OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "SkConvolver.h" |
| 6 #include "SkSize.h" |
| 7 #include "SkTypes.h" |
| 8 |
| 9 namespace { |
| 10 |
| 11 // Converts the argument to an 8-bit unsigned value by clamping to the range |
| 12 // 0-255. |
| 13 inline unsigned char ClampTo8(int a) { |
| 14 if (static_cast<unsigned>(a) < 256) |
| 15 return a; // Avoid the extra check in the common case. |
| 16 if (a < 0) |
| 17 return 0; |
| 18 return 255; |
| 19 } |
| 20 |
| 21 // Takes the value produced by accumulating element-wise product of image wi
th |
| 22 // a kernel and brings it back into range. |
| 23 // All of the filter scaling factors are in fixed point with kShiftBits bits
of |
| 24 // fractional part. |
| 25 inline unsigned char BringBackTo8(int a, bool takeAbsolute) { |
| 26 a >>= SkConvolutionFilter1D::kShiftBits; |
| 27 if (takeAbsolute) |
| 28 a = abs(a); |
| 29 return ClampTo8(a); |
| 30 } |
| 31 |
| 32 // Stores a list of rows in a circular buffer. The usage is you write into i
t |
| 33 // by calling AdvanceRow. It will keep track of which row in the buffer it |
| 34 // should use next, and the total number of rows added. |
| 35 class CircularRowBuffer { |
| 36 public: |
| 37 // The number of pixels in each row is given in |source_row_pixel_widt
h|. |
| 38 // The maximum number of rows needed in the buffer is |max_y_filter_si
ze| |
| 39 // (we only need to store enough rows for the biggest filter). |
| 40 // |
| 41 // We use the |first_input_row| to compute the coordinates of all of t
he |
| 42 // following rows returned by Advance(). |
| 43 CircularRowBuffer(int destRowPixelWidth, int maxYFilterSize, |
| 44 int firstInputRow) |
| 45 : fRowByteWidth(destRowPixelWidth * 4), |
| 46 fNumRows(maxYFilterSize), |
| 47 fNextRow(0), |
| 48 fNextRowCoordinate(firstInputRow) { |
| 49 fBuffer.reset(fRowByteWidth * maxYFilterSize); |
| 50 fRowAddresses.reset(fNumRows); |
| 51 } |
| 52 |
| 53 // Moves to the next row in the buffer, returning a pointer to the begin
ning |
| 54 // of it. |
| 55 unsigned char* advanceRow() { |
| 56 unsigned char* row = &fBuffer[fNextRow * fRowByteWidth]; |
| 57 fNextRowCoordinate++; |
| 58 |
| 59 // Set the pointer to the next row to use, wrapping around if necess
ary. |
| 60 fNextRow++; |
| 61 if (fNextRow == fNumRows) |
| 62 fNextRow = 0; |
| 63 return row; |
| 64 } |
| 65 |
| 66 // Returns a pointer to an "unrolled" array of rows. These rows will sta
rt |
| 67 // at the y coordinate placed into |*first_row_index| and will continue
in |
| 68 // order for the maximum number of rows in this circular buffer. |
| 69 // |
| 70 // The |first_row_index_| may be negative. This means the circular buffe
r |
| 71 // starts before the top of the image (it hasn't been filled yet). |
| 72 unsigned char* const* GetRowAddresses(int* firstRowIndex) { |
| 73 // Example for a 4-element circular buffer holding coords 6-9. |
| 74 // Row 0 Coord 8 |
| 75 // Row 1 Coord 9 |
| 76 // Row 2 Coord 6 <- fNextRow = 2, fNextRowCoordinate = 10. |
| 77 // Row 3 Coord 7 |
| 78 // |
| 79 // The "next" row is also the first (lowest) coordinate. This comput
ation |
| 80 // may yield a negative value, but that's OK, the math will work out |
| 81 // since the user of this buffer will compute the offset relative |
| 82 // to the firstRowIndex and the negative rows will never be used. |
| 83 *firstRowIndex = fNextRowCoordinate - fNumRows; |
| 84 |
| 85 int cur_row = fNextRow; |
| 86 for (int i = 0; i < fNumRows; i++) { |
| 87 fRowAddresses[i] = &fBuffer[cur_row * fRowByteWidth]; |
| 88 |
| 89 // Advance to the next row, wrapping if necessary. |
| 90 cur_row++; |
| 91 if (cur_row == fNumRows) |
| 92 cur_row = 0; |
| 93 } |
| 94 return &fRowAddresses[0]; |
| 95 } |
| 96 |
| 97 private: |
| 98 // The buffer storing the rows. They are packed, each one fRowByteWidth. |
| 99 SkTArray<unsigned char> fBuffer; |
| 100 |
| 101 // Number of bytes per row in the |buffer_|. |
| 102 int fRowByteWidth; |
| 103 |
| 104 // The number of rows available in the buffer. |
| 105 int fNumRows; |
| 106 |
| 107 // The next row index we should write into. This wraps around as the |
| 108 // circular buffer is used. |
| 109 int fNextRow; |
| 110 |
| 111 // The y coordinate of the |fNextRow|. This is incremented each time a |
| 112 // new row is appended and does not wrap. |
| 113 int fNextRowCoordinate; |
| 114 |
| 115 // Buffer used by GetRowAddresses(). |
| 116 SkTArray<unsigned char*> fRowAddresses; |
| 117 }; |
| 118 |
| 119 // Convolves horizontally along a single row. The row data is given in |
| 120 // |src_data| and continues for the numValues() of the filter. |
| 121 template<bool has_alpha> |
| 122 void ConvolveHorizontally(const unsigned char* src_data, |
| 123 const SkConvolutionFilter1D& filter, |
| 124 unsigned char* out_row) { |
| 125 // Loop over each pixel on this row in the output image. |
| 126 int numValues = filter.numValues(); |
| 127 for (int out_x = 0; out_x < numValues; out_x++) { |
| 128 // Get the filter that determines the current output pixel. |
| 129 int filterOffset, filterLength; |
| 130 const SkConvolutionFilter1D::Fixed* filterValues = |
| 131 filter.FilterForValue(out_x, &filterOffset, &filterLength); |
| 132 |
| 133 // Compute the first pixel in this row that the filter affects. It will |
| 134 // touch |filterLength| pixels (4 bytes each) after this. |
| 135 const unsigned char* row_to_filter = &src_data[filterOffset * 4]; |
| 136 |
| 137 // Apply the filter to the row to get the destination pixel in |accum|. |
| 138 int accum[4] = {0}; |
| 139 for (int filter_x = 0; filter_x < filterLength; filter_x++) { |
| 140 SkConvolutionFilter1D::Fixed cur_filter = filterValues[filter_x]
; |
| 141 accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0]; |
| 142 accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1]; |
| 143 accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2]; |
| 144 if (has_alpha) |
| 145 accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3]; |
| 146 } |
| 147 |
| 148 // Bring this value back in range. All of the filter scaling factors |
| 149 // are in fixed point with kShiftBits bits of fractional part. |
| 150 accum[0] >>= SkConvolutionFilter1D::kShiftBits; |
| 151 accum[1] >>= SkConvolutionFilter1D::kShiftBits; |
| 152 accum[2] >>= SkConvolutionFilter1D::kShiftBits; |
| 153 if (has_alpha) |
| 154 accum[3] >>= SkConvolutionFilter1D::kShiftBits; |
| 155 |
| 156 // Store the new pixel. |
| 157 out_row[out_x * 4 + 0] = ClampTo8(accum[0]); |
| 158 out_row[out_x * 4 + 1] = ClampTo8(accum[1]); |
| 159 out_row[out_x * 4 + 2] = ClampTo8(accum[2]); |
| 160 if (has_alpha) |
| 161 out_row[out_x * 4 + 3] = ClampTo8(accum[3]); |
| 162 } |
| 163 } |
| 164 |
| 165 // Does vertical convolution to produce one output row. The filter values and |
| 166 // length are given in the first two parameters. These are applied to each |
| 167 // of the rows pointed to in the |source_data_rows| array, with each row |
| 168 // being |pixel_width| wide. |
| 169 // |
| 170 // The output must have room for |pixel_width * 4| bytes. |
| 171 template<bool has_alpha> |
| 172 void ConvolveVertically(const SkConvolutionFilter1D::Fixed* filterValues, |
| 173 int filterLength, |
| 174 unsigned char* const* source_data_rows, |
| 175 int pixel_width, |
| 176 unsigned char* out_row) { |
| 177 // We go through each column in the output and do a vertical convolution, |
| 178 // generating one output pixel each time. |
| 179 for (int out_x = 0; out_x < pixel_width; out_x++) { |
| 180 // Compute the number of bytes over in each row that the current column |
| 181 // we're convolving starts at. The pixel will cover the next 4 bytes. |
| 182 int byte_offset = out_x * 4; |
| 183 |
| 184 // Apply the filter to one column of pixels. |
| 185 int accum[4] = {0}; |
| 186 for (int filter_y = 0; filter_y < filterLength; filter_y++) { |
| 187 SkConvolutionFilter1D::Fixed cur_filter = filterValues[filter_y]
; |
| 188 accum[0] += cur_filter * source_data_rows[filter_y][byte_offset
+ 0]; |
| 189 accum[1] += cur_filter * source_data_rows[filter_y][byte_offset
+ 1]; |
| 190 accum[2] += cur_filter * source_data_rows[filter_y][byte_offset
+ 2]; |
| 191 if (has_alpha) |
| 192 accum[3] += cur_filter * source_data_rows[filter_y][byte_off
set + 3]; |
| 193 } |
| 194 |
| 195 // Bring this value back in range. All of the filter scaling factors |
| 196 // are in fixed point with kShiftBits bits of precision. |
| 197 accum[0] >>= SkConvolutionFilter1D::kShiftBits; |
| 198 accum[1] >>= SkConvolutionFilter1D::kShiftBits; |
| 199 accum[2] >>= SkConvolutionFilter1D::kShiftBits; |
| 200 if (has_alpha) |
| 201 accum[3] >>= SkConvolutionFilter1D::kShiftBits; |
| 202 |
| 203 // Store the new pixel. |
| 204 out_row[byte_offset + 0] = ClampTo8(accum[0]); |
| 205 out_row[byte_offset + 1] = ClampTo8(accum[1]); |
| 206 out_row[byte_offset + 2] = ClampTo8(accum[2]); |
| 207 if (has_alpha) { |
| 208 unsigned char alpha = ClampTo8(accum[3]); |
| 209 |
| 210 // Make sure the alpha channel doesn't come out smaller than any of the |
| 211 // color channels. We use premultipled alpha channels, so this should |
| 212 // never happen, but rounding errors will cause this from time to time. |
| 213 // These "impossible" colors will cause overflows (and hence random pixel |
| 214 // values) when the resulting bitmap is drawn to the screen. |
| 215 // |
| 216 // We only need to do this when generating the final output row (here). |
| 217 int max_color_channel = SkTMax(out_row[byte_offset + 0], |
| 218 SkTMax(out_row[byte_offset + 1], out_row[byte_offset + 2])); |
| 219 if (alpha < max_color_channel) |
| 220 out_row[byte_offset + 3] = max_color_channel; |
| 221 else |
| 222 out_row[byte_offset + 3] = alpha; |
| 223 } else { |
| 224 // No alpha channel, the image is opaque. |
| 225 out_row[byte_offset + 3] = 0xff; |
| 226 } |
| 227 } |
| 228 } |
| 229 |
| 230 void ConvolveVertically(const SkConvolutionFilter1D::Fixed* filterValues, |
| 231 int filterLength, |
| 232 unsigned char* const* source_data_rows, |
| 233 int pixel_width, |
| 234 unsigned char* out_row, |
| 235 bool source_has_alpha) { |
| 236 if (source_has_alpha) { |
| 237 ConvolveVertically<true>(filterValues, filterLength, |
| 238 source_data_rows, |
| 239 pixel_width, |
| 240 out_row); |
| 241 } else { |
| 242 ConvolveVertically<false>(filterValues, filterLength, |
| 243 source_data_rows, |
| 244 pixel_width, |
| 245 out_row); |
| 246 } |
| 247 } |
| 248 |
| 249 } // namespace |
| 250 |
| 251 // SkConvolutionFilter1D -------------------------------------------------------
-- |
| 252 |
| 253 SkConvolutionFilter1D::SkConvolutionFilter1D() |
| 254 : fMaxFilter(0) { |
| 255 } |
| 256 |
| 257 SkConvolutionFilter1D::~SkConvolutionFilter1D() { |
| 258 } |
| 259 |
| 260 void SkConvolutionFilter1D::AddFilter(int filterOffset, |
| 261 const float* filterValues, |
| 262 int filterLength) { |
| 263 SkASSERT(filterLength > 0); |
| 264 |
| 265 SkTArray<Fixed> fixed_values; |
| 266 fixed_values.reset(filterLength); |
| 267 |
| 268 for (int i = 0; i < filterLength; ++i) |
| 269 fixed_values.push_back(FloatToFixed(filterValues[i])); |
| 270 |
| 271 AddFilter(filterOffset, &fixed_values[0], filterLength); |
| 272 } |
| 273 |
| 274 void SkConvolutionFilter1D::AddFilter(int filterOffset, |
| 275 const Fixed* filterValues, |
| 276 int filterLength) { |
| 277 // It is common for leading/trailing filter values to be zeros. In such |
| 278 // cases it is beneficial to only store the central factors. |
| 279 // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on |
| 280 // a 1080p image this optimization gives a ~10% speed improvement. |
| 281 int filter_size = filterLength; |
| 282 int first_non_zero = 0; |
| 283 while (first_non_zero < filterLength && filterValues[first_non_zero] == 0) |
| 284 first_non_zero++; |
| 285 |
| 286 if (first_non_zero < filterLength) { |
| 287 // Here we have at least one non-zero factor. |
| 288 int last_non_zero = filterLength - 1; |
| 289 while (last_non_zero >= 0 && filterValues[last_non_zero] == 0) |
| 290 last_non_zero--; |
| 291 |
| 292 filterOffset += first_non_zero; |
| 293 filterLength = last_non_zero + 1 - first_non_zero; |
| 294 SkASSERT(filterLength > 0); |
| 295 |
| 296 for (int i = first_non_zero; i <= last_non_zero; i++) |
| 297 fFilterValues.push_back(filterValues[i]); |
| 298 } else { |
| 299 // Here all the factors were zeroes. |
| 300 filterLength = 0; |
| 301 } |
| 302 |
| 303 FilterInstance instance; |
| 304 |
| 305 // We pushed filterLength elements onto fFilterValues |
| 306 instance.fDataLocation = (static_cast<int>(fFilterValues.count()) - |
| 307 filterLength); |
| 308 instance.fOffset = filterOffset; |
| 309 instance.fTrimmedLength = filterLength; |
| 310 instance.fLength = filter_size; |
| 311 fFilters.push_back(instance); |
| 312 |
| 313 fMaxFilter = SkTMax(fMaxFilter, filterLength); |
| 314 } |
| 315 |
| 316 const SkConvolutionFilter1D::Fixed* SkConvolutionFilter1D::GetSingleFilter( |
| 317 int* specified_filterLength, |
| 318 int* filterOffset, |
| 319 int* filterLength) const { |
| 320 const FilterInstance& filter = fFilters[0]; |
| 321 *filterOffset = filter.fOffset; |
| 322 *filterLength = filter.fTrimmedLength; |
| 323 *specified_filterLength = filter.fLength; |
| 324 if (filter.fTrimmedLength == 0) { |
| 325 return NULL; |
| 326 } |
| 327 |
| 328 return &fFilterValues[filter.fDataLocation]; |
| 329 } |
| 330 |
| 331 void BGRAConvolve2D(const unsigned char* sourceData, |
| 332 int sourceByteRowStride, |
| 333 bool sourceHasAlpha, |
| 334 const SkConvolutionFilter1D& filterX, |
| 335 const SkConvolutionFilter1D& filterY, |
| 336 int outputByteRowStride, |
| 337 unsigned char* output, |
| 338 SkConvolutionProcs *convolveProcs, |
| 339 bool useSimdIfPossible) { |
| 340 |
| 341 int maxYFilterSize = filterY.maxFilter(); |
| 342 |
| 343 // The next row in the input that we will generate a horizontally |
| 344 // convolved row for. If the filter doesn't start at the beginning of the |
| 345 // image (this is the case when we are only resizing a subset), then we |
| 346 // don't want to generate any output rows before that. Compute the starting |
| 347 // row for convolution as the first pixel for the first vertical filter. |
| 348 int filterOffset, filterLength; |
| 349 const SkConvolutionFilter1D::Fixed* filterValues = |
| 350 filterY.FilterForValue(0, &filterOffset, &filterLength); |
| 351 int nextXRow = filterOffset; |
| 352 |
| 353 // We loop over each row in the input doing a horizontal convolution. This |
| 354 // will result in a horizontally convolved image. We write the results into |
| 355 // a circular buffer of convolved rows and do vertical convolution as rows |
| 356 // are available. This prevents us from having to store the entire |
| 357 // intermediate image and helps cache coherency. |
| 358 // We will need four extra rows to allow horizontal convolution could be don
e |
| 359 // simultaneously. We also padding each row in row buffer to be aligned-up t
o |
| 360 // 16 bytes. |
| 361 // TODO(jiesun): We do not use aligned load from row buffer in vertical |
| 362 // convolution pass yet. Somehow Windows does not like it. |
| 363 int rowBufferWidth = (filterX.numValues() + 15) & ~0xF; |
| 364 int rowBufferHeight = maxYFilterSize + |
| 365 (convolveProcs->fConvolve4RowsHorizontally ? 4 : 0); |
| 366 CircularRowBuffer rowBuffer(rowBufferWidth, |
| 367 rowBufferHeight, |
| 368 filterOffset); |
| 369 |
| 370 // Loop over every possible output row, processing just enough horizontal |
| 371 // convolutions to run each subsequent vertical convolution. |
| 372 SkASSERT(outputByteRowStride >= filterX.numValues() * 4); |
| 373 int numOutputRows = filterY.numValues(); |
| 374 |
| 375 // We need to check which is the last line to convolve before we advance 4 |
| 376 // lines in one iteration. |
| 377 int lastFilterOffset, lastFilterLength; |
| 378 |
| 379 // SSE2 can access up to 3 extra pixels past the end of the |
| 380 // buffer. At the bottom of the image, we have to be careful |
| 381 // not to access data past the end of the buffer. Normally |
| 382 // we fall back to the C++ implementation for the last row. |
| 383 // If the last row is less than 3 pixels wide, we may have to fall |
| 384 // back to the C++ version for more rows. Compute how many |
| 385 // rows we need to avoid the SSE implementation for here. |
| 386 filterX.FilterForValue(filterX.numValues() - 1, &lastFilterOffset, |
| 387 &lastFilterLength); |
| 388 int avoidSimdRows = 1 + convolveProcs->fExtraHorizontalReads / |
| 389 (lastFilterOffset + lastFilterLength); |
| 390 |
| 391 filterY.FilterForValue(numOutputRows - 1, &lastFilterOffset, |
| 392 &lastFilterLength); |
| 393 |
| 394 for (int outY = 0; outY < numOutputRows; outY++) { |
| 395 filterValues = filterY.FilterForValue(outY, |
| 396 &filterOffset, &filterLength); |
| 397 |
| 398 // Generate output rows until we have enough to run the current filter. |
| 399 while (nextXRow < filterOffset + filterLength) { |
| 400 if (convolveProcs->fConvolve4RowsHorizontally && |
| 401 nextXRow + 3 < lastFilterOffset + lastFilterLength - |
| 402 avoidSimdRows) { |
| 403 const unsigned char* src[4]; |
| 404 unsigned char* outRow[4]; |
| 405 for (int i = 0; i < 4; ++i) { |
| 406 src[i] = &sourceData[(nextXRow + i) * sourceByteRowStride]; |
| 407 outRow[i] = rowBuffer.advanceRow(); |
| 408 } |
| 409 convolveProcs->fConvolve4RowsHorizontally(src, filterX, outRow); |
| 410 nextXRow += 4; |
| 411 } else { |
| 412 // Check if we need to avoid SSE2 for this row. |
| 413 if (convolveProcs->fConvolveHorizontally && |
| 414 nextXRow < lastFilterOffset + lastFilterLength - |
| 415 avoidSimdRows) { |
| 416 convolveProcs->fConvolveHorizontally( |
| 417 &sourceData[nextXRow * sourceByteRowStride], |
| 418 filterX, rowBuffer.advanceRow(), sourceHasAlpha); |
| 419 } else { |
| 420 if (sourceHasAlpha) { |
| 421 ConvolveHorizontally<true>( |
| 422 &sourceData[nextXRow * sourceByteRowStride], |
| 423 filterX, rowBuffer.advanceRow()); |
| 424 } else { |
| 425 ConvolveHorizontally<false>( |
| 426 &sourceData[nextXRow * sourceByteRowStride], |
| 427 filterX, rowBuffer.advanceRow()); |
| 428 } |
| 429 } |
| 430 nextXRow++; |
| 431 } |
| 432 } |
| 433 |
| 434 // Compute where in the output image this row of final data will go. |
| 435 unsigned char* curOutputRow = &output[outY * outputByteRowStride]; |
| 436 |
| 437 // Get the list of rows that the circular buffer has, in order. |
| 438 int firstRowInCircularBuffer; |
| 439 unsigned char* const* rowsToConvolve = |
| 440 rowBuffer.GetRowAddresses(&firstRowInCircularBuffer); |
| 441 |
| 442 // Now compute the start of the subset of those rows that the filter |
| 443 // needs. |
| 444 unsigned char* const* firstRowForFilter = |
| 445 &rowsToConvolve[filterOffset - firstRowInCircularBuffer]; |
| 446 |
| 447 if (convolveProcs->fConvolveVertically) { |
| 448 convolveProcs->fConvolveVertically(filterValues, filterLength, |
| 449 firstRowForFilter, |
| 450 filterX.numValues(), curOutputRow, |
| 451 sourceHasAlpha); |
| 452 } else { |
| 453 ConvolveVertically(filterValues, filterLength, |
| 454 firstRowForFilter, |
| 455 filterX.numValues(), curOutputRow, |
| 456 sourceHasAlpha); |
| 457 } |
| 458 } |
| 459 } |
OLD | NEW |