Chromium Code Reviews| Index: src/pdf/SkTSet.h |
| diff --git a/src/pdf/SkTSet.h b/src/pdf/SkTSet.h |
| index 8d5bbb6897e3b94249a63c7e99379fcaf33bb0f1..0aaeb3016df14da7290e06bf590c3a9f1f763159 100644 |
| --- a/src/pdf/SkTSet.h |
| +++ b/src/pdf/SkTSet.h |
| @@ -13,7 +13,8 @@ |
| /** \class SkTSet<T> |
| - The SkTSet template class defines a set. |
| + The SkTSet template class defines a set. Elements are additionally |
| + guaranteed to be sorted by their insertion order. |
| Main operations supported now are: add, merge, find and contains. |
| TSet<T> is mutable. |
| @@ -24,23 +25,28 @@ |
| template <typename T> class SkTSet { |
| public: |
| SkTSet() { |
| - fArray = SkNEW(SkTDArray<T>); |
| + fSetArray = SkNEW(SkTDArray<T>); |
| + fOrderedArray = SkNEW(SkTDArray<T>); |
| } |
| ~SkTSet() { |
| - SkASSERT(fArray); |
| - SkDELETE(fArray); |
| + SkASSERT(fSetArray); |
| + SkDELETE(fSetArray); |
| + SkASSERT(fOrderedArray); |
| + SkDELETE(fOrderedArray); |
| } |
| SkTSet(const SkTSet<T>& src) { |
| - this->fArray = SkNEW_ARGS(SkTDArray<T>, (*src.fArray)); |
| + this->fSetArray = SkNEW_ARGS(SkTDArray<T>, (*src.fSetArray)); |
| + this->fOrderedArray = SkNEW_ARGS(SkTDArray<T>, (*src.fOrderedArray)); |
| #ifdef SK_DEBUG |
| validate(); |
| #endif |
| } |
| SkTSet<T>& operator=(const SkTSet<T>& src) { |
| - *this->fArray = *src.fArray; |
| + *this->fSetArray = *src.fSetArray; |
| + *this->fOrderedArray = *src.fOrderedArray; |
| #ifdef SK_DEBUG |
| validate(); |
| #endif |
| @@ -48,61 +54,39 @@ public: |
| } |
| /** Merges src elements into this, and returns the number of duplicates |
| - * found. |
| - */ |
| + * found. Elements in src will be ordered after elements in this set. |
| + */ |
| int mergeInto(const SkTSet<T>& src) { |
|
ducky
2013/07/16 01:03:10
So this is now a O(n^2) algorithm (src loop, then
|
| - SkASSERT(fArray); |
| + SkASSERT(fSetArray); |
| + SkASSERT(fOrderedArray); |
| int duplicates = 0; |
| - SkTDArray<T>* fArrayNew = new SkTDArray<T>(); |
| - fArrayNew->setReserve(count() + src.count()); |
| - int i = 0; |
| - int j = 0; |
| - |
| - while (i < count() && j < src.count()) { |
| - if ((*fArray)[i] < (*src.fArray)[j]) { |
| - fArrayNew->push((*fArray)[i]); |
| - i++; |
| - } else if ((*fArray)[i] > (*src.fArray)[j]) { |
| - fArrayNew->push((*src.fArray)[j]); |
| - j++; |
| - } else { |
| + for (int i = 0; i < src.count(); ++i) { |
| + if (!add((*src.fOrderedArray)[i])) { |
| duplicates++; |
| - j++; // Skip one of the duplicates. |
| } |
| } |
| - while (i < count()) { |
| - fArrayNew->push((*fArray)[i]); |
| - i++; |
| - } |
| - |
| - while (j < src.count()) { |
| - fArrayNew->push((*src.fArray)[j]); |
| - j++; |
| - } |
| - SkDELETE(fArray); |
| - fArray = fArrayNew; |
| - fArrayNew = NULL; |
| - |
| #ifdef SK_DEBUG |
| validate(); |
| #endif |
| return duplicates; |
| } |
| - /** Adds a new element into set and returns true if the element is already |
| + /** Adds a new element into set and returns false if the element is already |
| * in this set. |
| */ |
| bool add(const T& elem) { |
| - SkASSERT(fArray); |
| + SkASSERT(fSetArray); |
| + SkASSERT(fOrderedArray); |
| int pos = 0; |
| int i = find(elem, &pos); |
| if (i >= 0) { |
| return false; |
| } |
| - *fArray->insert(pos) = elem; |
| + *fSetArray->insert(pos) = elem; |
| + fOrderedArray->push(elem); |
| #ifdef SK_DEBUG |
| validate(); |
| #endif |
| @@ -112,150 +96,118 @@ public: |
| /** Returns true if this set is empty. |
| */ |
| bool isEmpty() const { |
| - SkASSERT(fArray); |
| - return fArray->isEmpty(); |
| + SkASSERT(fOrderedArray); |
| + return fOrderedArray->isEmpty(); |
| } |
| /** Return the number of elements in the set. |
| */ |
| int count() const { |
| - SkASSERT(fArray); |
| - return fArray->count(); |
| + SkASSERT(fOrderedArray); |
| + return fOrderedArray->count(); |
| } |
| /** Return the number of bytes in the set: count * sizeof(T). |
| */ |
| size_t bytes() const { |
| - SkASSERT(fArray); |
| - return fArray->bytes(); |
| + SkASSERT(fOrderedArray); |
| + return fOrderedArray->bytes(); |
| } |
| /** Return the beginning of a set iterator. |
| * Elements in the iterator will be sorted ascending. |
| */ |
| const T* begin() const { |
| - SkASSERT(fArray); |
| - return fArray->begin(); |
| + SkASSERT(fOrderedArray); |
| + return fOrderedArray->begin(); |
| } |
| /** Return the end of a set iterator. |
| */ |
| const T* end() const { |
| - SkASSERT(fArray); |
| - return fArray->end(); |
| + SkASSERT(fOrderedArray); |
| + return fOrderedArray->end(); |
| } |
| const T& operator[](int index) const { |
| - SkASSERT(fArray); |
| - return (*fArray)[index]; |
| + SkASSERT(fOrderedArray); |
| + return (*fOrderedArray)[index]; |
| } |
| /** Resets the set (deletes memory and initiates an empty set). |
| */ |
| void reset() { |
| - SkASSERT(fArray); |
| - fArray->reset(); |
| + SkASSERT(fSetArray); |
| + SkASSERT(fOrderedArray); |
| + fSetArray->reset(); |
| + fOrderedArray->reset(); |
| } |
| /** Rewinds the set (preserves memory and initiates an empty set). |
| */ |
| void rewind() { |
| - SkASSERT(fArray); |
| - fArray->rewind(); |
| + SkASSERT(fSetArray); |
| + SkASSERT(fOrderedArray); |
| + fSetArray->rewind(); |
| + fOrderedArray->rewind(); |
| } |
| /** Reserves memory for the set. |
| */ |
| void setReserve(size_t reserve) { |
| - SkASSERT(fArray); |
| - fArray->setReserve(reserve); |
| - } |
| - |
| - /** Returns the index where an element was found. |
| - * Returns -1 if the element was not found, and it fills *posToInsertSorted |
| - * with the index of the place where elem should be inserted to preserve the |
| - * internal array sorted. |
| - * If element was found, *posToInsertSorted is undefined. |
| - */ |
| - int find(const T& elem, int* posToInsertSorted = NULL) const { |
| - SkASSERT(fArray); |
| - |
| - if (fArray->count() == 0) { |
| - if (posToInsertSorted) { |
| - *posToInsertSorted = 0; |
| - } |
| - return -1; |
| - } |
| - int iMin = 0; |
| - int iMax = fArray->count(); |
| - |
| - while (iMin < iMax - 1) { |
| - int iMid = (iMin + iMax) / 2; |
| - if (elem < (*fArray)[iMid]) { |
| - iMax = iMid; |
| - } else { |
| - iMin = iMid; |
| - } |
| - } |
| - if (elem == (*fArray)[iMin]) { |
| - return iMin; |
| - } |
| - if (posToInsertSorted) { |
| - if (elem < (*fArray)[iMin]) { |
| - *posToInsertSorted = iMin; |
| - } else { |
| - *posToInsertSorted = iMin + 1; |
| - } |
| - } |
| - |
| - return -1; |
| + SkASSERT(fSetArray); |
| + SkASSERT(fOrderedArray); |
| + fSetArray->setReserve(reserve); |
| + fOrderedArray->setReserve(reserve); |
| } |
| /** Returns true if the array contains this element. |
| */ |
| bool contains(const T& elem) const { |
| - SkASSERT(fArray); |
| + SkASSERT(fSetArray); |
| return (this->find(elem) >= 0); |
| } |
| /** Copies internal array to destination. |
| */ |
| void copy(T* dst) const { |
| - SkASSERT(fArray); |
| - fArray->copyRange(0, fArray->count(), dst); |
| + SkASSERT(fOrderedArray); |
| + fOrderedArray->copyRange(0, fOrderedArray->count(), dst); |
| } |
| /** Returns a const reference to the internal vector. |
| */ |
| const SkTDArray<T>& toArray() { |
| - SkASSERT(fArray); |
| - return *fArray; |
| + SkASSERT(fOrderedArray); |
| + return *fOrderedArray; |
| } |
| /** Unref all elements in the set. |
| */ |
| void unrefAll() { |
| - SkASSERT(fArray); |
| - fArray->unrefAll(); |
| + SkASSERT(fOrderedArray); |
| + fOrderedArray->unrefAll(); |
| } |
| /** safeUnref all elements in the set. |
| */ |
| void safeUnrefAll() { |
| - SkASSERT(fArray); |
| - fArray->safeUnrefAll(); |
| + SkASSERT(fOrderedArray); |
| + fOrderedArray->safeUnrefAll(); |
| } |
| #ifdef SK_DEBUG |
| void validate() const { |
| - SkASSERT(fArray); |
| - fArray->validate(); |
| - SkASSERT(isSorted() && !hasDuplicates()); |
| + SkASSERT(fSetArray); |
| + SkASSERT(fOrderedArray); |
| + fSetArray->validate(); |
| + fOrderedArray->validate(); |
| + SkASSERT(isSorted() && !hasDuplicates() && arraysConsistent()); |
| } |
| bool hasDuplicates() const { |
| - for (int i = 0; i < fArray->count() - 1; ++i) { |
| - if ((*fArray)[i] == (*fArray)[i + 1]) { |
| + for (int i = 0; i < fSetArray->count() - 1; ++i) { |
| + if ((*fSetArray)[i] == (*fSetArray)[i + 1]) { |
| return true; |
| } |
| } |
| @@ -263,18 +215,76 @@ public: |
| } |
| bool isSorted() const { |
| - for (int i = 0; i < fArray->count() - 1; ++i) { |
| + for (int i = 0; i < fSetArray->count() - 1; ++i) { |
| // Use only < operator |
| - if (!((*fArray)[i] < (*fArray)[i + 1])) { |
| + if (!((*fSetArray)[i] < (*fSetArray)[i + 1])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| + |
| + /** Checks if fSetArray is consistent with fOrderedArray |
| + */ |
| + bool arraysConsistent() const { |
| + SkASSERT(fSetArray->count() == fOrderedArray->count()); |
| + for (int i = 0; i < fOrderedArray->count(); ++i) { |
| + if (!contains((*fOrderedArray)[i])) { |
| + return false; |
| + } |
| + } |
| + // Checking fSetArray -> fOrderedArray should also be done, but |
| + // the O(n^2)ness makes some GMs unacceptably slow. |
| + |
| + return true; |
| + } |
| #endif |
| private: |
| - SkTDArray<T>* fArray; |
| + SkTDArray<T>* fSetArray; // Sorted by pointer address for fast |
| + // lookup. |
| + SkTDArray<T>* fOrderedArray; // Sorted by insertion order for |
| + // deterministic output. |
| + |
| + /** Returns the index in fSetArray where an element was found. |
| + * Returns -1 if the element was not found, and it fills *posToInsertSorted |
| + * with the index of the place where elem should be inserted to preserve the |
| + * internal array sorted. |
| + * If element was found, *posToInsertSorted is undefined. |
| + */ |
| + int find(const T& elem, int* posToInsertSorted = NULL) const { |
| + SkASSERT(fSetArray); |
| + |
| + if (fSetArray->count() == 0) { |
| + if (posToInsertSorted) { |
| + *posToInsertSorted = 0; |
| + } |
| + return -1; |
| + } |
| + int iMin = 0; |
| + int iMax = fSetArray->count(); |
| + |
| + while (iMin < iMax - 1) { |
| + int iMid = (iMin + iMax) / 2; |
| + if (elem < (*fSetArray)[iMid]) { |
| + iMax = iMid; |
| + } else { |
| + iMin = iMid; |
| + } |
| + } |
| + if (elem == (*fSetArray)[iMin]) { |
| + return iMin; |
| + } |
| + if (posToInsertSorted) { |
| + if (elem < (*fSetArray)[iMin]) { |
| + *posToInsertSorted = iMin; |
| + } else { |
| + *posToInsertSorted = iMin + 1; |
| + } |
| + } |
| + |
| + return -1; |
| + } |
| }; |
| #endif |