OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2012 Google Inc. | 2 * Copyright 2012 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkWriteBuffer.h" | 8 #include "SkWriteBuffer.h" |
9 #include "SkBitmap.h" | 9 #include "SkBitmap.h" |
10 #include "SkBitmapHeap.h" | 10 #include "SkBitmapHeap.h" |
11 #include "SkData.h" | 11 #include "SkData.h" |
12 #include "SkPixelRef.h" | 12 #include "SkPixelRef.h" |
13 #include "SkPtrRecorder.h" | 13 #include "SkPtrRecorder.h" |
14 #include "SkStream.h" | 14 #include "SkStream.h" |
15 #include "SkTypeface.h" | 15 #include "SkTypeface.h" |
16 | 16 |
17 SkWriteBuffer::SkWriteBuffer(uint32_t flags) | 17 SkBinaryWriteBuffer::SkBinaryWriteBuffer(uint32_t flags) |
18 : fFlags(flags) | 18 : fFlags(flags) |
19 , fFactorySet(nullptr) | 19 , fFactorySet(nullptr) |
20 , fBitmapHeap(nullptr) | 20 , fBitmapHeap(nullptr) |
21 , fTFSet(nullptr) { | 21 , fTFSet(nullptr) { |
22 } | 22 } |
23 | 23 |
24 SkWriteBuffer::SkWriteBuffer(void* storage, size_t storageSize, uint32_t flags) | 24 SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize, uint
32_t flags) |
25 : fFlags(flags) | 25 : fFlags(flags) |
26 , fFactorySet(nullptr) | 26 , fFactorySet(nullptr) |
27 , fWriter(storage, storageSize) | 27 , fWriter(storage, storageSize) |
28 , fBitmapHeap(nullptr) | 28 , fBitmapHeap(nullptr) |
29 , fTFSet(nullptr) { | 29 , fTFSet(nullptr) { |
30 } | 30 } |
31 | 31 |
32 SkWriteBuffer::~SkWriteBuffer() { | 32 SkBinaryWriteBuffer::~SkBinaryWriteBuffer() { |
33 SkSafeUnref(fFactorySet); | 33 SkSafeUnref(fFactorySet); |
34 SkSafeUnref(fBitmapHeap); | 34 SkSafeUnref(fBitmapHeap); |
35 SkSafeUnref(fTFSet); | 35 SkSafeUnref(fTFSet); |
36 } | 36 } |
37 | 37 |
38 void SkWriteBuffer::writeByteArray(const void* data, size_t size) { | 38 void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) { |
39 fWriter.write32(SkToU32(size)); | 39 fWriter.write32(SkToU32(size)); |
40 fWriter.writePad(data, size); | 40 fWriter.writePad(data, size); |
41 } | 41 } |
42 | 42 |
43 void SkWriteBuffer::writeBool(bool value) { | 43 void SkBinaryWriteBuffer::writeDataAsByteArray(SkData* data) { |
| 44 this->writeByteArray(data->data(), data->size()); |
| 45 } |
| 46 |
| 47 void SkBinaryWriteBuffer::writeBool(bool value) { |
44 fWriter.writeBool(value); | 48 fWriter.writeBool(value); |
45 } | 49 } |
46 | 50 |
47 void SkWriteBuffer::writeScalar(SkScalar value) { | 51 void SkBinaryWriteBuffer::writeScalar(SkScalar value) { |
48 fWriter.writeScalar(value); | 52 fWriter.writeScalar(value); |
49 } | 53 } |
50 | 54 |
51 void SkWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { | 55 void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count
) { |
52 fWriter.write32(count); | 56 fWriter.write32(count); |
53 fWriter.write(value, count * sizeof(SkScalar)); | 57 fWriter.write(value, count * sizeof(SkScalar)); |
54 } | 58 } |
55 | 59 |
56 void SkWriteBuffer::writeInt(int32_t value) { | 60 void SkBinaryWriteBuffer::writeInt(int32_t value) { |
57 fWriter.write32(value); | 61 fWriter.write32(value); |
58 } | 62 } |
59 | 63 |
60 void SkWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { | 64 void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { |
61 fWriter.write32(count); | 65 fWriter.write32(count); |
62 fWriter.write(value, count * sizeof(int32_t)); | 66 fWriter.write(value, count * sizeof(int32_t)); |
63 } | 67 } |
64 | 68 |
65 void SkWriteBuffer::writeUInt(uint32_t value) { | 69 void SkBinaryWriteBuffer::writeUInt(uint32_t value) { |
66 fWriter.write32(value); | 70 fWriter.write32(value); |
67 } | 71 } |
68 | 72 |
69 void SkWriteBuffer::write32(int32_t value) { | 73 void SkBinaryWriteBuffer::write32(int32_t value) { |
70 fWriter.write32(value); | 74 fWriter.write32(value); |
71 } | 75 } |
72 | 76 |
73 void SkWriteBuffer::writeString(const char* value) { | 77 void SkBinaryWriteBuffer::writeString(const char* value) { |
74 fWriter.writeString(value); | 78 fWriter.writeString(value); |
75 } | 79 } |
76 | 80 |
77 void SkWriteBuffer::writeEncodedString(const void* value, size_t byteLength, | 81 void SkBinaryWriteBuffer::writeEncodedString(const void* value, size_t byteLengt
h, |
78 SkPaint::TextEncoding encoding) { | 82 SkPaint::TextEncoding encoding) { |
79 fWriter.writeInt(encoding); | 83 fWriter.writeInt(encoding); |
80 fWriter.writeInt(SkToU32(byteLength)); | 84 fWriter.writeInt(SkToU32(byteLength)); |
81 fWriter.write(value, byteLength); | 85 fWriter.write(value, byteLength); |
82 } | 86 } |
83 | 87 |
| 88 void SkBinaryWriteBuffer::writeFunctionPtr(void* ptr) { |
| 89 fWriter.writePtr(ptr); |
| 90 } |
84 | 91 |
85 void SkWriteBuffer::writeColor(const SkColor& color) { | 92 void SkBinaryWriteBuffer::writeColor(const SkColor& color) { |
86 fWriter.write32(color); | 93 fWriter.write32(color); |
87 } | 94 } |
88 | 95 |
89 void SkWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { | 96 void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count)
{ |
90 fWriter.write32(count); | 97 fWriter.write32(count); |
91 fWriter.write(color, count * sizeof(SkColor)); | 98 fWriter.write(color, count * sizeof(SkColor)); |
92 } | 99 } |
93 | 100 |
94 void SkWriteBuffer::writePoint(const SkPoint& point) { | 101 void SkBinaryWriteBuffer::writePoint(const SkPoint& point) { |
95 fWriter.writeScalar(point.fX); | 102 fWriter.writeScalar(point.fX); |
96 fWriter.writeScalar(point.fY); | 103 fWriter.writeScalar(point.fY); |
97 } | 104 } |
98 | 105 |
99 void SkWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { | 106 void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count)
{ |
100 fWriter.write32(count); | 107 fWriter.write32(count); |
101 fWriter.write(point, count * sizeof(SkPoint)); | 108 fWriter.write(point, count * sizeof(SkPoint)); |
102 } | 109 } |
103 | 110 |
104 void SkWriteBuffer::writeMatrix(const SkMatrix& matrix) { | 111 void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) { |
105 fWriter.writeMatrix(matrix); | 112 fWriter.writeMatrix(matrix); |
106 } | 113 } |
107 | 114 |
108 void SkWriteBuffer::writeIRect(const SkIRect& rect) { | 115 void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) { |
109 fWriter.write(&rect, sizeof(SkIRect)); | 116 fWriter.write(&rect, sizeof(SkIRect)); |
110 } | 117 } |
111 | 118 |
112 void SkWriteBuffer::writeRect(const SkRect& rect) { | 119 void SkBinaryWriteBuffer::writeRect(const SkRect& rect) { |
113 fWriter.writeRect(rect); | 120 fWriter.writeRect(rect); |
114 } | 121 } |
115 | 122 |
116 void SkWriteBuffer::writeRegion(const SkRegion& region) { | 123 void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) { |
117 fWriter.writeRegion(region); | 124 fWriter.writeRegion(region); |
118 } | 125 } |
119 | 126 |
120 void SkWriteBuffer::writePath(const SkPath& path) { | 127 void SkBinaryWriteBuffer::writePath(const SkPath& path) { |
121 fWriter.writePath(path); | 128 fWriter.writePath(path); |
122 } | 129 } |
123 | 130 |
124 size_t SkWriteBuffer::writeStream(SkStream* stream, size_t length) { | 131 size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) { |
125 fWriter.write32(SkToU32(length)); | 132 fWriter.write32(SkToU32(length)); |
126 size_t bytesWritten = fWriter.readFromStream(stream, length); | 133 size_t bytesWritten = fWriter.readFromStream(stream, length); |
127 if (bytesWritten < length) { | 134 if (bytesWritten < length) { |
128 fWriter.reservePad(length - bytesWritten); | 135 fWriter.reservePad(length - bytesWritten); |
129 } | 136 } |
130 return bytesWritten; | 137 return bytesWritten; |
131 } | 138 } |
132 | 139 |
133 bool SkWriteBuffer::writeToStream(SkWStream* stream) { | 140 bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) { |
134 return fWriter.writeToStream(stream); | 141 return fWriter.writeToStream(stream); |
135 } | 142 } |
136 | 143 |
137 static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data, | 144 static void write_encoded_bitmap(SkBinaryWriteBuffer* buffer, SkData* data, |
138 const SkIPoint& origin) { | 145 const SkIPoint& origin) { |
139 buffer->writeUInt(SkToU32(data->size())); | 146 buffer->writeUInt(SkToU32(data->size())); |
140 buffer->getWriter32()->writePad(data->data(), data->size()); | 147 buffer->getWriter32()->writePad(data->data(), data->size()); |
141 buffer->write32(origin.fX); | 148 buffer->write32(origin.fX); |
142 buffer->write32(origin.fY); | 149 buffer->write32(origin.fY); |
143 } | 150 } |
144 | 151 |
145 void SkWriteBuffer::writeBitmap(const SkBitmap& bitmap) { | 152 void SkBinaryWriteBuffer::writeBitmap(const SkBitmap& bitmap) { |
146 // Record the width and height. This way if readBitmap fails a dummy bitmap
can be drawn at the | 153 // Record the width and height. This way if readBitmap fails a dummy bitmap
can be drawn at the |
147 // right size. | 154 // right size. |
148 this->writeInt(bitmap.width()); | 155 this->writeInt(bitmap.width()); |
149 this->writeInt(bitmap.height()); | 156 this->writeInt(bitmap.height()); |
150 | 157 |
151 // Record information about the bitmap in one of three ways, in order of pri
ority: | 158 // Record information about the bitmap in one of three ways, in order of pri
ority: |
152 // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoi
d serializing the | 159 // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoi
d serializing the |
153 // bitmap entirely or serialize it later as desired. A boolean value of t
rue will be written | 160 // bitmap entirely or serialize it later as desired. A boolean value of t
rue will be written |
154 // to the stream to signify that a heap was used. | 161 // to the stream to signify that a heap was used. |
155 // 2. If there is a function for encoding bitmaps, use it to write an encode
d version of the | 162 // 2. If there is a function for encoding bitmaps, use it to write an encode
d version of the |
(...skipping 44 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
200 write_encoded_bitmap(this, data, SkIPoint::Make(0, 0)); | 207 write_encoded_bitmap(this, data, SkIPoint::Make(0, 0)); |
201 return; | 208 return; |
202 } | 209 } |
203 } | 210 } |
204 } | 211 } |
205 | 212 |
206 this->writeUInt(0); // signal raw pixels | 213 this->writeUInt(0); // signal raw pixels |
207 SkBitmap::WriteRawPixels(this, bitmap); | 214 SkBitmap::WriteRawPixels(this, bitmap); |
208 } | 215 } |
209 | 216 |
210 void SkWriteBuffer::writeImage(const SkImage* image) { | 217 void SkBinaryWriteBuffer::writeImage(const SkImage* image) { |
211 this->writeInt(image->width()); | 218 this->writeInt(image->width()); |
212 this->writeInt(image->height()); | 219 this->writeInt(image->height()); |
213 | 220 |
214 SkAutoTUnref<SkData> encoded(image->encode(this->getPixelSerializer())); | 221 SkAutoTUnref<SkData> encoded(image->encode(this->getPixelSerializer())); |
215 if (encoded && encoded->size() > 0) { | 222 if (encoded && encoded->size() > 0) { |
216 write_encoded_bitmap(this, encoded, SkIPoint::Make(0, 0)); | 223 write_encoded_bitmap(this, encoded, SkIPoint::Make(0, 0)); |
217 return; | 224 return; |
218 } | 225 } |
219 | 226 |
220 this->writeUInt(0); // signal no pixels (in place of the size of the encoded
data) | 227 this->writeUInt(0); // signal no pixels (in place of the size of the encoded
data) |
221 } | 228 } |
222 | 229 |
223 void SkWriteBuffer::writeTypeface(SkTypeface* obj) { | 230 void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) { |
224 if (nullptr == obj || nullptr == fTFSet) { | 231 if (nullptr == obj || nullptr == fTFSet) { |
225 fWriter.write32(0); | 232 fWriter.write32(0); |
226 } else { | 233 } else { |
227 fWriter.write32(fTFSet->add(obj)); | 234 fWriter.write32(fTFSet->add(obj)); |
228 } | 235 } |
229 } | 236 } |
230 | 237 |
231 SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { | 238 void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) { |
| 239 paint.flatten(*this); |
| 240 } |
| 241 |
| 242 SkFactorySet* SkBinaryWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { |
232 SkRefCnt_SafeAssign(fFactorySet, rec); | 243 SkRefCnt_SafeAssign(fFactorySet, rec); |
233 return rec; | 244 return rec; |
234 } | 245 } |
235 | 246 |
236 SkRefCntSet* SkWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) { | 247 SkRefCntSet* SkBinaryWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) { |
237 SkRefCnt_SafeAssign(fTFSet, rec); | 248 SkRefCnt_SafeAssign(fTFSet, rec); |
238 return rec; | 249 return rec; |
239 } | 250 } |
240 | 251 |
241 void SkWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) { | 252 void SkBinaryWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) { |
242 SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap); | 253 SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap); |
243 if (bitmapHeap != nullptr) { | 254 if (bitmapHeap != nullptr) { |
244 SkASSERT(nullptr == fPixelSerializer); | 255 SkASSERT(nullptr == fPixelSerializer); |
245 fPixelSerializer.reset(nullptr); | 256 fPixelSerializer.reset(nullptr); |
246 } | 257 } |
247 } | 258 } |
248 | 259 |
249 void SkWriteBuffer::setPixelSerializer(SkPixelSerializer* serializer) { | 260 void SkBinaryWriteBuffer::setPixelSerializer(SkPixelSerializer* serializer) { |
250 fPixelSerializer.reset(serializer); | 261 fPixelSerializer.reset(serializer); |
251 if (serializer) { | 262 if (serializer) { |
252 serializer->ref(); | 263 serializer->ref(); |
253 SkASSERT(nullptr == fBitmapHeap); | 264 SkASSERT(nullptr == fBitmapHeap); |
254 SkSafeUnref(fBitmapHeap); | 265 SkSafeUnref(fBitmapHeap); |
255 fBitmapHeap = nullptr; | 266 fBitmapHeap = nullptr; |
256 } | 267 } |
257 } | 268 } |
258 | 269 |
259 void SkWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { | 270 void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { |
260 /* | 271 /* |
261 * The first 32 bits tell us... | 272 * The first 32 bits tell us... |
262 * 0: failure to write the flattenable | 273 * 0: failure to write the flattenable |
263 * >0: index (1-based) into fFactorySet or fFlattenableDict or | 274 * >0: index (1-based) into fFactorySet or fFlattenableDict or |
264 * the first character of a string | 275 * the first character of a string |
265 */ | 276 */ |
266 if (nullptr == flattenable) { | 277 if (nullptr == flattenable) { |
267 this->write32(0); | 278 this->write32(0); |
268 return; | 279 return; |
269 } | 280 } |
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
310 // make room for the size of the flattened object | 321 // make room for the size of the flattened object |
311 (void)fWriter.reserve(sizeof(uint32_t)); | 322 (void)fWriter.reserve(sizeof(uint32_t)); |
312 // record the current size, so we can subtract after the object writes. | 323 // record the current size, so we can subtract after the object writes. |
313 size_t offset = fWriter.bytesWritten(); | 324 size_t offset = fWriter.bytesWritten(); |
314 // now flatten the object | 325 // now flatten the object |
315 flattenable->flatten(*this); | 326 flattenable->flatten(*this); |
316 size_t objSize = fWriter.bytesWritten() - offset; | 327 size_t objSize = fWriter.bytesWritten() - offset; |
317 // record the obj's size | 328 // record the obj's size |
318 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); | 329 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); |
319 } | 330 } |
OLD | NEW |