| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2016 Google Inc. | 2 * Copyright 2016 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #include "SkAtomics.h" | 8 #include "SkAtomics.h" |
| 9 #include "SkColorSpace.h" | 9 #include "SkColorSpace.h" |
| 10 | 10 |
| 11 void SkFloat3::dump() const { | 11 void SkFloat3::dump() const { |
| 12 SkDebugf("[%7.4f %7.4f %7.4f]\n", fVec[0], fVec[1], fVec[2]); | 12 SkDebugf("[%7.4f %7.4f %7.4f]\n", fVec[0], fVec[1], fVec[2]); |
| 13 } | 13 } |
| 14 | 14 |
| 15 void SkFloat3x3::dump() const { | 15 void SkFloat3x3::dump() const { |
| 16 SkDebugf("[%7.4f %7.4f %7.4f] [%7.4f %7.4f %7.4f] [%7.4f %7.4f %7.4f]\n", | 16 SkDebugf("[%7.4f %7.4f %7.4f] [%7.4f %7.4f %7.4f] [%7.4f %7.4f %7.4f]\n", |
| 17 fMat[0], fMat[1], fMat[2], | 17 fMat[0], fMat[1], fMat[2], |
| 18 fMat[3], fMat[4], fMat[5], | 18 fMat[3], fMat[4], fMat[5], |
| 19 fMat[6], fMat[7], fMat[8]); | 19 fMat[6], fMat[7], fMat[8]); |
| 20 } | 20 } |
| 21 | 21 |
| 22 ////////////////////////////////////////////////////////////////////////////////
////////////////// | 22 ////////////////////////////////////////////////////////////////////////////////
////////////////// |
| 23 | 23 |
| 24 static int32_t gUniqueColorSpaceID; | 24 static int32_t gUniqueColorSpaceID; |
| 25 | 25 |
| 26 SkColorSpace::SkColorSpace(const SkFloat3& gamma, const SkFloat3x3& toXYZD50, Na
med named) | 26 SkColorSpace::SkColorSpace(SkGammas gammas, const SkFloat3x3& toXYZD50, Named na
med) |
| 27 : fGamma(gamma) | 27 : fGammas(std::move(gammas)) |
| 28 , fToXYZD50(toXYZD50) | 28 , fToXYZD50(toXYZD50) |
| 29 , fToXYZOffset({{ 0.0f, 0.0f, 0.0f }}) | 29 , fToXYZOffset({{ 0.0f, 0.0f, 0.0f }}) |
| 30 , fUniqueID(sk_atomic_inc(&gUniqueColorSpaceID)) | 30 , fUniqueID(sk_atomic_inc(&gUniqueColorSpaceID)) |
| 31 , fNamed(named) | 31 , fNamed(named) |
| 32 {} | 32 {} |
| 33 | 33 |
| 34 SkColorSpace::SkColorSpace(SkColorLookUpTable colorLUT, const SkFloat3& gamma, | 34 SkColorSpace::SkColorSpace(SkColorLookUpTable colorLUT, SkGammas gammas, |
| 35 const SkFloat3x3& toXYZD50, const SkFloat3& toXYZOffs
et) | 35 const SkFloat3x3& toXYZD50, const SkFloat3& toXYZOffs
et) |
| 36 : fColorLUT(std::move(colorLUT)) | 36 : fColorLUT(std::move(colorLUT)) |
| 37 , fGamma(gamma) | 37 , fGammas(std::move(gammas)) |
| 38 , fToXYZD50(toXYZD50) | 38 , fToXYZD50(toXYZD50) |
| 39 , fToXYZOffset(toXYZOffset) | 39 , fToXYZOffset(toXYZOffset) |
| 40 , fUniqueID(sk_atomic_inc(&gUniqueColorSpaceID)) | 40 , fUniqueID(sk_atomic_inc(&gUniqueColorSpaceID)) |
| 41 , fNamed(kUnknown_Named) | 41 , fNamed(kUnknown_Named) |
| 42 {} | 42 {} |
| 43 | 43 |
| 44 sk_sp<SkColorSpace> SkColorSpace::NewRGB(const SkFloat3x3& toXYZD50, const SkFlo
at3& gamma) { | 44 sk_sp<SkColorSpace> SkColorSpace::NewRGB(const SkFloat3x3& toXYZD50, SkGammas ga
mmas) { |
| 45 return sk_sp<SkColorSpace>(new SkColorSpace(gamma, toXYZD50, kUnknown_Named)
); | 45 return sk_sp<SkColorSpace>(new SkColorSpace(std::move(gammas), toXYZD50, kUn
known_Named)); |
| 46 } | 46 } |
| 47 | 47 |
| 48 const SkFloat3 gSRGB_gamma {{ 2.2f, 2.2f, 2.2f }}; | |
| 49 const SkFloat3x3 gSRGB_toXYZD50 {{ | 48 const SkFloat3x3 gSRGB_toXYZD50 {{ |
| 50 0.4358f, 0.2224f, 0.0139f, // * R | 49 0.4358f, 0.2224f, 0.0139f, // * R |
| 51 0.3853f, 0.7170f, 0.0971f, // * G | 50 0.3853f, 0.7170f, 0.0971f, // * G |
| 52 0.1430f, 0.0606f, 0.7139f, // * B | 51 0.1430f, 0.0606f, 0.7139f, // * B |
| 53 }}; | 52 }}; |
| 54 | 53 |
| 55 sk_sp<SkColorSpace> SkColorSpace::NewNamed(Named named) { | 54 sk_sp<SkColorSpace> SkColorSpace::NewNamed(Named named) { |
| 56 switch (named) { | 55 switch (named) { |
| 57 case kSRGB_Named: | 56 case kSRGB_Named: |
| 58 return sk_sp<SkColorSpace>(new SkColorSpace(gSRGB_gamma, gSRGB_toXYZ
D50, kSRGB_Named)); | 57 return sk_sp<SkColorSpace>(new SkColorSpace(SkGammas(2.2f, 2.2f, 2.2
f), gSRGB_toXYZD50, |
| 58 kSRGB_Named)); |
| 59 default: | 59 default: |
| 60 break; | 60 break; |
| 61 } | 61 } |
| 62 return nullptr; | 62 return nullptr; |
| 63 } | 63 } |
| 64 | 64 |
| 65 ////////////////////////////////////////////////////////////////////////////////
/////////////////// | 65 ////////////////////////////////////////////////////////////////////////////////
/////////////////// |
| 66 | 66 |
| 67 #include "SkFixed.h" | 67 #include "SkFixed.h" |
| 68 #include "SkTemplates.h" | 68 #include "SkTemplates.h" |
| (...skipping 188 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 257 dst[0] = SkFixedToFloat(read_big_endian_int(src + 8)); | 257 dst[0] = SkFixedToFloat(read_big_endian_int(src + 8)); |
| 258 dst[1] = SkFixedToFloat(read_big_endian_int(src + 12)); | 258 dst[1] = SkFixedToFloat(read_big_endian_int(src + 12)); |
| 259 dst[2] = SkFixedToFloat(read_big_endian_int(src + 16)); | 259 dst[2] = SkFixedToFloat(read_big_endian_int(src + 16)); |
| 260 SkColorSpacePrintf("XYZ %g %g %g\n", dst[0], dst[1], dst[2]); | 260 SkColorSpacePrintf("XYZ %g %g %g\n", dst[0], dst[1], dst[2]); |
| 261 return true; | 261 return true; |
| 262 } | 262 } |
| 263 | 263 |
| 264 static const uint32_t kTAG_CurveType = SkSetFourByteTag('c', 'u', 'r', 'v'); | 264 static const uint32_t kTAG_CurveType = SkSetFourByteTag('c', 'u', 'r', 'v'); |
| 265 static const uint32_t kTAG_ParaCurveType = SkSetFourByteTag('p', 'a', 'r', 'a'); | 265 static const uint32_t kTAG_ParaCurveType = SkSetFourByteTag('p', 'a', 'r', 'a'); |
| 266 | 266 |
| 267 // FIXME (msarett): | 267 bool SkColorSpace::LoadGammas(SkGammaCurve* gammas, uint32_t numGammas, const ui
nt8_t* src, |
| 268 // We need to handle the possibility that the gamma curve does not correspond to
2.2f. | 268 size_t len) { |
| 269 static bool load_gammas(float* gammas, uint32_t numGammas, const uint8_t* src, s
ize_t len) { | |
| 270 for (uint32_t i = 0; i < numGammas; i++) { | 269 for (uint32_t i = 0; i < numGammas; i++) { |
| 271 if (len < 12) { | 270 if (len < 12) { |
| 272 // FIXME (msarett): | 271 // FIXME (msarett): |
| 273 // We could potentially return false here after correctly parsing *s
ome* of the | 272 // We could potentially return false here after correctly parsing *s
ome* of the |
| 274 // gammas correctly. Should we somehow try to indicate a partial su
ccess? | 273 // gammas correctly. Should we somehow try to indicate a partial su
ccess? |
| 275 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len); | 274 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len); |
| 276 return false; | 275 return false; |
| 277 } | 276 } |
| 278 | 277 |
| 279 // We need to count the number of bytes in the tag, so we are able to mo
ve to the | 278 // We need to count the number of bytes in the tag, so we are able to mo
ve to the |
| 280 // next tag on the next loop iteration. | 279 // next tag on the next loop iteration. |
| 281 size_t tagBytes; | 280 size_t tagBytes; |
| 282 | 281 |
| 283 uint32_t type = read_big_endian_uint(src); | 282 uint32_t type = read_big_endian_uint(src); |
| 284 switch (type) { | 283 switch (type) { |
| 285 case kTAG_CurveType: { | 284 case kTAG_CurveType: { |
| 286 uint32_t count = read_big_endian_uint(src + 8); | 285 uint32_t count = read_big_endian_uint(src + 8); |
| 287 tagBytes = 12 + count * 2; | 286 tagBytes = 12 + count * 2; |
| 288 if (0 == count) { | 287 if (0 == count) { |
| 289 // Some tags require a gamma curve, but the author doesn't a
ctually want | 288 // Some tags require a gamma curve, but the author doesn't a
ctually want |
| 290 // to transform the data. In this case, it is common to see
a curve with | 289 // to transform the data. In this case, it is common to see
a curve with |
| 291 // a count of 0. | 290 // a count of 0. |
| 292 gammas[i] = 1.0f; | 291 gammas[i].fValue = 1.0f; |
| 293 break; | 292 break; |
| 294 } else if (len < 12 + 2 * count) { | 293 } else if (len < 12 + 2 * count) { |
| 295 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len)
; | 294 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len)
; |
| 296 return false; | 295 return false; |
| 297 } | 296 } |
| 298 | 297 |
| 299 const uint16_t* table = (const uint16_t*) (src + 12); | 298 const uint16_t* table = (const uint16_t*) (src + 12); |
| 300 if (1 == count) { | 299 if (1 == count) { |
| 301 // Table entry is the exponent (bias 256). | 300 // The table entry is the gamma (with a bias of 256). |
| 302 uint16_t value = read_big_endian_short((const uint8_t*) tabl
e); | 301 uint16_t value = read_big_endian_short((const uint8_t*) tabl
e); |
| 303 gammas[i] = value / 256.0f; | 302 gammas[i].fValue = value / 256.0f; |
| 304 SkColorSpacePrintf("gamma %d %g\n", value, *gamma); | 303 SkColorSpacePrintf("gamma %d %g\n", value, *gamma); |
| 305 break; | 304 break; |
| 306 } | 305 } |
| 307 | 306 |
| 308 // Print the interpolation table. For now, we ignore this and g
uess 2.2f. | 307 // Fill in the interpolation table. |
| 308 // FIXME (msarett): |
| 309 // We should recognize commonly occurring tables and just set ga
mma to 2.2f. |
| 310 gammas[i].fTableSize = count; |
| 311 gammas[i].fTable = std::unique_ptr<float[]>(new float[count]); |
| 309 for (uint32_t j = 0; j < count; j++) { | 312 for (uint32_t j = 0; j < count; j++) { |
| 310 SkColorSpacePrintf("curve[%d] %d\n", j, | 313 gammas[i].fTable[j] = |
| 311 read_big_endian_short((const uint8_t*) &table[j])); | 314 (read_big_endian_short((const uint8_t*) &table[j]))
/ 65535.0f; |
| 312 } | 315 } |
| 313 | |
| 314 gammas[i] = 2.2f; | |
| 315 break; | 316 break; |
| 316 } | 317 } |
| 317 case kTAG_ParaCurveType: | 318 case kTAG_ParaCurveType: |
| 318 // Guess 2.2f. | 319 // Guess 2.2f. |
| 320 // FIXME (msarett): Handle parametric curves. |
| 319 SkColorSpacePrintf("parametric curve\n"); | 321 SkColorSpacePrintf("parametric curve\n"); |
| 320 gammas[i] = 2.2f; | 322 gammas[i].fValue = 2.2f; |
| 321 | 323 |
| 324 // Determine the size of the parametric curve tag. |
| 322 switch(read_big_endian_short(src + 8)) { | 325 switch(read_big_endian_short(src + 8)) { |
| 323 case 0: | 326 case 0: |
| 324 tagBytes = 12 + 4; | 327 tagBytes = 12 + 4; |
| 325 break; | 328 break; |
| 326 case 1: | 329 case 1: |
| 327 tagBytes = 12 + 12; | 330 tagBytes = 12 + 12; |
| 328 break; | 331 break; |
| 329 case 2: | 332 case 2: |
| 330 tagBytes = 12 + 16; | 333 tagBytes = 12 + 16; |
| 331 break; | 334 break; |
| (...skipping 19 matching lines...) Expand all Loading... |
| 351 tagBytes = SkAlign4(tagBytes); | 354 tagBytes = SkAlign4(tagBytes); |
| 352 if (len < tagBytes) { | 355 if (len < tagBytes) { |
| 353 return false; | 356 return false; |
| 354 } | 357 } |
| 355 | 358 |
| 356 src += tagBytes; | 359 src += tagBytes; |
| 357 len -= tagBytes; | 360 len -= tagBytes; |
| 358 } | 361 } |
| 359 } | 362 } |
| 360 | 363 |
| 361 // If all of the gammas we encounter are 1.0f, indicate that we failed to lo
ad gammas. | 364 return true; |
| 362 // There is no need to apply a gamma of 1.0f. | |
| 363 for (uint32_t i = 0; i < numGammas; i++) { | |
| 364 if (1.0f != gammas[i]) { | |
| 365 return true; | |
| 366 } | |
| 367 } | |
| 368 | |
| 369 return false; | |
| 370 } | 365 } |
| 371 | 366 |
| 372 static const uint32_t kTAG_AtoBType = SkSetFourByteTag('m', 'A', 'B', ' '); | 367 static const uint32_t kTAG_AtoBType = SkSetFourByteTag('m', 'A', 'B', ' '); |
| 373 | 368 |
| 374 bool load_color_lut(SkColorLookUpTable* colorLUT, uint32_t inputChannels, uint32
_t outputChannels, | 369 bool SkColorSpace::LoadColorLUT(SkColorLookUpTable* colorLUT, uint32_t inputChan
nels, |
| 375 const uint8_t* src, size_t len) { | 370 uint32_t outputChannels, const uint8_t* src, siz
e_t len) { |
| 376 if (len < 20) { | 371 if (len < 20) { |
| 377 SkColorSpacePrintf("Color LUT tag is too small (%d bytes).", len); | 372 SkColorSpacePrintf("Color LUT tag is too small (%d bytes).", len); |
| 378 return false; | 373 return false; |
| 379 } | 374 } |
| 380 | 375 |
| 381 SkASSERT(inputChannels <= SkColorLookUpTable::kMaxChannels && | 376 SkASSERT(inputChannels <= SkColorLookUpTable::kMaxChannels && 3 == outputCha
nnels); |
| 382 outputChannels <= SkColorLookUpTable::kMaxChannels); | |
| 383 colorLUT->fInputChannels = inputChannels; | 377 colorLUT->fInputChannels = inputChannels; |
| 384 colorLUT->fOutputChannels = outputChannels; | 378 colorLUT->fOutputChannels = outputChannels; |
| 385 uint32_t numEntries = 1; | 379 uint32_t numEntries = 1; |
| 386 for (uint32_t i = 0; i < inputChannels; i++) { | 380 for (uint32_t i = 0; i < inputChannels; i++) { |
| 387 colorLUT->fGridPoints[i] = src[i]; | 381 colorLUT->fGridPoints[i] = src[i]; |
| 388 numEntries *= src[i]; | 382 numEntries *= src[i]; |
| 389 } | 383 } |
| 390 numEntries *= outputChannels; | 384 numEntries *= outputChannels; |
| 391 | 385 |
| 392 // Space is provided for a maximum of the 16 input channels. Now we determi
ne the precision | 386 // Space is provided for a maximum of the 16 input channels. Now we determi
ne the precision |
| (...skipping 41 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 434 toXYZ->fMat[7] = SkFixedToFloat(read_big_endian_int(src + 20)); | 428 toXYZ->fMat[7] = SkFixedToFloat(read_big_endian_int(src + 20)); |
| 435 toXYZ->fMat[2] = SkFixedToFloat(read_big_endian_int(src + 24)); | 429 toXYZ->fMat[2] = SkFixedToFloat(read_big_endian_int(src + 24)); |
| 436 toXYZ->fMat[5] = SkFixedToFloat(read_big_endian_int(src + 28)); | 430 toXYZ->fMat[5] = SkFixedToFloat(read_big_endian_int(src + 28)); |
| 437 toXYZ->fMat[8] = SkFixedToFloat(read_big_endian_int(src + 32)); | 431 toXYZ->fMat[8] = SkFixedToFloat(read_big_endian_int(src + 32)); |
| 438 toXYZOffset->fVec[0] = SkFixedToFloat(read_big_endian_int(src + 36)); | 432 toXYZOffset->fVec[0] = SkFixedToFloat(read_big_endian_int(src + 36)); |
| 439 toXYZOffset->fVec[1] = SkFixedToFloat(read_big_endian_int(src + 40)); | 433 toXYZOffset->fVec[1] = SkFixedToFloat(read_big_endian_int(src + 40)); |
| 440 toXYZOffset->fVec[2] = SkFixedToFloat(read_big_endian_int(src + 44)); | 434 toXYZOffset->fVec[2] = SkFixedToFloat(read_big_endian_int(src + 44)); |
| 441 return true; | 435 return true; |
| 442 } | 436 } |
| 443 | 437 |
| 444 bool load_a2b0(SkColorLookUpTable* colorLUT, SkFloat3* gamma, SkFloat3x3* toXYZ, | 438 bool SkColorSpace::LoadA2B0(SkColorLookUpTable* colorLUT, SkGammas* gammas, SkFl
oat3x3* toXYZ, |
| 445 SkFloat3* toXYZOffset, const uint8_t* src, size_t len) { | 439 SkFloat3* toXYZOffset, const uint8_t* src, size_t le
n) { |
| 446 if (len < 32) { | 440 if (len < 32) { |
| 447 SkColorSpacePrintf("A to B tag is too small (%d bytes).", len); | 441 SkColorSpacePrintf("A to B tag is too small (%d bytes).", len); |
| 448 return false; | 442 return false; |
| 449 } | 443 } |
| 450 | 444 |
| 451 uint32_t type = read_big_endian_uint(src); | 445 uint32_t type = read_big_endian_uint(src); |
| 452 if (kTAG_AtoBType != type) { | 446 if (kTAG_AtoBType != type) { |
| 453 // FIXME (msarett): Need to support lut8Type and lut16Type. | 447 // FIXME (msarett): Need to support lut8Type and lut16Type. |
| 454 SkColorSpacePrintf("Unsupported A to B tag type.\n"); | 448 SkColorSpacePrintf("Unsupported A to B tag type.\n"); |
| 455 return false; | 449 return false; |
| 456 } | 450 } |
| 457 | 451 |
| 458 // Read the number of channels. The four bytes that we skipped are reserved
and | 452 // Read the number of channels. The four bytes that we skipped are reserved
and |
| 459 // must be zero. | 453 // must be zero. |
| 460 uint8_t inputChannels = src[8]; | 454 uint8_t inputChannels = src[8]; |
| 461 uint8_t outputChannels = src[9]; | 455 uint8_t outputChannels = src[9]; |
| 462 if (0 == inputChannels || inputChannels > SkColorLookUpTable::kMaxChannels |
| | 456 if (0 == inputChannels || inputChannels > SkColorLookUpTable::kMaxChannels |
| |
| 463 0 < outputChannels || outputChannels > SkColorLookUpTable::kMaxChann
els) { | 457 3 != outputChannels) { |
| 464 // The color LUT assumes that there are at most 16 input channels. For
RGB | 458 // The color LUT assumes that there are at most 16 input channels. For
RGB |
| 465 // profiles, output channels should be 3. | 459 // profiles, output channels should be 3. |
| 466 SkColorSpacePrintf("Too many input or output channels in A to B tag.\n")
; | 460 SkColorSpacePrintf("Too many input or output channels in A to B tag.\n")
; |
| 467 return false; | 461 return false; |
| 468 } | 462 } |
| 469 | 463 |
| 470 // Read the offsets of each element in the A to B tag. With the exception o
f A curves and | 464 // Read the offsets of each element in the A to B tag. With the exception o
f A curves and |
| 471 // B curves (which we do not yet support), we will handle these elements in
the order in | 465 // B curves (which we do not yet support), we will handle these elements in
the order in |
| 472 // which they should be applied (rather than the order in which they occur i
n the tag). | 466 // which they should be applied (rather than the order in which they occur i
n the tag). |
| 473 // If the offset is non-zero it indicates that the element is present. | 467 // If the offset is non-zero it indicates that the element is present. |
| 474 uint32_t offsetToACurves = read_big_endian_int(src + 28); | 468 uint32_t offsetToACurves = read_big_endian_int(src + 28); |
| 475 uint32_t offsetToBCurves = read_big_endian_int(src + 12); | 469 uint32_t offsetToBCurves = read_big_endian_int(src + 12); |
| 476 if ((0 != offsetToACurves) || (0 != offsetToBCurves)) { | 470 if ((0 != offsetToACurves) || (0 != offsetToBCurves)) { |
| 477 // FIXME (msarett): Handle A and B curves. | 471 // FIXME (msarett): Handle A and B curves. |
| 478 // Note that the A curve is technically required in order to have a colo
r LUT. | 472 // Note that the A curve is technically required in order to have a colo
r LUT. |
| 479 // However, all the A curves I have seen so far have are just placeholde
rs that | 473 // However, all the A curves I have seen so far have are just placeholde
rs that |
| 480 // don't actually transform the data. | 474 // don't actually transform the data. |
| 481 SkColorSpacePrintf("Ignoring A and/or B curve. Output may be wrong.\n")
; | 475 SkColorSpacePrintf("Ignoring A and/or B curve. Output may be wrong.\n")
; |
| 482 } | 476 } |
| 483 | 477 |
| 484 uint32_t offsetToColorLUT = read_big_endian_int(src + 24); | 478 uint32_t offsetToColorLUT = read_big_endian_int(src + 24); |
| 485 if (0 != offsetToColorLUT && offsetToColorLUT < len) { | 479 if (0 != offsetToColorLUT && offsetToColorLUT < len) { |
| 486 if (!load_color_lut(colorLUT, inputChannels, outputChannels, src + offse
tToColorLUT, | 480 if (!SkColorSpace::LoadColorLUT(colorLUT, inputChannels, outputChannels, |
| 487 len - offsetToColorLUT)) { | 481 src + offsetToColorLUT, len - offsetToCo
lorLUT)) { |
| 488 SkColorSpacePrintf("Failed to read color LUT from A to B tag.\n"); | 482 SkColorSpacePrintf("Failed to read color LUT from A to B tag.\n"); |
| 489 } | 483 } |
| 490 } | 484 } |
| 491 | 485 |
| 492 uint32_t offsetToMCurves = read_big_endian_int(src + 20); | 486 uint32_t offsetToMCurves = read_big_endian_int(src + 20); |
| 493 if (0 != offsetToMCurves && offsetToMCurves < len) { | 487 if (0 != offsetToMCurves && offsetToMCurves < len) { |
| 494 if (!load_gammas(gamma->fVec, outputChannels, src + offsetToMCurves, len
- offsetToMCurves)) | 488 if (!SkColorSpace::LoadGammas(&gammas->fRed, outputChannels, src + offse
tToMCurves, |
| 495 { | 489 len - offsetToMCurves)) { |
| 496 SkColorSpacePrintf("Failed to read M curves from A to B tag.\n"); | 490 SkColorSpacePrintf("Failed to read M curves from A to B tag.\n"); |
| 497 } | 491 } |
| 498 } | 492 } |
| 499 | 493 |
| 500 uint32_t offsetToMatrix = read_big_endian_int(src + 16); | 494 uint32_t offsetToMatrix = read_big_endian_int(src + 16); |
| 501 if (0 != offsetToMatrix && offsetToMatrix < len) { | 495 if (0 != offsetToMatrix && offsetToMatrix < len) { |
| 502 if (!load_matrix(toXYZ, toXYZOffset, src + offsetToMatrix, len - offsetT
oMatrix)) { | 496 if (!load_matrix(toXYZ, toXYZOffset, src + offsetToMatrix, len - offsetT
oMatrix)) { |
| 503 SkColorSpacePrintf("Failed to read matrix from A to B tag.\n"); | 497 SkColorSpacePrintf("Failed to read matrix from A to B tag.\n"); |
| 504 } | 498 } |
| 505 } | 499 } |
| (...skipping 54 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 560 SkFloat3x3 toXYZ; | 554 SkFloat3x3 toXYZ; |
| 561 if (!load_xyz(&toXYZ.fMat[0], r->addr((const uint8_t*) base), r-
>fLength) || | 555 if (!load_xyz(&toXYZ.fMat[0], r->addr((const uint8_t*) base), r-
>fLength) || |
| 562 !load_xyz(&toXYZ.fMat[3], g->addr((const uint8_t*) base), g-
>fLength) || | 556 !load_xyz(&toXYZ.fMat[3], g->addr((const uint8_t*) base), g-
>fLength) || |
| 563 !load_xyz(&toXYZ.fMat[6], b->addr((const uint8_t*) base), b-
>fLength)) | 557 !load_xyz(&toXYZ.fMat[6], b->addr((const uint8_t*) base), b-
>fLength)) |
| 564 { | 558 { |
| 565 return_null("Need valid rgb tags for XYZ space"); | 559 return_null("Need valid rgb tags for XYZ space"); |
| 566 } | 560 } |
| 567 | 561 |
| 568 // It is not uncommon to see missing or empty gamma tags. This
indicates | 562 // It is not uncommon to see missing or empty gamma tags. This
indicates |
| 569 // that we should use unit gamma. | 563 // that we should use unit gamma. |
| 570 SkFloat3 gamma {{ 1.0f, 1.0f, 1.0f }}; | 564 SkGammas gammas; |
| 571 r = ICCTag::Find(tags.get(), tagCount, kTAG_rTRC); | 565 r = ICCTag::Find(tags.get(), tagCount, kTAG_rTRC); |
| 572 g = ICCTag::Find(tags.get(), tagCount, kTAG_gTRC); | 566 g = ICCTag::Find(tags.get(), tagCount, kTAG_gTRC); |
| 573 b = ICCTag::Find(tags.get(), tagCount, kTAG_bTRC); | 567 b = ICCTag::Find(tags.get(), tagCount, kTAG_bTRC); |
| 574 if (!r || | 568 if (!r || !SkColorSpace::LoadGammas(&gammas.fRed, 1, |
| 575 !load_gammas(&gamma.fVec[0], 1, r->addr((const uint8_t*) bas
e), r->fLength)) | 569 r->addr((const uint8_t*) bas
e), r->fLength)) { |
| 576 { | |
| 577 SkColorSpacePrintf("Failed to read R gamma tag.\n"); | 570 SkColorSpacePrintf("Failed to read R gamma tag.\n"); |
| 578 } | 571 } |
| 579 if (!g || | 572 if (!g || !SkColorSpace::LoadGammas(&gammas.fGreen, 1, |
| 580 !load_gammas(&gamma.fVec[1], 1, g->addr((const uint8_t*) bas
e), g->fLength)) | 573 g->addr((const uint8_t*) bas
e), g->fLength)) { |
| 581 { | |
| 582 SkColorSpacePrintf("Failed to read G gamma tag.\n"); | 574 SkColorSpacePrintf("Failed to read G gamma tag.\n"); |
| 583 } | 575 } |
| 584 if (!b || | 576 if (!b || !SkColorSpace::LoadGammas(&gammas.fBlue, 1, |
| 585 !load_gammas(&gamma.fVec[2], 1, b->addr((const uint8_t*) bas
e), b->fLength)) | 577 b->addr((const uint8_t*) bas
e), b->fLength)) { |
| 586 { | |
| 587 SkColorSpacePrintf("Failed to read B gamma tag.\n"); | 578 SkColorSpacePrintf("Failed to read B gamma tag.\n"); |
| 588 } | 579 } |
| 589 return SkColorSpace::NewRGB(toXYZ, gamma); | 580 return SkColorSpace::NewRGB(toXYZ, std::move(gammas)); |
| 590 } | 581 } |
| 591 | 582 |
| 592 // Recognize color profile specified by A2B0 tag. | 583 // Recognize color profile specified by A2B0 tag. |
| 593 const ICCTag* a2b0 = ICCTag::Find(tags.get(), tagCount, kTAG_A2B0); | 584 const ICCTag* a2b0 = ICCTag::Find(tags.get(), tagCount, kTAG_A2B0); |
| 594 if (a2b0) { | 585 if (a2b0) { |
| 595 SkColorLookUpTable colorLUT; | 586 SkColorLookUpTable colorLUT; |
| 596 SkFloat3 gamma; | 587 SkGammas gammas; |
| 597 SkFloat3x3 toXYZ; | 588 SkFloat3x3 toXYZ; |
| 598 SkFloat3 toXYZOffset; | 589 SkFloat3 toXYZOffset; |
| 599 if (!load_a2b0(&colorLUT, &gamma, &toXYZ, &toXYZOffset, | 590 if (!SkColorSpace::LoadA2B0(&colorLUT, &gammas, &toXYZ, &toXYZOf
fset, |
| 600 a2b0->addr((const uint8_t*) base), a2b0->fLength)) { | 591 a2b0->addr((const uint8_t*) base), a
2b0->fLength)) { |
| 601 return_null("Failed to parse A2B0 tag"); | 592 return_null("Failed to parse A2B0 tag"); |
| 602 } | 593 } |
| 603 | 594 |
| 604 return sk_sp<SkColorSpace>(new SkColorSpace(std::move(colorLUT),
gamma, toXYZ, | 595 return sk_sp<SkColorSpace>(new SkColorSpace(std::move(colorLUT),
std::move(gammas), |
| 605 toXYZOffset)); | 596 toXYZ, toXYZOffset))
; |
| 606 } | 597 } |
| 607 | 598 |
| 608 } | 599 } |
| 609 default: | 600 default: |
| 610 break; | 601 break; |
| 611 } | 602 } |
| 612 | 603 |
| 613 return_null("ICC profile contains unsupported colorspace"); | 604 return_null("ICC profile contains unsupported colorspace"); |
| 614 } | 605 } |
| OLD | NEW |