
| 105 // factor. Downscaling from typical display resolutions is also bound | |
| 106 // to produce interesting periods as those are chosen to have multiple | |
| 107 // small factors. | |
| 108 // Small periods reduce computational load and improve cache usage if | |
| 109 // the coefficients can be shared. For periods of 1 we can consider | |
| 110 // loading the factors only once outside the borders. | |
| 111 void SkResizeFilter::computeFilters(int srcSize, | |
| 112 int destSubsetLo, int destSubsetSize, | |
| 113 float scale, | |
| 114 SkConvolutionFilter1D* output, | |
| 115 SkConvolutionProcs *convolveProcs) { | |
| 116 int destSubsetHi = destSubsetLo + destSubsetSize; // [lo, hi) | |
| 117 | |
| 118 // When we're doing a magnification, the scale will be larger than one. This | |
| 119 // means the destination pixels are much smaller than the source pixels, and | |
| 120 // that the range covered by the filter won't necessarily cover any source | |
| 121 // pixel boundaries. Therefore, we use these clamped values (max of 1) for | |
| 122 // some computations. | |
| 123 float clampedScale = SkTMin(1.0f, scale); | |
| 124 | |
| 125 // This is how many source pixels from the center we need to count | |
| 126 // to support the filtering function. | |
| 127 float srcSupport = fBitmapFilter->width() / clampedScale; | |
| 128 | |
| 129 // Speed up the divisions below by turning them into multiplies. | |
| 130 float invScale = 1.0f / scale; | |
| 131 | |
| 132 SkTArray<float> filterValues(64); | |
| 133 SkTArray<short> fixedFilterValues(64); | |
| 134 | |
| 135 // Loop over all pixels in the output range. We will generate one set of | |
| 136 // filter values for each one. Those values will tell us how to blend the | |
| 137 // source pixels to compute the destination pixel. | |
| 138 for (int destSubsetI = destSubsetLo; destSubsetI < destSubsetHi; | |
| 139 destSubsetI++) { | |
| 140 // Reset the arrays. We don't declare them inside so they can re-use the | |
| 141 // same malloc-ed buffer. | |
| 142 filterValues.reset(); | |
| 143 fixedFilterValues.reset(); | |
| 144 | |
| 145 // This is the pixel in the source directly under the pixel in the dest. | |
| 146 // Note that we base computations on the "center" of the pixels. To see | |
| 147 // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x | |
| 148 // downscale should "cover" the pixels around the pixel with *its center* | |
| 149 // at coordinates (2.5, 2.5) in the source, not those around (0, 0). | |
| 150 // Hence we need to scale coordinates (0.5, 0.5), not (0, 0). | |
| 151 float srcPixel = (static_cast<float>(destSubsetI) + 0.5f) * invScale; | |
| 152 | |
| 153 // Compute the (inclusive) range of source pixels the filter covers. | |
| 154 int srcBegin = SkTMax(0, SkScalarFloorToInt(srcPixel - srcSupport)); | |
| 155 int srcEnd = SkTMin(srcSize - 1, SkScalarCeilToInt(srcPixel + srcSupport)); | |
| 156 | |
| 157 // Compute the unnormalized filter value at each location of the source | |
| 158 // it covers. | |
| 159 float filterSum = 0.0f; // Sub of the filter values for normalizing. | |
| 160 for (int curFilterPixel = srcBegin; curFilterPixel <= srcEnd; | |
| 161 curFilterPixel++) { | |
| 162 // Distance from the center of the filter, this is the filter coordinate | |
| 163 // in source space. We also need to consider the center of the pixel | |
| 164 // when comparing distance against 'srcPixel'. In the 5x downscale | |
| 165 // example used above the distance from the center of the filter to | |
| 166 // the pixel with coordinates (2, 2) should be 0, because its center | |
| 167 // is at (2.5, 2.5). | |
| 168 float srcFilterDist = | |
| 169 ((static_cast<float>(curFilterPixel) + 0.5f) - srcPixel); | |
| 170 | |
| 171 // Since the filter really exists in dest space, map it there. | |
| 172 float destFilterDist = srcFilterDist * clampedScale; | |
| 173 | |
| 174 // Compute the filter value at that location. | |
| 175 float filterValue = fBitmapFilter->evaluate(destFilterDist); | |
| 176 filterValues.push_back(filterValue); | |
| 177 | |
| 178 filterSum += filterValue; | |
| 179 } | |
| 180 SkASSERT(!filterValues.empty()); | |
| 181 | |
| 182 // The filter must be normalized so that we don't affect the brightness of | |
| 183 // the image. Convert to normalized fixed point. | |
| 184 short fixedSum = 0; | |
| 185 for (int i = 0; i < filterValues.count(); i++) { | |
| 186 short curFixed = output->FloatToFixed(filterValues[i] / filterSum); | |
| 187 fixedSum += curFixed; | |
| 188 fixedFilterValues.push_back(curFixed); | |
| 189 } | |
| 190 | |
| 191 // The conversion to fixed point will leave some rounding errors, which | |
| 192 // we add back in to avoid affecting the brightness of the image. We | |
| 193 // arbitrarily add this to the center of the filter array (this won't always | |
| 194 // be the center of the filter function since it could get clipped on the | |
| 195 // edges, but it doesn't matter enough to worry about that case). | |
| 196 short leftovers = output->FloatToFixed(1.0f) - fixedSum; | |
| 197 fixedFilterValues[fixedFilterValues.count() / 2] += leftovers; | |
| 198 | |
| 199 // Now it's ready to go. | |
| 200 output->AddFilter(srcBegin, &fixedFilterValues[0], | |
| 201 static_cast<int>(fixedFilterValues.count())); | |
| 202 } | |
| 203 | |
| 204 if (convolveProcs->fApplySIMDPadding) { | |
| 205 convolveProcs->fApplySIMDPadding( output ); | |
| 206 } | |
| 207 } | |
| 208 | |
| 209 static SkBitmapScaler::ResizeMethod ResizeMethodToAlgorithmMethod( | |
| 210 SkBitmapScaler::ResizeMethod method) { | |
| 211 // Convert any "Quality Method" into an "Algorithm Method" | |
| 212 if (method >= SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD && | |
| 213 method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD) { | |
| 214 return method; | |
| 215 } | |
| 216 // The call to SkBitmapScalerGtv::Resize() above took care of | |
| 217 // GPU-acceleration in the cases where it is possible. So now we just | |
| 218 // pick the appropriate software method for each resize quality. | |
| 219 switch (method) { | |
| 220 // Users of RESIZE_GOOD are willing to trade a lot of quality to | |
| 221 // get speed, allowing the use of linear resampling to get hardware | |
| 222 // acceleration (SRB). Hence any of our "good" software filters | |
| 223 // will be acceptable, so we use a triangle. | |
| 224 case SkBitmapScaler::RESIZE_GOOD: | |
| 225 return SkBitmapScaler::RESIZE_TRIANGLE; | |
| 226 // Users of RESIZE_BETTER are willing to trade some quality in order | |
| 227 // to improve performance, but are guaranteed not to devolve to a linear | |
| 228 // resampling. In visual tests we see that Hamming-1 is not as good as | |
| 229 // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is | |
| 230 // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed | |
| 231 // an acceptable trade-off between quality and speed. | |
| 232 case SkBitmapScaler::RESIZE_BETTER: | |
| 233 return SkBitmapScaler::RESIZE_HAMMING; | |
| 234 default: | |
| 235 return SkBitmapScaler::RESIZE_MITCHELL; | |
| 236 } | |
| 237 } | |
| 238 | |
| 239 // static | |
| 240 SkBitmap SkBitmapScaler::Resize(const SkBitmap& source, | |
| 241 ResizeMethod method, | |
| 242 int destWidth, int destHeight, | |
| 243 const SkIRect& destSubset, | |
| 244 SkConvolutionProcs *convolveProcs, | |
| 245 SkBitmap::Allocator* allocator) { | |
| 246 // Ensure that the ResizeMethod enumeration is sound. | |
| 247 SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) && | |
| 248 (method <= RESIZE_LAST_QUALITY_METHOD)) || | |
| 249 ((RESIZE_FIRST_ALGORITHM_METHOD <= method) && | |
| 250 (method <= RESIZE_LAST_ALGORITHM_METHOD))); | |
| 251 | |
| 252 SkIRect dest = { 0, 0, destWidth, destHeight }; | |
| 253 if (!dest.contains(destSubset)) { | |
| 254 SkErrorInternals::SetError( kInvalidArgument_SkError, | |
| 255 "Sorry, you passed me a bitmap resize " | |
| 256 " method I have never heard of: %d", | |
| 257 method ); | |
| 258 } | |
| 259 | |
| 260 // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just | |
| 261 // return empty. | |
| 262 if (source.width() < 1 || source.height() < 1 || | |
| 263 destWidth < 1 || destHeight < 1) { | |
| 264 return SkBitmap(); | |
| 265 } | |
| 266 | |
| 267 method = ResizeMethodToAlgorithmMethod(method); | |
| 268 | |
| 269 // Check that we deal with an "algorithm methods" from this point onward. | |
| 270 SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) && | |
| 271 (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD)); | |
| 272 | |
| 273 SkAutoLockPixels locker(source); | |
| 274 if (!source.readyToDraw() || source.config() != SkBitmap::kARGB_8888_Config) | |
| 275 return SkBitmap(); | |
| 276 | |
| 277 SkResizeFilter filter(method, source.width(), source.height(), | |
| 278 destWidth, destHeight, destSubset, convolveProcs); | |
| 279 | |
| 280 // Get a source bitmap encompassing this touched area. We construct the | |
| 281 // offsets and row strides such that it looks like a new bitmap, while | |
| 282 // referring to the old data. | |
| 283 const unsigned char* sourceSubset = | |
| 284 reinterpret_cast<const unsigned char*>(source.getPixels()); | |
| 285 | |
| 286 // Convolve into the result. | |
| 287 SkBitmap result; | |
| 288 result.setConfig(SkBitmap::kARGB_8888_Config, | |
| 289 destSubset.width(), destSubset.height()); | |
| 290 result.allocPixels(allocator, NULL); | |
| 291 if (!result.readyToDraw()) | |
| 292 return SkBitmap(); | |
| 293 | |
| 294 BGRAConvolve2D(sourceSubset, static_cast<int>(source.rowBytes()), | |
| 295 !source.isOpaque(), filter.xFilter(), filter.yFilter(), | |
| 296 static_cast<int>(result.rowBytes()), | |
| 297 static_cast<unsigned char*>(result.getPixels()), | |
| 298 convolveProcs, true); | |
| 299 | |
| 300 // Preserve the "opaque" flag for use as an optimization later. | |
| 301 result.setIsOpaque(source.isOpaque()); | |
| 302 | |
| 303 return result; | |
| 304 } | |
| 305 | |
| 306 // static | |
| 307 SkBitmap SkBitmapScaler::Resize(const SkBitmap& source, | |
| 308 ResizeMethod method, | |
| 309 int destWidth, int destHeight, | |
| 310 SkConvolutionProcs* convolveProcs, | |
| 311 SkBitmap::Allocator* allocator) { | |
| 312 SkIRect destSubset = { 0, 0, destWidth, destHeight }; | |
| 313 return Resize(source, method, destWidth, destHeight, destSubset, | |
| 314 convolveProcs, allocator); | |
| 315 } | |
| OLD | NEW |