Index: src/pdf/SkTSet.h |
diff --git a/src/pdf/SkTSet.h b/src/pdf/SkTSet.h |
index 8d5bbb6897e3b94249a63c7e99379fcaf33bb0f1..0aaeb3016df14da7290e06bf590c3a9f1f763159 100644 |
--- a/src/pdf/SkTSet.h |
+++ b/src/pdf/SkTSet.h |
@@ -13,7 +13,8 @@ |
/** \class SkTSet<T> |
- The SkTSet template class defines a set. |
+ The SkTSet template class defines a set. Elements are additionally |
+ guaranteed to be sorted by their insertion order. |
Main operations supported now are: add, merge, find and contains. |
TSet<T> is mutable. |
@@ -24,23 +25,28 @@ |
template <typename T> class SkTSet { |
public: |
SkTSet() { |
- fArray = SkNEW(SkTDArray<T>); |
+ fSetArray = SkNEW(SkTDArray<T>); |
+ fOrderedArray = SkNEW(SkTDArray<T>); |
} |
~SkTSet() { |
- SkASSERT(fArray); |
- SkDELETE(fArray); |
+ SkASSERT(fSetArray); |
+ SkDELETE(fSetArray); |
+ SkASSERT(fOrderedArray); |
+ SkDELETE(fOrderedArray); |
} |
SkTSet(const SkTSet<T>& src) { |
- this->fArray = SkNEW_ARGS(SkTDArray<T>, (*src.fArray)); |
+ this->fSetArray = SkNEW_ARGS(SkTDArray<T>, (*src.fSetArray)); |
+ this->fOrderedArray = SkNEW_ARGS(SkTDArray<T>, (*src.fOrderedArray)); |
#ifdef SK_DEBUG |
validate(); |
#endif |
} |
SkTSet<T>& operator=(const SkTSet<T>& src) { |
- *this->fArray = *src.fArray; |
+ *this->fSetArray = *src.fSetArray; |
+ *this->fOrderedArray = *src.fOrderedArray; |
#ifdef SK_DEBUG |
validate(); |
#endif |
@@ -48,61 +54,39 @@ public: |
} |
/** Merges src elements into this, and returns the number of duplicates |
- * found. |
- */ |
+ * found. Elements in src will be ordered after elements in this set. |
+ */ |
int mergeInto(const SkTSet<T>& src) { |
ducky
2013/07/16 01:03:10
So this is now a O(n^2) algorithm (src loop, then
|
- SkASSERT(fArray); |
+ SkASSERT(fSetArray); |
+ SkASSERT(fOrderedArray); |
int duplicates = 0; |
- SkTDArray<T>* fArrayNew = new SkTDArray<T>(); |
- fArrayNew->setReserve(count() + src.count()); |
- int i = 0; |
- int j = 0; |
- |
- while (i < count() && j < src.count()) { |
- if ((*fArray)[i] < (*src.fArray)[j]) { |
- fArrayNew->push((*fArray)[i]); |
- i++; |
- } else if ((*fArray)[i] > (*src.fArray)[j]) { |
- fArrayNew->push((*src.fArray)[j]); |
- j++; |
- } else { |
+ for (int i = 0; i < src.count(); ++i) { |
+ if (!add((*src.fOrderedArray)[i])) { |
duplicates++; |
- j++; // Skip one of the duplicates. |
} |
} |
- while (i < count()) { |
- fArrayNew->push((*fArray)[i]); |
- i++; |
- } |
- |
- while (j < src.count()) { |
- fArrayNew->push((*src.fArray)[j]); |
- j++; |
- } |
- SkDELETE(fArray); |
- fArray = fArrayNew; |
- fArrayNew = NULL; |
- |
#ifdef SK_DEBUG |
validate(); |
#endif |
return duplicates; |
} |
- /** Adds a new element into set and returns true if the element is already |
+ /** Adds a new element into set and returns false if the element is already |
* in this set. |
*/ |
bool add(const T& elem) { |
- SkASSERT(fArray); |
+ SkASSERT(fSetArray); |
+ SkASSERT(fOrderedArray); |
int pos = 0; |
int i = find(elem, &pos); |
if (i >= 0) { |
return false; |
} |
- *fArray->insert(pos) = elem; |
+ *fSetArray->insert(pos) = elem; |
+ fOrderedArray->push(elem); |
#ifdef SK_DEBUG |
validate(); |
#endif |
@@ -112,150 +96,118 @@ public: |
/** Returns true if this set is empty. |
*/ |
bool isEmpty() const { |
- SkASSERT(fArray); |
- return fArray->isEmpty(); |
+ SkASSERT(fOrderedArray); |
+ return fOrderedArray->isEmpty(); |
} |
/** Return the number of elements in the set. |
*/ |
int count() const { |
- SkASSERT(fArray); |
- return fArray->count(); |
+ SkASSERT(fOrderedArray); |
+ return fOrderedArray->count(); |
} |
/** Return the number of bytes in the set: count * sizeof(T). |
*/ |
size_t bytes() const { |
- SkASSERT(fArray); |
- return fArray->bytes(); |
+ SkASSERT(fOrderedArray); |
+ return fOrderedArray->bytes(); |
} |
/** Return the beginning of a set iterator. |
* Elements in the iterator will be sorted ascending. |
*/ |
const T* begin() const { |
- SkASSERT(fArray); |
- return fArray->begin(); |
+ SkASSERT(fOrderedArray); |
+ return fOrderedArray->begin(); |
} |
/** Return the end of a set iterator. |
*/ |
const T* end() const { |
- SkASSERT(fArray); |
- return fArray->end(); |
+ SkASSERT(fOrderedArray); |
+ return fOrderedArray->end(); |
} |
const T& operator[](int index) const { |
- SkASSERT(fArray); |
- return (*fArray)[index]; |
+ SkASSERT(fOrderedArray); |
+ return (*fOrderedArray)[index]; |
} |
/** Resets the set (deletes memory and initiates an empty set). |
*/ |
void reset() { |
- SkASSERT(fArray); |
- fArray->reset(); |
+ SkASSERT(fSetArray); |
+ SkASSERT(fOrderedArray); |
+ fSetArray->reset(); |
+ fOrderedArray->reset(); |
} |
/** Rewinds the set (preserves memory and initiates an empty set). |
*/ |
void rewind() { |
- SkASSERT(fArray); |
- fArray->rewind(); |
+ SkASSERT(fSetArray); |
+ SkASSERT(fOrderedArray); |
+ fSetArray->rewind(); |
+ fOrderedArray->rewind(); |
} |
/** Reserves memory for the set. |
*/ |
void setReserve(size_t reserve) { |
- SkASSERT(fArray); |
- fArray->setReserve(reserve); |
- } |
- |
- /** Returns the index where an element was found. |
- * Returns -1 if the element was not found, and it fills *posToInsertSorted |
- * with the index of the place where elem should be inserted to preserve the |
- * internal array sorted. |
- * If element was found, *posToInsertSorted is undefined. |
- */ |
- int find(const T& elem, int* posToInsertSorted = NULL) const { |
- SkASSERT(fArray); |
- |
- if (fArray->count() == 0) { |
- if (posToInsertSorted) { |
- *posToInsertSorted = 0; |
- } |
- return -1; |
- } |
- int iMin = 0; |
- int iMax = fArray->count(); |
- |
- while (iMin < iMax - 1) { |
- int iMid = (iMin + iMax) / 2; |
- if (elem < (*fArray)[iMid]) { |
- iMax = iMid; |
- } else { |
- iMin = iMid; |
- } |
- } |
- if (elem == (*fArray)[iMin]) { |
- return iMin; |
- } |
- if (posToInsertSorted) { |
- if (elem < (*fArray)[iMin]) { |
- *posToInsertSorted = iMin; |
- } else { |
- *posToInsertSorted = iMin + 1; |
- } |
- } |
- |
- return -1; |
+ SkASSERT(fSetArray); |
+ SkASSERT(fOrderedArray); |
+ fSetArray->setReserve(reserve); |
+ fOrderedArray->setReserve(reserve); |
} |
/** Returns true if the array contains this element. |
*/ |
bool contains(const T& elem) const { |
- SkASSERT(fArray); |
+ SkASSERT(fSetArray); |
return (this->find(elem) >= 0); |
} |
/** Copies internal array to destination. |
*/ |
void copy(T* dst) const { |
- SkASSERT(fArray); |
- fArray->copyRange(0, fArray->count(), dst); |
+ SkASSERT(fOrderedArray); |
+ fOrderedArray->copyRange(0, fOrderedArray->count(), dst); |
} |
/** Returns a const reference to the internal vector. |
*/ |
const SkTDArray<T>& toArray() { |
- SkASSERT(fArray); |
- return *fArray; |
+ SkASSERT(fOrderedArray); |
+ return *fOrderedArray; |
} |
/** Unref all elements in the set. |
*/ |
void unrefAll() { |
- SkASSERT(fArray); |
- fArray->unrefAll(); |
+ SkASSERT(fOrderedArray); |
+ fOrderedArray->unrefAll(); |
} |
/** safeUnref all elements in the set. |
*/ |
void safeUnrefAll() { |
- SkASSERT(fArray); |
- fArray->safeUnrefAll(); |
+ SkASSERT(fOrderedArray); |
+ fOrderedArray->safeUnrefAll(); |
} |
#ifdef SK_DEBUG |
void validate() const { |
- SkASSERT(fArray); |
- fArray->validate(); |
- SkASSERT(isSorted() && !hasDuplicates()); |
+ SkASSERT(fSetArray); |
+ SkASSERT(fOrderedArray); |
+ fSetArray->validate(); |
+ fOrderedArray->validate(); |
+ SkASSERT(isSorted() && !hasDuplicates() && arraysConsistent()); |
} |
bool hasDuplicates() const { |
- for (int i = 0; i < fArray->count() - 1; ++i) { |
- if ((*fArray)[i] == (*fArray)[i + 1]) { |
+ for (int i = 0; i < fSetArray->count() - 1; ++i) { |
+ if ((*fSetArray)[i] == (*fSetArray)[i + 1]) { |
return true; |
} |
} |
@@ -263,18 +215,76 @@ public: |
} |
bool isSorted() const { |
- for (int i = 0; i < fArray->count() - 1; ++i) { |
+ for (int i = 0; i < fSetArray->count() - 1; ++i) { |
// Use only < operator |
- if (!((*fArray)[i] < (*fArray)[i + 1])) { |
+ if (!((*fSetArray)[i] < (*fSetArray)[i + 1])) { |
return false; |
} |
} |
return true; |
} |
+ |
+ /** Checks if fSetArray is consistent with fOrderedArray |
+ */ |
+ bool arraysConsistent() const { |
+ SkASSERT(fSetArray->count() == fOrderedArray->count()); |
+ for (int i = 0; i < fOrderedArray->count(); ++i) { |
+ if (!contains((*fOrderedArray)[i])) { |
+ return false; |
+ } |
+ } |
+ // Checking fSetArray -> fOrderedArray should also be done, but |
+ // the O(n^2)ness makes some GMs unacceptably slow. |
+ |
+ return true; |
+ } |
#endif |
private: |
- SkTDArray<T>* fArray; |
+ SkTDArray<T>* fSetArray; // Sorted by pointer address for fast |
+ // lookup. |
+ SkTDArray<T>* fOrderedArray; // Sorted by insertion order for |
+ // deterministic output. |
+ |
+ /** Returns the index in fSetArray where an element was found. |
+ * Returns -1 if the element was not found, and it fills *posToInsertSorted |
+ * with the index of the place where elem should be inserted to preserve the |
+ * internal array sorted. |
+ * If element was found, *posToInsertSorted is undefined. |
+ */ |
+ int find(const T& elem, int* posToInsertSorted = NULL) const { |
+ SkASSERT(fSetArray); |
+ |
+ if (fSetArray->count() == 0) { |
+ if (posToInsertSorted) { |
+ *posToInsertSorted = 0; |
+ } |
+ return -1; |
+ } |
+ int iMin = 0; |
+ int iMax = fSetArray->count(); |
+ |
+ while (iMin < iMax - 1) { |
+ int iMid = (iMin + iMax) / 2; |
+ if (elem < (*fSetArray)[iMid]) { |
+ iMax = iMid; |
+ } else { |
+ iMin = iMid; |
+ } |
+ } |
+ if (elem == (*fSetArray)[iMin]) { |
+ return iMin; |
+ } |
+ if (posToInsertSorted) { |
+ if (elem < (*fSetArray)[iMin]) { |
+ *posToInsertSorted = iMin; |
+ } else { |
+ *posToInsertSorted = iMin + 1; |
+ } |
+ } |
+ |
+ return -1; |
+ } |
}; |
#endif |