OLD | NEW |
| (Empty) |
1 // Copyright 2016 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the Chromium LICENSE file. | |
4 | |
5 #include "qcms_test_util.h" | |
6 | |
7 #include <math.h> | |
8 #include <stdlib.h> | |
9 | |
10 #define MAX_FLOAT_ERROR 0.000001f | |
11 | |
12 // Store random pixel data in the source. | |
13 void generate_source_uint8_t(unsigned char *src, const size_t length, const size
_t pixel_size) | |
14 { | |
15 size_t bytes = length * pixel_size; | |
16 size_t i; | |
17 | |
18 for (i = 0; i < bytes; ++i) { | |
19 *src++ = rand() & 255; | |
20 } | |
21 } | |
22 | |
23 // Parametric Fn using floating point <from lcms/src/cmsgamma.c>: DefaultEvalPar
ametricFn | |
24 float evaluate_parametric_curve(int type, const float params[], float r) | |
25 { | |
26 float e, val, disc; | |
27 | |
28 switch (type) { | |
29 | |
30 // X = Y ^ Gamma | |
31 case 1: | |
32 if (r < 0) { | |
33 | |
34 if (fabs(params[0] - 1.0) < MAX_FLOAT_ERROR) | |
35 val = r; | |
36 else | |
37 val = 0; | |
38 } | |
39 else | |
40 val = pow(r, params[0]); | |
41 break; | |
42 | |
43 // Type 1 Reversed: X = Y ^1/gamma | |
44 case -1: | |
45 if (r < 0) { | |
46 | |
47 if (fabs(params[0] - 1.0) < MAX_FLOAT_ERROR) | |
48 val = r; | |
49 else | |
50 val = 0; | |
51 } | |
52 else | |
53 val = pow(r, 1/params[0]); | |
54 break; | |
55 | |
56 // CIE 122-1966 | |
57 // Y = (aX + b)^Gamma | X >= -b/a | |
58 // Y = 0 | else | |
59 case 2: | |
60 disc = -params[2] / params[1]; | |
61 | |
62 if (r >= disc ) { | |
63 | |
64 e = params[1]*r + params[2]; | |
65 | |
66 if (e > 0) | |
67 val = pow(e, params[0]); | |
68 else | |
69 val = 0; | |
70 } | |
71 else | |
72 val = 0; | |
73 break; | |
74 | |
75 // Type 2 Reversed | |
76 // X = (Y ^1/g - b) / a | |
77 case -2: | |
78 if (r < 0) | |
79 val = 0; | |
80 else | |
81 val = (pow(r, 1.0/params[0]) - params[2]) / params[1]; | |
82 | |
83 if (val < 0) | |
84 val = 0; | |
85 break; | |
86 | |
87 | |
88 // IEC 61966-3 | |
89 // Y = (aX + b)^Gamma | X <= -b/a | |
90 // Y = c | else | |
91 case 3: | |
92 disc = -params[2] / params[1]; | |
93 if (disc < 0) | |
94 disc = 0; | |
95 | |
96 if (r >= disc) { | |
97 | |
98 e = params[1]*r + params[2]; | |
99 | |
100 if (e > 0) | |
101 val = pow(e, params[0]) + params[3]; | |
102 else | |
103 val = 0; | |
104 } | |
105 else | |
106 val = params[3]; | |
107 break; | |
108 | |
109 | |
110 // Type 3 reversed | |
111 // X=((Y-c)^1/g - b)/a | (Y>=c) | |
112 // X=-b/a | (Y<c) | |
113 case -3: | |
114 if (r >= params[3]) { | |
115 | |
116 e = r - params[3]; | |
117 | |
118 if (e > 0) | |
119 val = (pow(e, 1/params[0]) - params[2]) / params[1]; | |
120 else | |
121 val = 0; | |
122 } | |
123 else { | |
124 val = -params[2] / params[1]; | |
125 } | |
126 break; | |
127 | |
128 | |
129 // IEC 61966-2.1 (sRGB) | |
130 // Y = (aX + b)^Gamma | X >= d | |
131 // Y = cX | X < d | |
132 case 4: | |
133 if (r >= params[4]) { | |
134 | |
135 e = params[1]*r + params[2]; | |
136 | |
137 if (e > 0) | |
138 val = pow(e, params[0]); | |
139 else | |
140 val = 0; | |
141 } | |
142 else | |
143 val = r * params[3]; | |
144 break; | |
145 | |
146 // Type 4 reversed | |
147 // X=((Y^1/g-b)/a) | Y >= (ad+b)^g | |
148 // X=Y/c | Y< (ad+b)^g | |
149 case -4: | |
150 e = params[1] * params[4] + params[2]; | |
151 if (e < 0) | |
152 disc = 0; | |
153 else | |
154 disc = pow(e, params[0]); | |
155 | |
156 if (r >= disc) { | |
157 | |
158 val = (pow(r, 1.0/params[0]) - params[2]) / params[1]; | |
159 } | |
160 else { | |
161 val = r / params[3]; | |
162 } | |
163 break; | |
164 | |
165 | |
166 // Y = (aX + b)^Gamma + e | X >= d | |
167 // Y = cX + f | X < d | |
168 case 5: | |
169 if (r >= params[4]) { | |
170 | |
171 e = params[1]*r + params[2]; | |
172 | |
173 if (e > 0) | |
174 val = pow(e, params[0]) + params[5]; | |
175 else | |
176 val = params[5]; | |
177 } | |
178 else | |
179 val = r*params[3] + params[6]; | |
180 break; | |
181 | |
182 | |
183 // Reversed type 5 | |
184 // X=((Y-e)1/g-b)/a | Y >=(ad+b)^g+e), cd+f | |
185 // X=(Y-f)/c | else | |
186 case -5: | |
187 | |
188 disc = params[3] * params[4] + params[6]; | |
189 if (r >= disc) { | |
190 | |
191 e = r - params[5]; | |
192 if (e < 0) | |
193 val = 0; | |
194 else | |
195 val = (pow(e, 1.0/params[0]) - params[2]) / params[1]; | |
196 } | |
197 else { | |
198 val = (r - params[6]) / params[3]; | |
199 } | |
200 break; | |
201 | |
202 | |
203 // Types 6,7,8 comes from segmented curves as described in ICCSpecRevisi
on_02_11_06_Float.pdf | |
204 // Type 6 is basically identical to type 5 without d | |
205 | |
206 // Y = (a * X + b) ^ Gamma + c | |
207 case 6: | |
208 e = params[1]*r + params[2]; | |
209 | |
210 if (e < 0) | |
211 val = params[3]; | |
212 else | |
213 val = pow(e, params[0]) + params[3]; | |
214 break; | |
215 | |
216 // ((Y - c) ^1/Gamma - b) / a | |
217 case -6: | |
218 e = r - params[3]; | |
219 if (e < 0) | |
220 val = 0; | |
221 else | |
222 val = (pow(e, 1.0/params[0]) - params[2]) / params[1]; | |
223 break; | |
224 | |
225 | |
226 // Y = a * log (b * X^Gamma + c) + d | |
227 case 7: | |
228 | |
229 e = params[2] * pow(r, params[0]) + params[3]; | |
230 if (e <= 0) | |
231 val = params[4]; | |
232 else | |
233 val = params[1]*log10(e) + params[4]; | |
234 break; | |
235 | |
236 // (Y - d) / a = log(b * X ^Gamma + c) | |
237 // pow(10, (Y-d) / a) = b * X ^Gamma + c | |
238 // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X | |
239 case -7: | |
240 val = pow((pow(10.0, (r-params[4]) / params[1]) - params[3]) / params[2]
, 1.0 / params[0]); | |
241 break; | |
242 | |
243 | |
244 //Y = a * b^(c*X+d) + e | |
245 case 8: | |
246 val = (params[0] * pow(params[1], params[2] * r + params[3]) + params[4]
); | |
247 break; | |
248 | |
249 | |
250 // Y = (log((y-e) / a) / log(b) - d ) / c | |
251 // a=0, b=1, c=2, d=3, e=4, | |
252 case -8: | |
253 | |
254 disc = r - params[4]; | |
255 if (disc < 0) val = 0; | |
256 else | |
257 val = (log(disc / params[0]) / log(params[1]) - params[3]) / params[
2]; | |
258 break; | |
259 | |
260 // S-Shaped: (1 - (1-x)^1/g)^1/g | |
261 case 108: | |
262 val = pow(1.0 - pow(1 - r, 1/params[0]), 1/params[0]); | |
263 break; | |
264 | |
265 // y = (1 - (1-x)^1/g)^1/g | |
266 // y^g = (1 - (1-x)^1/g) | |
267 // 1 - y^g = (1-x)^1/g | |
268 // (1 - y^g)^g = 1 - x | |
269 // 1 - (1 - y^g)^g | |
270 case -108: | |
271 val = 1 - pow(1 - pow(r, params[0]), params[0]); | |
272 break; | |
273 | |
274 default: | |
275 // Unsupported parametric curve. Should never reach here | |
276 return 0; | |
277 } | |
278 | |
279 return val; | |
280 } | |
OLD | NEW |