OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright 2013 Google Inc. | 2 * Copyright 2013 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkBitmapProcState.h" | 8 #include "SkBitmapProcState.h" |
9 #include "SkBitmap.h" | 9 #include "SkBitmap.h" |
10 #include "SkColor.h" | 10 #include "SkColor.h" |
11 #include "SkColorPriv.h" | 11 #include "SkColorPriv.h" |
12 #include "SkUnPreMultiply.h" | 12 #include "SkUnPreMultiply.h" |
13 #include "SkShader.h" | 13 #include "SkShader.h" |
14 #include "SkConvolver.h" | |
14 | 15 |
15 #include "SkBitmapFilter_opts_SSE2.h" | 16 #include "SkBitmapFilter_opts_SSE2.h" |
16 | 17 |
17 #include <emmintrin.h> | 18 #include <emmintrin.h> |
18 | 19 |
19 #if 0 | 20 #if 0 |
20 static inline void print128i(__m128i value) { | 21 static inline void print128i(__m128i value) { |
21 int *v = (int*) &value; | 22 int *v = (int*) &value; |
22 printf("% .11d % .11d % .11d % .11d\n", v[0], v[1], v[2], v[3]); | 23 printf("% .11d % .11d % .11d % .11d\n", v[0], v[1], v[2], v[3]); |
23 } | 24 } |
(...skipping 149 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
173 | 174 |
174 *colors++ = SkPackARGB32(a, r, g, b); | 175 *colors++ = SkPackARGB32(a, r, g, b); |
175 | 176 |
176 x++; | 177 x++; |
177 | 178 |
178 s.fInvProc(s.fInvMatrix, SkIntToScalar(x), | 179 s.fInvProc(s.fInvMatrix, SkIntToScalar(x), |
179 SkIntToScalar(y), &srcPt); | 180 SkIntToScalar(y), &srcPt); |
180 | 181 |
181 } | 182 } |
182 } | 183 } |
184 | |
185 static void divideByWeights_SSE2(SkScalar *sums, SkScalar *weights, SkBitmap *ds t) { | |
Stephen White
2013/07/18 17:39:45
Doesn't look like SSE2 code; maybe it should just
humper
2013/07/18 18:15:46
Yikes, these functions are dead anyway; deleting.
| |
186 for (int y = 0 ; y < dst->height() ; y++) { | |
187 for (int x = 0 ; x < dst->width() ; x++) { | |
188 SkScalar *sump = sums + 4*(y*dst->width() + x); | |
189 SkScalar weight = weights[y*dst->width() + x]; | |
190 | |
191 SkScalar fr = SkScalarDiv(sump[0], weight); | |
192 SkScalar fg = SkScalarDiv(sump[1], weight); | |
193 SkScalar fb = SkScalarDiv(sump[2], weight); | |
194 SkScalar fa = SkScalarDiv(sump[3], weight); | |
195 int a = SkClampMax(SkScalarRoundToInt(fa), 255); | |
196 int r = SkClampMax(SkScalarRoundToInt(fr), a); | |
197 int g = SkClampMax(SkScalarRoundToInt(fg), a); | |
198 int b = SkClampMax(SkScalarRoundToInt(fb), a); | |
199 | |
200 *dst->getAddr32(x,y) = SkPackARGB32(a, r, g, b); | |
201 } | |
202 } | |
203 } | |
204 | |
205 static void upScaleHorizTranspose_SSE2(const SkBitmap *src, SkBitmap *dst, float scale, SkBitmapFilter *filter) { | |
Stephen White
2013/07/18 17:39:45
Same here.
| |
206 for (int y = 0 ; y < dst->height() ; y++) { | |
207 for (int x = 0 ; x < dst->width() ; x++) { | |
208 float sx = (y + 0.5f) / scale - 0.5f; | |
209 int x0 = SkClampMax(sk_float_ceil2int(sx-filter->width()), src->widt h()-1); | |
210 int x1 = SkClampMax(sk_float_floor2int(sx+filter->width()), src->wid th()-1); | |
211 | |
212 SkScalar totalWeight = 0; | |
213 SkScalar fr = 0, fg = 0, fb = 0, fa = 0; | |
214 | |
215 for (int srcX = x0 ; srcX <= x1 ; srcX++) { | |
216 SkScalar weight = filter->lookupScalar(sx - srcX); | |
217 SkPMColor c = *src->getAddr32(srcX, x); | |
218 fr += SkScalarMul(weight,SkGetPackedR32(c)); | |
219 fg += SkScalarMul(weight,SkGetPackedG32(c)); | |
220 fb += SkScalarMul(weight,SkGetPackedB32(c)); | |
221 fa += SkScalarMul(weight,SkGetPackedA32(c)); | |
222 totalWeight += weight; | |
223 } | |
224 fr = SkScalarDiv(fr,totalWeight); | |
225 fg = SkScalarDiv(fg,totalWeight); | |
226 fb = SkScalarDiv(fb,totalWeight); | |
227 fa = SkScalarDiv(fa,totalWeight); | |
228 | |
229 int a = SkClampMax(SkScalarRoundToInt(fa), 255); | |
230 int r = SkClampMax(SkScalarRoundToInt(fr), a); | |
231 int g = SkClampMax(SkScalarRoundToInt(fg), a); | |
232 int b = SkClampMax(SkScalarRoundToInt(fb), a); | |
233 | |
234 *dst->getAddr32(x,y) = SkPackARGB32(a, r, g, b); | |
235 } | |
236 } | |
237 } | |
238 | |
239 static void downScaleHorizTranspose_SSE2(const SkBitmap *src, SkBitmap *dst, flo at scale, SkBitmapFilter *filter) { | |
240 SkScalar *sums = SkNEW_ARRAY(SkScalar, dst->width() * src->height() * 4); | |
241 SkScalar *weights = SkNEW_ARRAY(SkScalar, dst->width() * src->height()); | |
242 | |
243 SkAutoTDeleteArray<SkScalar> ada1(sums); | |
244 SkAutoTDeleteArray<SkScalar> ada2(weights); | |
245 | |
246 memset(sums, 0, dst->width() * dst->height() * sizeof(SkScalar) * 4); | |
247 memset(weights, 0, dst->width() * dst->height() * sizeof(SkScalar)); | |
248 | |
249 for (int y = 0 ; y < src->height() ; y++) { | |
250 for (int x = 0 ; x < src->width() ; x++) { | |
251 // splat each source pixel into the destination image | |
252 float dx = (x + 0.5f) * scale - 0.5f; | |
253 int x0 = SkClampMax(sk_float_ceil2int(dx-filter->width()), dst->heig ht()-1); | |
254 int x1 = SkClampMax(sk_float_floor2int(dx+filter->width()), dst->hei ght()-1); | |
255 | |
256 SkPMColor c = *src->getAddr32(x,y); | |
257 | |
258 for (int dst_x = x0 ; dst_x <= x1 ; dst_x++) { | |
259 SkScalar weight = filter->lookup(dx - dst_x); | |
260 SkScalar *sump = sums + 4*(dst_x*dst->width() + y); | |
261 | |
262 sump[0] += weight*SkGetPackedR32(c); | |
263 sump[1] += weight*SkGetPackedG32(c); | |
264 sump[2] += weight*SkGetPackedB32(c); | |
265 sump[3] += weight*SkGetPackedA32(c); | |
266 weights[dst_x*dst->width() + y] += weight; | |
267 } | |
268 } | |
269 } | |
270 | |
271 divideByWeights_SSE2(sums, weights, dst); | |
272 } | |
273 | |
274 void highQualityScale_SSE2( const SkBitmap *src, SkBitmap *dst ) { | |
275 SkBitmap horizTemp; | |
276 | |
277 horizTemp.setConfig(SkBitmap::kARGB_8888_Config, src->height(), dst->width() ); | |
278 horizTemp.allocPixels(); | |
279 | |
280 SkBitmapFilter *filter = SkBitmapFilter::allocate(); | |
281 | |
282 float horizScale = float(dst->width()) / src->width(); | |
283 | |
284 if (horizScale >= 1) { | |
285 upScaleHorizTranspose_SSE2(src, &horizTemp, horizScale, filter); | |
286 } else if (horizScale < 1) { | |
287 downScaleHorizTranspose_SSE2(src, &horizTemp, horizScale, filter); | |
288 } | |
289 | |
290 float vertScale = float(dst->height()) / src->height(); | |
291 | |
292 if (vertScale >= 1) { | |
293 upScaleHorizTranspose_SSE2(&horizTemp, dst, vertScale, filter); | |
294 } else if (vertScale < 1) { | |
295 downScaleHorizTranspose_SSE2(&horizTemp, dst, vertScale, filter); | |
296 } | |
297 | |
298 SkDELETE(filter); | |
299 } | |
300 | |
301 // Convolves horizontally along a single row. The row data is given in | |
302 // |src_data| and continues for the num_values() of the filter. | |
303 void convolveHorizontally_SSE2(const unsigned char* src_data, | |
304 const SkConvolutionFilter1D& filter, | |
305 unsigned char* out_row, | |
306 bool /*has_alpha*/) { | |
307 int num_values = filter.numValues(); | |
308 | |
309 int filter_offset, filter_length; | |
310 __m128i zero = _mm_setzero_si128(); | |
311 __m128i mask[4]; | |
312 // |mask| will be used to decimate all extra filter coefficients that are | |
313 // loaded by SIMD when |filter_length| is not divisible by 4. | |
314 // mask[0] is not used in following algorithm. | |
315 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); | |
316 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); | |
317 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); | |
318 | |
319 // Output one pixel each iteration, calculating all channels (RGBA) together. | |
320 for (int out_x = 0; out_x < num_values; out_x++) { | |
321 const SkConvolutionFilter1D::Fixed* filter_values = | |
322 filter.FilterForValue(out_x, &filter_offset, &filter_length); | |
323 | |
324 __m128i accum = _mm_setzero_si128(); | |
325 | |
326 // Compute the first pixel in this row that the filter affects. It will | |
327 // touch |filter_length| pixels (4 bytes each) after this. | |
328 const __m128i* row_to_filter = | |
329 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); | |
330 | |
331 // We will load and accumulate with four coefficients per iteration. | |
332 for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { | |
333 | |
334 // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. | |
335 __m128i coeff, coeff16; | |
336 // [16] xx xx xx xx c3 c2 c1 c0 | |
337 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
338 // [16] xx xx xx xx c1 c1 c0 c0 | |
339 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
340 // [16] c1 c1 c1 c1 c0 c0 c0 c0 | |
341 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
342 | |
343 // Load four pixels => unpack the first two pixels to 16 bits => | |
344 // multiply with coefficients => accumulate the convolution result. | |
345 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
346 __m128i src8 = _mm_loadu_si128(row_to_filter); | |
347 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
348 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
349 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
350 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
351 // [32] a0*c0 b0*c0 g0*c0 r0*c0 | |
352 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
353 accum = _mm_add_epi32(accum, t); | |
354 // [32] a1*c1 b1*c1 g1*c1 r1*c1 | |
355 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
356 accum = _mm_add_epi32(accum, t); | |
357 | |
358 // Duplicate 3rd and 4th coefficients for all channels => | |
359 // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients | |
360 // => accumulate the convolution results. | |
361 // [16] xx xx xx xx c3 c3 c2 c2 | |
362 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
363 // [16] c3 c3 c3 c3 c2 c2 c2 c2 | |
364 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
365 // [16] a3 g3 b3 r3 a2 g2 b2 r2 | |
366 src16 = _mm_unpackhi_epi8(src8, zero); | |
367 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
368 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
369 // [32] a2*c2 b2*c2 g2*c2 r2*c2 | |
370 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
371 accum = _mm_add_epi32(accum, t); | |
372 // [32] a3*c3 b3*c3 g3*c3 r3*c3 | |
373 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
374 accum = _mm_add_epi32(accum, t); | |
375 | |
376 // Advance the pixel and coefficients pointers. | |
377 row_to_filter += 1; | |
378 filter_values += 4; | |
379 } | |
380 | |
381 // When |filter_length| is not divisible by 4, we need to decimate some of | |
382 // the filter coefficient that was loaded incorrectly to zero; Other than | |
383 // that the algorithm is same with above, exceot that the 4th pixel will be | |
384 // always absent. | |
385 int r = filter_length&3; | |
386 if (r) { | |
387 // Note: filter_values must be padded to align_up(filter_offset, 8). | |
388 __m128i coeff, coeff16; | |
389 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
390 // Mask out extra filter taps. | |
391 coeff = _mm_and_si128(coeff, mask[r]); | |
392 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
393 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
394 | |
395 // Note: line buffer must be padded to align_up(filter_offset, 16). | |
396 // We resolve this by use C-version for the last horizontal line. | |
397 __m128i src8 = _mm_loadu_si128(row_to_filter); | |
398 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
399 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
400 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
401 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
402 accum = _mm_add_epi32(accum, t); | |
403 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
404 accum = _mm_add_epi32(accum, t); | |
405 | |
406 src16 = _mm_unpackhi_epi8(src8, zero); | |
407 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
408 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
409 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
410 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
411 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
412 accum = _mm_add_epi32(accum, t); | |
413 } | |
414 | |
415 // Shift right for fixed point implementation. | |
416 accum = _mm_srai_epi32(accum, SkConvolutionFilter1D::kShiftBits); | |
417 | |
418 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). | |
419 accum = _mm_packs_epi32(accum, zero); | |
420 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). | |
421 accum = _mm_packus_epi16(accum, zero); | |
422 | |
423 // Store the pixel value of 32 bits. | |
424 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); | |
425 out_row += 4; | |
426 } | |
427 } | |
428 | |
429 // Convolves horizontally along four rows. The row data is given in | |
430 // |src_data| and continues for the num_values() of the filter. | |
431 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please | |
432 // refer to that function for detailed comments. | |
433 void convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4], | |
434 const SkConvolutionFilter1D& filter, | |
435 unsigned char* out_row[4]) { | |
436 int num_values = filter.numValues(); | |
437 | |
438 int filter_offset, filter_length; | |
439 __m128i zero = _mm_setzero_si128(); | |
440 __m128i mask[4]; | |
441 // |mask| will be used to decimate all extra filter coefficients that are | |
442 // loaded by SIMD when |filter_length| is not divisible by 4. | |
443 // mask[0] is not used in following algorithm. | |
444 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); | |
445 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); | |
446 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); | |
447 | |
448 // Output one pixel each iteration, calculating all channels (RGBA) together. | |
449 for (int out_x = 0; out_x < num_values; out_x++) { | |
450 const SkConvolutionFilter1D::Fixed* filter_values = | |
451 filter.FilterForValue(out_x, &filter_offset, &filter_length); | |
452 | |
453 // four pixels in a column per iteration. | |
454 __m128i accum0 = _mm_setzero_si128(); | |
455 __m128i accum1 = _mm_setzero_si128(); | |
456 __m128i accum2 = _mm_setzero_si128(); | |
457 __m128i accum3 = _mm_setzero_si128(); | |
458 int start = (filter_offset<<2); | |
459 // We will load and accumulate with four coefficients per iteration. | |
460 for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { | |
461 __m128i coeff, coeff16lo, coeff16hi; | |
462 // [16] xx xx xx xx c3 c2 c1 c0 | |
463 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
464 // [16] xx xx xx xx c1 c1 c0 c0 | |
465 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
466 // [16] c1 c1 c1 c1 c0 c0 c0 c0 | |
467 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); | |
468 // [16] xx xx xx xx c3 c3 c2 c2 | |
469 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
470 // [16] c3 c3 c3 c3 c2 c2 c2 c2 | |
471 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); | |
472 | |
473 __m128i src8, src16, mul_hi, mul_lo, t; | |
474 | |
475 #define ITERATION(src, accum) \ | |
476 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ | |
477 src16 = _mm_unpacklo_epi8(src8, zero); \ | |
478 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ | |
479 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ | |
480 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ | |
481 accum = _mm_add_epi32(accum, t); \ | |
482 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ | |
483 accum = _mm_add_epi32(accum, t); \ | |
484 src16 = _mm_unpackhi_epi8(src8, zero); \ | |
485 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ | |
486 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ | |
487 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ | |
488 accum = _mm_add_epi32(accum, t); \ | |
489 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ | |
490 accum = _mm_add_epi32(accum, t) | |
491 | |
492 ITERATION(src_data[0] + start, accum0); | |
493 ITERATION(src_data[1] + start, accum1); | |
494 ITERATION(src_data[2] + start, accum2); | |
495 ITERATION(src_data[3] + start, accum3); | |
496 | |
497 start += 16; | |
498 filter_values += 4; | |
499 } | |
500 | |
501 int r = filter_length & 3; | |
502 if (r) { | |
503 // Note: filter_values must be padded to align_up(filter_offset, 8); | |
504 __m128i coeff; | |
505 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
506 // Mask out extra filter taps. | |
507 coeff = _mm_and_si128(coeff, mask[r]); | |
508 | |
509 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
510 /* c1 c1 c1 c1 c0 c0 c0 c0 */ | |
511 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); | |
512 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
513 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); | |
514 | |
515 __m128i src8, src16, mul_hi, mul_lo, t; | |
516 | |
517 ITERATION(src_data[0] + start, accum0); | |
518 ITERATION(src_data[1] + start, accum1); | |
519 ITERATION(src_data[2] + start, accum2); | |
520 ITERATION(src_data[3] + start, accum3); | |
521 } | |
522 | |
523 accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); | |
524 accum0 = _mm_packs_epi32(accum0, zero); | |
525 accum0 = _mm_packus_epi16(accum0, zero); | |
526 accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); | |
527 accum1 = _mm_packs_epi32(accum1, zero); | |
528 accum1 = _mm_packus_epi16(accum1, zero); | |
529 accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); | |
530 accum2 = _mm_packs_epi32(accum2, zero); | |
531 accum2 = _mm_packus_epi16(accum2, zero); | |
532 accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits); | |
533 accum3 = _mm_packs_epi32(accum3, zero); | |
534 accum3 = _mm_packus_epi16(accum3, zero); | |
535 | |
536 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); | |
537 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); | |
538 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); | |
539 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); | |
540 | |
541 out_row[0] += 4; | |
542 out_row[1] += 4; | |
543 out_row[2] += 4; | |
544 out_row[3] += 4; | |
545 } | |
546 } | |
547 | |
548 // Does vertical convolution to produce one output row. The filter values and | |
549 // length are given in the first two parameters. These are applied to each | |
550 // of the rows pointed to in the |source_data_rows| array, with each row | |
551 // being |pixel_width| wide. | |
552 // | |
553 // The output must have room for |pixel_width * 4| bytes. | |
554 template<bool has_alpha> | |
555 void convolveVertically_SSE2(const SkConvolutionFilter1D::Fixed* filter_values, | |
556 int filter_length, | |
557 unsigned char* const* source_data_rows, | |
558 int pixel_width, | |
559 unsigned char* out_row) { | |
560 int width = pixel_width & ~3; | |
561 | |
562 __m128i zero = _mm_setzero_si128(); | |
563 __m128i accum0, accum1, accum2, accum3, coeff16; | |
564 const __m128i* src; | |
565 // Output four pixels per iteration (16 bytes). | |
566 for (int out_x = 0; out_x < width; out_x += 4) { | |
567 | |
568 // Accumulated result for each pixel. 32 bits per RGBA channel. | |
569 accum0 = _mm_setzero_si128(); | |
570 accum1 = _mm_setzero_si128(); | |
571 accum2 = _mm_setzero_si128(); | |
572 accum3 = _mm_setzero_si128(); | |
573 | |
574 // Convolve with one filter coefficient per iteration. | |
575 for (int filter_y = 0; filter_y < filter_length; filter_y++) { | |
576 | |
577 // Duplicate the filter coefficient 8 times. | |
578 // [16] cj cj cj cj cj cj cj cj | |
579 coeff16 = _mm_set1_epi16(filter_values[filter_y]); | |
580 | |
581 // Load four pixels (16 bytes) together. | |
582 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
583 src = reinterpret_cast<const __m128i*>( | |
584 &source_data_rows[filter_y][out_x << 2]); | |
585 __m128i src8 = _mm_loadu_si128(src); | |
586 | |
587 // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => | |
588 // multiply with current coefficient => accumulate the result. | |
589 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
590 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
591 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
592 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
593 // [32] a0 b0 g0 r0 | |
594 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
595 accum0 = _mm_add_epi32(accum0, t); | |
596 // [32] a1 b1 g1 r1 | |
597 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
598 accum1 = _mm_add_epi32(accum1, t); | |
599 | |
600 // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => | |
601 // multiply with current coefficient => accumulate the result. | |
602 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
603 src16 = _mm_unpackhi_epi8(src8, zero); | |
604 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
605 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
606 // [32] a2 b2 g2 r2 | |
607 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
608 accum2 = _mm_add_epi32(accum2, t); | |
609 // [32] a3 b3 g3 r3 | |
610 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
611 accum3 = _mm_add_epi32(accum3, t); | |
612 } | |
613 | |
614 // Shift right for fixed point implementation. | |
615 accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); | |
616 accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); | |
617 accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); | |
618 accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits); | |
619 | |
620 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). | |
621 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
622 accum0 = _mm_packs_epi32(accum0, accum1); | |
623 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
624 accum2 = _mm_packs_epi32(accum2, accum3); | |
625 | |
626 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). | |
627 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
628 accum0 = _mm_packus_epi16(accum0, accum2); | |
629 | |
630 if (has_alpha) { | |
631 // Compute the max(ri, gi, bi) for each pixel. | |
632 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 | |
633 __m128i a = _mm_srli_epi32(accum0, 8); | |
634 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
635 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. | |
636 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 | |
637 a = _mm_srli_epi32(accum0, 16); | |
638 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
639 b = _mm_max_epu8(a, b); // Max of r and g and b. | |
640 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 | |
641 b = _mm_slli_epi32(b, 24); | |
642 | |
643 // Make sure the value of alpha channel is always larger than maximum | |
644 // value of color channels. | |
645 accum0 = _mm_max_epu8(b, accum0); | |
646 } else { | |
647 // Set value of alpha channels to 0xFF. | |
648 __m128i mask = _mm_set1_epi32(0xff000000); | |
649 accum0 = _mm_or_si128(accum0, mask); | |
650 } | |
651 | |
652 // Store the convolution result (16 bytes) and advance the pixel pointers. | |
653 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); | |
654 out_row += 16; | |
655 } | |
656 | |
657 // When the width of the output is not divisible by 4, We need to save one | |
658 // pixel (4 bytes) each time. And also the fourth pixel is always absent. | |
659 if (pixel_width & 3) { | |
660 accum0 = _mm_setzero_si128(); | |
661 accum1 = _mm_setzero_si128(); | |
662 accum2 = _mm_setzero_si128(); | |
663 for (int filter_y = 0; filter_y < filter_length; ++filter_y) { | |
664 coeff16 = _mm_set1_epi16(filter_values[filter_y]); | |
665 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
666 src = reinterpret_cast<const __m128i*>( | |
667 &source_data_rows[filter_y][width<<2]); | |
668 __m128i src8 = _mm_loadu_si128(src); | |
669 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
670 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
671 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
672 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
673 // [32] a0 b0 g0 r0 | |
674 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
675 accum0 = _mm_add_epi32(accum0, t); | |
676 // [32] a1 b1 g1 r1 | |
677 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
678 accum1 = _mm_add_epi32(accum1, t); | |
679 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
680 src16 = _mm_unpackhi_epi8(src8, zero); | |
681 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
682 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
683 // [32] a2 b2 g2 r2 | |
684 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
685 accum2 = _mm_add_epi32(accum2, t); | |
686 } | |
687 | |
688 accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); | |
689 accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); | |
690 accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); | |
691 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
692 accum0 = _mm_packs_epi32(accum0, accum1); | |
693 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
694 accum2 = _mm_packs_epi32(accum2, zero); | |
695 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
696 accum0 = _mm_packus_epi16(accum0, accum2); | |
697 if (has_alpha) { | |
698 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 | |
699 __m128i a = _mm_srli_epi32(accum0, 8); | |
700 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
701 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. | |
702 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 | |
703 a = _mm_srli_epi32(accum0, 16); | |
704 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
705 b = _mm_max_epu8(a, b); // Max of r and g and b. | |
706 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 | |
707 b = _mm_slli_epi32(b, 24); | |
708 accum0 = _mm_max_epu8(b, accum0); | |
709 } else { | |
710 __m128i mask = _mm_set1_epi32(0xff000000); | |
711 accum0 = _mm_or_si128(accum0, mask); | |
712 } | |
713 | |
714 for (int out_x = width; out_x < pixel_width; out_x++) { | |
715 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); | |
716 accum0 = _mm_srli_si128(accum0, 4); | |
717 out_row += 4; | |
718 } | |
719 } | |
720 } | |
721 | |
722 void convolveVertically_SSE2(const SkConvolutionFilter1D::Fixed* filter_values, | |
723 int filter_length, | |
724 unsigned char* const* source_data_rows, | |
725 int pixel_width, | |
726 unsigned char* out_row, | |
727 bool has_alpha) { | |
728 if (has_alpha) { | |
729 convolveVertically_SSE2<true>(filter_values, | |
730 filter_length, | |
731 source_data_rows, | |
732 pixel_width, | |
733 out_row); | |
734 } else { | |
735 convolveVertically_SSE2<false>(filter_values, | |
736 filter_length, | |
737 source_data_rows, | |
738 pixel_width, | |
739 out_row); | |
740 } | |
741 } | |
OLD | NEW |