Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(375)

Side by Side Diff: src/core/SkWriteBuffer.cpp

Issue 1911963008: DNC - JSON of flattenables, with field names. Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Add names to call sites Created 4 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright 2012 Google Inc. 2 * Copyright 2012 Google Inc.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license that can be 4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file. 5 * found in the LICENSE file.
6 */ 6 */
7 7
8 #include "SkWriteBuffer.h" 8 #include "SkWriteBuffer.h"
9 #include "SkBitmap.h" 9 #include "SkBitmap.h"
10 #include "SkBitmapHeap.h" 10 #include "SkBitmapHeap.h"
(...skipping 17 matching lines...) Expand all
28 , fBitmapHeap(nullptr) 28 , fBitmapHeap(nullptr)
29 , fTFSet(nullptr) { 29 , fTFSet(nullptr) {
30 } 30 }
31 31
32 SkWriteBuffer::~SkWriteBuffer() { 32 SkWriteBuffer::~SkWriteBuffer() {
33 SkSafeUnref(fFactorySet); 33 SkSafeUnref(fFactorySet);
34 SkSafeUnref(fBitmapHeap); 34 SkSafeUnref(fBitmapHeap);
35 SkSafeUnref(fTFSet); 35 SkSafeUnref(fTFSet);
36 } 36 }
37 37
38 void SkWriteBuffer::writeByteArray(const void* data, size_t size) { 38 void SkWriteBuffer::writeByteArray(const char* name, const void* data, size_t si ze) {
39 fWriter.write32(SkToU32(size)); 39 fWriter.write32(SkToU32(size));
40 fWriter.writePad(data, size); 40 fWriter.writePad(data, size);
41 } 41 }
42 42
43 void SkWriteBuffer::writeBool(bool value) { 43 void SkWriteBuffer::writeBool(const char* name, bool value) {
44 fWriter.writeBool(value); 44 fWriter.writeBool(value);
45 } 45 }
46 46
47 void SkWriteBuffer::writeScalar(SkScalar value) { 47 void SkWriteBuffer::writeScalar(const char* name, SkScalar value) {
48 fWriter.writeScalar(value); 48 fWriter.writeScalar(value);
49 } 49 }
50 50
51 void SkWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { 51 void SkWriteBuffer::writeScalarArray(const char* name, const SkScalar* value, ui nt32_t count) {
52 fWriter.write32(count); 52 fWriter.write32(count);
53 fWriter.write(value, count * sizeof(SkScalar)); 53 fWriter.write(value, count * sizeof(SkScalar));
54 } 54 }
55 55
56 void SkWriteBuffer::writeInt(int32_t value) { 56 void SkWriteBuffer::writeInt(const char* name, int32_t value) {
57 fWriter.write32(value); 57 fWriter.write32(value);
58 } 58 }
59 59
60 void SkWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { 60 void SkWriteBuffer::writeIntArray(const char* name, const int32_t* value, uint32 _t count) {
61 fWriter.write32(count); 61 fWriter.write32(count);
62 fWriter.write(value, count * sizeof(int32_t)); 62 fWriter.write(value, count * sizeof(int32_t));
63 } 63 }
64 64
65 void SkWriteBuffer::writeUInt(uint32_t value) { 65 void SkWriteBuffer::writeUInt(const char* name, uint32_t value) {
66 fWriter.write32(value); 66 fWriter.write32(value);
67 } 67 }
68 68
69 void SkWriteBuffer::write32(int32_t value) { 69 void SkWriteBuffer::write32(const char* name, int32_t value) {
70 fWriter.write32(value); 70 fWriter.write32(value);
71 } 71 }
72 72
73 void SkWriteBuffer::writeString(const char* value) { 73 void SkWriteBuffer::writeString(const char* name, const char* value) {
74 fWriter.writeString(value); 74 fWriter.writeString(value);
75 } 75 }
76 76
77 void SkWriteBuffer::writeEncodedString(const void* value, size_t byteLength, 77 void SkWriteBuffer::writeEncodedString(const char* name, const void* value, size _t byteLength,
78 SkPaint::TextEncoding encoding) { 78 SkPaint::TextEncoding encoding) {
79 fWriter.writeInt(encoding); 79 fWriter.writeInt(encoding);
80 fWriter.writeInt(SkToU32(byteLength)); 80 fWriter.writeInt(SkToU32(byteLength));
81 fWriter.write(value, byteLength); 81 fWriter.write(value, byteLength);
82 } 82 }
83 83
84 84
85 void SkWriteBuffer::writeColor(const SkColor& color) { 85 void SkWriteBuffer::writeColor(const char* name, const SkColor& color) {
86 fWriter.write32(color); 86 fWriter.write32(color);
87 } 87 }
88 88
89 void SkWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { 89 void SkWriteBuffer::writeColorArray(const char* name, const SkColor* color, uint 32_t count) {
90 fWriter.write32(count); 90 fWriter.write32(count);
91 fWriter.write(color, count * sizeof(SkColor)); 91 fWriter.write(color, count * sizeof(SkColor));
92 } 92 }
93 93
94 void SkWriteBuffer::writePoint(const SkPoint& point) { 94 void SkWriteBuffer::writePoint(const char* name, const SkPoint& point) {
95 fWriter.writeScalar(point.fX); 95 fWriter.writeScalar(point.fX);
96 fWriter.writeScalar(point.fY); 96 fWriter.writeScalar(point.fY);
97 } 97 }
98 98
99 void SkWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { 99 void SkWriteBuffer::writePointArray(const char* name, const SkPoint* point, uint 32_t count) {
100 fWriter.write32(count); 100 fWriter.write32(count);
101 fWriter.write(point, count * sizeof(SkPoint)); 101 fWriter.write(point, count * sizeof(SkPoint));
102 } 102 }
103 103
104 void SkWriteBuffer::writeMatrix(const SkMatrix& matrix) { 104 void SkWriteBuffer::writeMatrix(const char* name, const SkMatrix& matrix) {
105 fWriter.writeMatrix(matrix); 105 fWriter.writeMatrix(matrix);
106 } 106 }
107 107
108 void SkWriteBuffer::writeIRect(const SkIRect& rect) { 108 void SkWriteBuffer::writeIRect(const char* name, const SkIRect& rect) {
109 fWriter.write(&rect, sizeof(SkIRect)); 109 fWriter.write(&rect, sizeof(SkIRect));
110 } 110 }
111 111
112 void SkWriteBuffer::writeRect(const SkRect& rect) { 112 void SkWriteBuffer::writeRect(const char* name, const SkRect& rect) {
113 fWriter.writeRect(rect); 113 fWriter.writeRect(rect);
114 } 114 }
115 115
116 void SkWriteBuffer::writeRegion(const SkRegion& region) { 116 void SkWriteBuffer::writeRegion(const char* name, const SkRegion& region) {
117 fWriter.writeRegion(region); 117 fWriter.writeRegion(region);
118 } 118 }
119 119
120 void SkWriteBuffer::writePath(const SkPath& path) { 120 void SkWriteBuffer::writePath(const char* name, const SkPath& path) {
121 fWriter.writePath(path); 121 fWriter.writePath(path);
122 } 122 }
123 123
124 size_t SkWriteBuffer::writeStream(SkStream* stream, size_t length) { 124 size_t SkWriteBuffer::writeStream(const char* name, SkStream* stream, size_t len gth) {
125 fWriter.write32(SkToU32(length)); 125 fWriter.write32(SkToU32(length));
126 size_t bytesWritten = fWriter.readFromStream(stream, length); 126 size_t bytesWritten = fWriter.readFromStream(stream, length);
127 if (bytesWritten < length) { 127 if (bytesWritten < length) {
128 fWriter.reservePad(length - bytesWritten); 128 fWriter.reservePad(length - bytesWritten);
129 } 129 }
130 return bytesWritten; 130 return bytesWritten;
131 } 131 }
132 132
133 bool SkWriteBuffer::writeToStream(SkWStream* stream) { 133 bool SkWriteBuffer::writeToStream(SkWStream* stream) {
134 return fWriter.writeToStream(stream); 134 return fWriter.writeToStream(stream);
135 } 135 }
136 136
137 static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data, 137 static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data,
138 const SkIPoint& origin) { 138 const SkIPoint& origin) {
139 buffer->writeUInt(SkToU32(data->size())); 139 buffer->writeUInt("size", SkToU32(data->size()));
140 buffer->getWriter32()->writePad(data->data(), data->size()); 140 buffer->getWriter32()->writePad(data->data(), data->size());
141 buffer->write32(origin.fX); 141 buffer->write32("x", origin.fX);
142 buffer->write32(origin.fY); 142 buffer->write32("y", origin.fY);
143 } 143 }
144 144
145 void SkWriteBuffer::writeBitmap(const SkBitmap& bitmap) { 145 void SkWriteBuffer::writeBitmap(const char* name, const SkBitmap& bitmap) {
146 // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the 146 // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the
147 // right size. 147 // right size.
148 this->writeInt(bitmap.width()); 148 this->writeInt("width", bitmap.width());
149 this->writeInt(bitmap.height()); 149 this->writeInt("height", bitmap.height());
150 150
151 // Record information about the bitmap in one of three ways, in order of pri ority: 151 // Record information about the bitmap in one of three ways, in order of pri ority:
152 // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoi d serializing the 152 // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoi d serializing the
153 // bitmap entirely or serialize it later as desired. A boolean value of t rue will be written 153 // bitmap entirely or serialize it later as desired. A boolean value of t rue will be written
154 // to the stream to signify that a heap was used. 154 // to the stream to signify that a heap was used.
155 // 2. If there is a function for encoding bitmaps, use it to write an encode d version of the 155 // 2. If there is a function for encoding bitmaps, use it to write an encode d version of the
156 // bitmap. After writing a boolean value of false, signifying that a heap was not used, write 156 // bitmap. After writing a boolean value of false, signifying that a heap was not used, write
157 // the size of the encoded data. A non-zero size signifies that encoded d ata was written. 157 // the size of the encoded data. A non-zero size signifies that encoded d ata was written.
158 // 3. Call SkBitmap::flatten. After writing a boolean value of false, signif ying that a heap was 158 // 3. Call SkBitmap::flatten. After writing a boolean value of false, signif ying that a heap was
159 // not used, write a zero to signify that the data was not encoded. 159 // not used, write a zero to signify that the data was not encoded.
160 bool useBitmapHeap = fBitmapHeap != nullptr; 160 bool useBitmapHeap = fBitmapHeap != nullptr;
161 // Write a bool: true if the SkBitmapHeap is to be used, in which case the r eader must use an 161 // Write a bool: true if the SkBitmapHeap is to be used, in which case the r eader must use an
162 // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serializ ed another way. 162 // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serializ ed another way.
163 this->writeBool(useBitmapHeap); 163 this->writeBool("useBitmapHeap", useBitmapHeap);
164 if (useBitmapHeap) { 164 if (useBitmapHeap) {
165 SkASSERT(nullptr == fPixelSerializer); 165 SkASSERT(nullptr == fPixelSerializer);
166 int32_t slot = fBitmapHeap->insert(bitmap); 166 int32_t slot = fBitmapHeap->insert(bitmap);
167 fWriter.write32(slot); 167 fWriter.write32(slot);
168 // crbug.com/155875 168 // crbug.com/155875
169 // The generation ID is not required information. We write it to prevent collisions 169 // The generation ID is not required information. We write it to prevent collisions
170 // in SkFlatDictionary. It is possible to get a collision when a previo usly 170 // in SkFlatDictionary. It is possible to get a collision when a previo usly
171 // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary 171 // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary
172 // and the instance currently being written is re-using the same slot fr om the 172 // and the instance currently being written is re-using the same slot fr om the
173 // bitmap heap. 173 // bitmap heap.
(...skipping 22 matching lines...) Expand all
196 SkAutoDataUnref data(fPixelSerializer->encode(result.pixmap())); 196 SkAutoDataUnref data(fPixelSerializer->encode(result.pixmap()));
197 if (data.get() != nullptr) { 197 if (data.get() != nullptr) {
198 // if we have to "encode" the bitmap, then we assume there is no 198 // if we have to "encode" the bitmap, then we assume there is no
199 // offset to share, since we are effectively creating a new pixe lref 199 // offset to share, since we are effectively creating a new pixe lref
200 write_encoded_bitmap(this, data, SkIPoint::Make(0, 0)); 200 write_encoded_bitmap(this, data, SkIPoint::Make(0, 0));
201 return; 201 return;
202 } 202 }
203 } 203 }
204 } 204 }
205 205
206 this->writeUInt(0); // signal raw pixels 206 this->writeUInt("rawPixelsTag", 0); // signal raw pixels
207 SkBitmap::WriteRawPixels(this, bitmap); 207 SkBitmap::WriteRawPixels(this, bitmap);
208 } 208 }
209 209
210 void SkWriteBuffer::writeImage(const SkImage* image) { 210 void SkWriteBuffer::writeImage(const char* name, const SkImage* image) {
211 this->writeInt(image->width()); 211 this->writeInt("width", image->width());
212 this->writeInt(image->height()); 212 this->writeInt("height", image->height());
213 213
214 SkAutoTUnref<SkData> encoded(image->encode(this->getPixelSerializer())); 214 SkAutoTUnref<SkData> encoded(image->encode(this->getPixelSerializer()));
215 if (encoded && encoded->size() > 0) { 215 if (encoded && encoded->size() > 0) {
216 write_encoded_bitmap(this, encoded, SkIPoint::Make(0, 0)); 216 write_encoded_bitmap(this, encoded, SkIPoint::Make(0, 0));
217 return; 217 return;
218 } 218 }
219 219
220 this->writeUInt(0); // signal no pixels (in place of the size of the encoded data) 220 this->writeUInt("noPixelsTag", 0); // signal no pixels (in place of the size of the encoded data)
221 } 221 }
222 222
223 void SkWriteBuffer::writeTypeface(SkTypeface* obj) { 223 void SkWriteBuffer::writeTypeface(const char* name, SkTypeface* obj) {
224 if (nullptr == obj || nullptr == fTFSet) { 224 if (nullptr == obj || nullptr == fTFSet) {
225 fWriter.write32(0); 225 fWriter.write32(0);
226 } else { 226 } else {
227 fWriter.write32(fTFSet->add(obj)); 227 fWriter.write32(fTFSet->add(obj));
228 } 228 }
229 } 229 }
230 230
231 SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { 231 SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) {
232 SkRefCnt_SafeAssign(fFactorySet, rec); 232 SkRefCnt_SafeAssign(fFactorySet, rec);
233 return rec; 233 return rec;
(...skipping 15 matching lines...) Expand all
249 void SkWriteBuffer::setPixelSerializer(SkPixelSerializer* serializer) { 249 void SkWriteBuffer::setPixelSerializer(SkPixelSerializer* serializer) {
250 fPixelSerializer.reset(serializer); 250 fPixelSerializer.reset(serializer);
251 if (serializer) { 251 if (serializer) {
252 serializer->ref(); 252 serializer->ref();
253 SkASSERT(nullptr == fBitmapHeap); 253 SkASSERT(nullptr == fBitmapHeap);
254 SkSafeUnref(fBitmapHeap); 254 SkSafeUnref(fBitmapHeap);
255 fBitmapHeap = nullptr; 255 fBitmapHeap = nullptr;
256 } 256 }
257 } 257 }
258 258
259 void SkWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { 259 void SkWriteBuffer::writeFlattenable(const char* name, const SkFlattenable* flat tenable) {
260 /* 260 /*
261 * The first 32 bits tell us... 261 * The first 32 bits tell us...
262 * 0: failure to write the flattenable 262 * 0: failure to write the flattenable
263 * >0: index (1-based) into fFactorySet or fFlattenableDict or 263 * >0: index (1-based) into fFactorySet or fFlattenableDict or
264 * the first character of a string 264 * the first character of a string
265 */ 265 */
266 if (nullptr == flattenable) { 266 if (nullptr == flattenable) {
267 this->write32(0); 267 this->write32("index", 0);
268 return; 268 return;
269 } 269 }
270 270
271 /* 271 /*
272 * We can write 1 of 2 versions of the flattenable: 272 * We can write 1 of 2 versions of the flattenable:
273 * 1. index into fFactorySet : This assumes the writer will later 273 * 1. index into fFactorySet : This assumes the writer will later
274 * resolve the function-ptrs into strings for its reader. SkPicture 274 * resolve the function-ptrs into strings for its reader. SkPicture
275 * does exactly this, by writing a table of names (matching the indices ) 275 * does exactly this, by writing a table of names (matching the indices )
276 * up front in its serialized form. 276 * up front in its serialized form.
277 * 2. string name of the flattenable or index into fFlattenableDict: We 277 * 2. string name of the flattenable or index into fFlattenableDict: We
278 * store the string to allow the reader to specify its own factories 278 * store the string to allow the reader to specify its own factories
279 * after write time. In order to improve compression, if we have 279 * after write time. In order to improve compression, if we have
280 * already written the string, we write its index instead. 280 * already written the string, we write its index instead.
281 */ 281 */
282 if (fFactorySet) { 282 if (fFactorySet) {
283 SkFlattenable::Factory factory = flattenable->getFactory(); 283 SkFlattenable::Factory factory = flattenable->getFactory();
284 SkASSERT(factory); 284 SkASSERT(factory);
285 this->write32(fFactorySet->add(factory)); 285 this->write32("factoryIndex", fFactorySet->add(factory));
286 } else { 286 } else {
287 const char* name = flattenable->getTypeName(); 287 const char* name = flattenable->getTypeName();
288 SkASSERT(name); 288 SkASSERT(name);
289 SkString key(name); 289 SkString key(name);
290 if (uint32_t* indexPtr = fFlattenableDict.find(key)) { 290 if (uint32_t* indexPtr = fFlattenableDict.find(key)) {
291 // We will write the index as a 32-bit int. We want the first byte 291 // We will write the index as a 32-bit int. We want the first byte
292 // that we send to be zero - this will act as a sentinel that we 292 // that we send to be zero - this will act as a sentinel that we
293 // have an index (not a string). This means that we will send the 293 // have an index (not a string). This means that we will send the
294 // the index shifted left by 8. The remaining 24-bits should be 294 // the index shifted left by 8. The remaining 24-bits should be
295 // plenty to store the index. Note that this strategy depends on 295 // plenty to store the index. Note that this strategy depends on
296 // being little endian. 296 // being little endian.
297 SkASSERT(0 == *indexPtr >> 24); 297 SkASSERT(0 == *indexPtr >> 24);
298 this->write32(*indexPtr << 8); 298 this->write32("dictIndex", *indexPtr << 8);
299 } else { 299 } else {
300 // Otherwise write the string. Clients should not use the empty 300 // Otherwise write the string. Clients should not use the empty
301 // string as a name, or we will have a problem. 301 // string as a name, or we will have a problem.
302 SkASSERT(strcmp("", name)); 302 SkASSERT(strcmp("", name));
303 this->writeString(name); 303 this->writeString("typeName", name);
304 304
305 // Add key to dictionary. 305 // Add key to dictionary.
306 fFlattenableDict.set(key, fFlattenableDict.count() + 1); 306 fFlattenableDict.set(key, fFlattenableDict.count() + 1);
307 } 307 }
308 } 308 }
309 309
310 // make room for the size of the flattened object 310 // make room for the size of the flattened object
311 (void)fWriter.reserve(sizeof(uint32_t)); 311 (void)fWriter.reserve(sizeof(uint32_t));
312 // record the current size, so we can subtract after the object writes. 312 // record the current size, so we can subtract after the object writes.
313 size_t offset = fWriter.bytesWritten(); 313 size_t offset = fWriter.bytesWritten();
314 // now flatten the object 314 // now flatten the object
315 flattenable->flatten(*this); 315 flattenable->flatten(*this);
316 size_t objSize = fWriter.bytesWritten() - offset; 316 size_t objSize = fWriter.bytesWritten() - offset;
317 // record the obj's size 317 // record the obj's size
318 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); 318 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
319 } 319 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698