OLD | NEW |
| (Empty) |
1 // Copyright (c) 2006-2009 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #ifndef BASE_SCOPED_PTR_H__ | |
6 #define BASE_SCOPED_PTR_H__ | |
7 | |
8 // This is an implementation designed to match the anticipated future TR2 | |
9 // implementation of the scoped_ptr class, and its closely-related brethren, | |
10 // scoped_array, scoped_ptr_malloc, and make_scoped_ptr. | |
11 // | |
12 // See http://wiki/Main/ScopedPointerInterface for the spec that drove this | |
13 // file. | |
14 | |
15 #include <assert.h> | |
16 #include <stdlib.h> | |
17 #include <cstddef> | |
18 | |
19 #ifdef OS_EMBEDDED_QNX | |
20 // NOTE(akirmse): | |
21 // The C++ standard says that <stdlib.h> declares both ::foo and std::foo | |
22 // But this isn't done in QNX version 6.3.2 200709062316. | |
23 using std::free; | |
24 using std::malloc; | |
25 using std::realloc; | |
26 #endif | |
27 | |
28 template <class C> class scoped_ptr; | |
29 template <class C, class Free> class scoped_ptr_malloc; | |
30 template <class C> class scoped_array; | |
31 | |
32 template <class C> | |
33 scoped_ptr<C> make_scoped_ptr(C *); | |
34 | |
35 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> | |
36 // automatically deletes the pointer it holds (if any). | |
37 // That is, scoped_ptr<T> owns the T object that it points to. | |
38 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. | |
39 // Also like T*, scoped_ptr<T> is thread-compatible, and once you | |
40 // dereference it, you get the threadsafety guarantees of T. | |
41 // | |
42 // The size of a scoped_ptr is small: | |
43 // sizeof(scoped_ptr<C>) == sizeof(C*) | |
44 template <class C> | |
45 class scoped_ptr { | |
46 public: | |
47 | |
48 // The element type | |
49 typedef C element_type; | |
50 | |
51 // Constructor. Defaults to intializing with NULL. | |
52 // There is no way to create an uninitialized scoped_ptr. | |
53 // The input parameter must be allocated with new. | |
54 explicit scoped_ptr(C* p = NULL) : ptr_(p) { } | |
55 | |
56 // Destructor. If there is a C object, delete it. | |
57 // We don't need to test ptr_ == NULL because C++ does that for us. | |
58 ~scoped_ptr() { | |
59 enum { type_must_be_complete = sizeof(C) }; | |
60 delete ptr_; | |
61 } | |
62 | |
63 // Reset. Deletes the current owned object, if any. | |
64 // Then takes ownership of a new object, if given. | |
65 // this->reset(this->get()) works. | |
66 void reset(C* p = NULL) { | |
67 if (p != ptr_) { | |
68 enum { type_must_be_complete = sizeof(C) }; | |
69 delete ptr_; | |
70 ptr_ = p; | |
71 } | |
72 } | |
73 | |
74 // Accessors to get the owned object. | |
75 // operator* and operator-> will assert() if there is no current object. | |
76 C& operator*() const { | |
77 assert(ptr_ != NULL); | |
78 return *ptr_; | |
79 } | |
80 C* operator->() const { | |
81 assert(ptr_ != NULL); | |
82 return ptr_; | |
83 } | |
84 C* get() const { return ptr_; } | |
85 | |
86 // Comparison operators. | |
87 // These return whether a scoped_ptr and a raw pointer refer to | |
88 // the same object, not just to two different but equal objects. | |
89 bool operator==(const C* p) const { return ptr_ == p; } | |
90 bool operator!=(const C* p) const { return ptr_ != p; } | |
91 | |
92 // Swap two scoped pointers. | |
93 void swap(scoped_ptr& p2) { | |
94 C* tmp = ptr_; | |
95 ptr_ = p2.ptr_; | |
96 p2.ptr_ = tmp; | |
97 } | |
98 | |
99 // Release a pointer. | |
100 // The return value is the current pointer held by this object. | |
101 // If this object holds a NULL pointer, the return value is NULL. | |
102 // After this operation, this object will hold a NULL pointer, | |
103 // and will not own the object any more. | |
104 C* release() { | |
105 C* retVal = ptr_; | |
106 ptr_ = NULL; | |
107 return retVal; | |
108 } | |
109 | |
110 private: | |
111 C* ptr_; | |
112 | |
113 // google3 friend class that can access copy ctor (although if it actually | |
114 // calls a copy ctor, there will be a problem) see below | |
115 friend scoped_ptr<C> make_scoped_ptr<C>(C *p); | |
116 | |
117 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't | |
118 // make sense, and if C2 == C, it still doesn't make sense because you should | |
119 // never have the same object owned by two different scoped_ptrs. | |
120 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; | |
121 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; | |
122 | |
123 // Disallow evil constructors | |
124 scoped_ptr(const scoped_ptr&); | |
125 void operator=(const scoped_ptr&); | |
126 }; | |
127 | |
128 // Free functions | |
129 template <class C> | |
130 inline void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { | |
131 p1.swap(p2); | |
132 } | |
133 | |
134 template <class C> | |
135 inline bool operator==(const C* p1, const scoped_ptr<C>& p2) { | |
136 return p1 == p2.get(); | |
137 } | |
138 | |
139 template <class C> | |
140 inline bool operator==(const C* p1, const scoped_ptr<const C>& p2) { | |
141 return p1 == p2.get(); | |
142 } | |
143 | |
144 template <class C> | |
145 inline bool operator!=(const C* p1, const scoped_ptr<C>& p2) { | |
146 return p1 != p2.get(); | |
147 } | |
148 | |
149 template <class C> | |
150 inline bool operator!=(const C* p1, const scoped_ptr<const C>& p2) { | |
151 return p1 != p2.get(); | |
152 } | |
153 | |
154 template <class C> | |
155 scoped_ptr<C> make_scoped_ptr(C *p) { | |
156 // This does nothing but to return a scoped_ptr of the type that the passed | |
157 // pointer is of. (This eliminates the need to specify the name of T when | |
158 // making a scoped_ptr that is used anonymously/temporarily.) From an | |
159 // access control point of view, we construct an unnamed scoped_ptr here | |
160 // which we return and thus copy-construct. Hence, we need to have access | |
161 // to scoped_ptr::scoped_ptr(scoped_ptr const &). However, it is guaranteed | |
162 // that we never actually call the copy constructor, which is a good thing | |
163 // as we would call the temporary's object destructor (and thus delete p) | |
164 // if we actually did copy some object, here. | |
165 return scoped_ptr<C>(p); | |
166 } | |
167 | |
168 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate | |
169 // with new [] and the destructor deletes objects with delete []. | |
170 // | |
171 // As with scoped_ptr<C>, a scoped_array<C> either points to an object | |
172 // or is NULL. A scoped_array<C> owns the object that it points to. | |
173 // scoped_array<T> is thread-compatible, and once you index into it, | |
174 // the returned objects have only the threadsafety guarantees of T. | |
175 // | |
176 // Size: sizeof(scoped_array<C>) == sizeof(C*) | |
177 template <class C> | |
178 class scoped_array { | |
179 public: | |
180 | |
181 // The element type | |
182 typedef C element_type; | |
183 | |
184 // Constructor. Defaults to intializing with NULL. | |
185 // There is no way to create an uninitialized scoped_array. | |
186 // The input parameter must be allocated with new []. | |
187 explicit scoped_array(C* p = NULL) : array_(p) { } | |
188 | |
189 // Destructor. If there is a C object, delete it. | |
190 // We don't need to test ptr_ == NULL because C++ does that for us. | |
191 ~scoped_array() { | |
192 enum { type_must_be_complete = sizeof(C) }; | |
193 delete[] array_; | |
194 } | |
195 | |
196 // Reset. Deletes the current owned object, if any. | |
197 // Then takes ownership of a new object, if given. | |
198 // this->reset(this->get()) works. | |
199 void reset(C* p = NULL) { | |
200 if (p != array_) { | |
201 enum { type_must_be_complete = sizeof(C) }; | |
202 delete[] array_; | |
203 array_ = p; | |
204 } | |
205 } | |
206 | |
207 // Get one element of the current object. | |
208 // Will assert() if there is no current object, or index i is negative. | |
209 C& operator[](std::ptrdiff_t i) const { | |
210 assert(i >= 0); | |
211 assert(array_ != NULL); | |
212 return array_[i]; | |
213 } | |
214 | |
215 // Get a pointer to the zeroth element of the current object. | |
216 // If there is no current object, return NULL. | |
217 C* get() const { | |
218 return array_; | |
219 } | |
220 | |
221 // Comparison operators. | |
222 // These return whether a scoped_array and a raw pointer refer to | |
223 // the same array, not just to two different but equal arrays. | |
224 bool operator==(const C* p) const { return array_ == p; } | |
225 bool operator!=(const C* p) const { return array_ != p; } | |
226 | |
227 // Swap two scoped arrays. | |
228 void swap(scoped_array& p2) { | |
229 C* tmp = array_; | |
230 array_ = p2.array_; | |
231 p2.array_ = tmp; | |
232 } | |
233 | |
234 // Release an array. | |
235 // The return value is the current pointer held by this object. | |
236 // If this object holds a NULL pointer, the return value is NULL. | |
237 // After this operation, this object will hold a NULL pointer, | |
238 // and will not own the object any more. | |
239 C* release() { | |
240 C* retVal = array_; | |
241 array_ = NULL; | |
242 return retVal; | |
243 } | |
244 | |
245 private: | |
246 C* array_; | |
247 | |
248 // Forbid comparison of different scoped_array types. | |
249 template <class C2> bool operator==(scoped_array<C2> const& p2) const; | |
250 template <class C2> bool operator!=(scoped_array<C2> const& p2) const; | |
251 | |
252 // Disallow evil constructors | |
253 scoped_array(const scoped_array&); | |
254 void operator=(const scoped_array&); | |
255 }; | |
256 | |
257 // Free functions | |
258 template <class C> | |
259 inline void swap(scoped_array<C>& p1, scoped_array<C>& p2) { | |
260 p1.swap(p2); | |
261 } | |
262 | |
263 template <class C> | |
264 inline bool operator==(const C* p1, const scoped_array<C>& p2) { | |
265 return p1 == p2.get(); | |
266 } | |
267 | |
268 template <class C> | |
269 inline bool operator==(const C* p1, const scoped_array<const C>& p2) { | |
270 return p1 == p2.get(); | |
271 } | |
272 | |
273 template <class C> | |
274 inline bool operator!=(const C* p1, const scoped_array<C>& p2) { | |
275 return p1 != p2.get(); | |
276 } | |
277 | |
278 template <class C> | |
279 inline bool operator!=(const C* p1, const scoped_array<const C>& p2) { | |
280 return p1 != p2.get(); | |
281 } | |
282 | |
283 // This class wraps the c library function free() in a class that can be | |
284 // passed as a template argument to scoped_ptr_malloc below. | |
285 class ScopedPtrMallocFree { | |
286 public: | |
287 inline void operator()(void* x) const { | |
288 free(x); | |
289 } | |
290 }; | |
291 | |
292 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a | |
293 // second template argument, the functor used to free the object. | |
294 | |
295 template<class C, class FreeProc = ScopedPtrMallocFree> | |
296 class scoped_ptr_malloc { | |
297 public: | |
298 | |
299 // The element type | |
300 typedef C element_type; | |
301 | |
302 // Construction with no arguments sets ptr_ to NULL. | |
303 // There is no way to create an uninitialized scoped_ptr. | |
304 // The input parameter must be allocated with an allocator that matches the | |
305 // Free functor. For the default Free functor, this is malloc, calloc, or | |
306 // realloc. | |
307 explicit scoped_ptr_malloc(): ptr_(NULL) { } | |
308 | |
309 // Construct with a C*, and provides an error with a D*. | |
310 template<class must_be_C> | |
311 explicit scoped_ptr_malloc(must_be_C* p): ptr_(p) { } | |
312 | |
313 // Construct with a void*, such as you get from malloc. | |
314 explicit scoped_ptr_malloc(void *p): ptr_(static_cast<C*>(p)) { } | |
315 | |
316 // Destructor. If there is a C object, call the Free functor. | |
317 ~scoped_ptr_malloc() { | |
318 free_(ptr_); | |
319 } | |
320 | |
321 // Reset. Calls the Free functor on the current owned object, if any. | |
322 // Then takes ownership of a new object, if given. | |
323 // this->reset(this->get()) works. | |
324 void reset(C* p = NULL) { | |
325 if (ptr_ != p) { | |
326 free_(ptr_); | |
327 ptr_ = p; | |
328 } | |
329 } | |
330 | |
331 // Reallocates the existing pointer, and returns 'true' if | |
332 // the reallcation is succesfull. If the reallocation failed, then | |
333 // the pointer remains in its previous state. | |
334 // | |
335 // Note: this calls realloc() directly, even if an alternate 'free' | |
336 // functor is provided in the template instantiation. | |
337 bool try_realloc(size_t new_size) { | |
338 C* new_ptr = static_cast<C*>(realloc(ptr_, new_size)); | |
339 if (new_ptr == NULL) { | |
340 return false; | |
341 } | |
342 ptr_ = new_ptr; | |
343 return true; | |
344 } | |
345 | |
346 // Get the current object. | |
347 // operator* and operator-> will cause an assert() failure if there is | |
348 // no current object. | |
349 C& operator*() const { | |
350 assert(ptr_ != NULL); | |
351 return *ptr_; | |
352 } | |
353 | |
354 C* operator->() const { | |
355 assert(ptr_ != NULL); | |
356 return ptr_; | |
357 } | |
358 | |
359 C* get() const { | |
360 return ptr_; | |
361 } | |
362 | |
363 // Comparison operators. | |
364 // These return whether a scoped_ptr_malloc and a plain pointer refer | |
365 // to the same object, not just to two different but equal objects. | |
366 // For compatibility with the boost-derived implementation, these | |
367 // take non-const arguments. | |
368 bool operator==(C* p) const { | |
369 return ptr_ == p; | |
370 } | |
371 | |
372 bool operator!=(C* p) const { | |
373 return ptr_ != p; | |
374 } | |
375 | |
376 // Swap two scoped pointers. | |
377 void swap(scoped_ptr_malloc & b) { | |
378 C* tmp = b.ptr_; | |
379 b.ptr_ = ptr_; | |
380 ptr_ = tmp; | |
381 } | |
382 | |
383 // Release a pointer. | |
384 // The return value is the current pointer held by this object. | |
385 // If this object holds a NULL pointer, the return value is NULL. | |
386 // After this operation, this object will hold a NULL pointer, | |
387 // and will not own the object any more. | |
388 C* release() { | |
389 C* tmp = ptr_; | |
390 ptr_ = NULL; | |
391 return tmp; | |
392 } | |
393 | |
394 private: | |
395 C* ptr_; | |
396 | |
397 // no reason to use these: each scoped_ptr_malloc should have its own object | |
398 template <class C2, class GP> | |
399 bool operator==(scoped_ptr_malloc<C2, GP> const& p) const; | |
400 template <class C2, class GP> | |
401 bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const; | |
402 | |
403 static FreeProc const free_; | |
404 | |
405 // Disallow evil constructors | |
406 scoped_ptr_malloc(const scoped_ptr_malloc&); | |
407 void operator=(const scoped_ptr_malloc&); | |
408 }; | |
409 | |
410 template<class C, class FP> | |
411 FP const scoped_ptr_malloc<C, FP>::free_ = FP(); | |
412 | |
413 template<class C, class FP> inline | |
414 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) { | |
415 a.swap(b); | |
416 } | |
417 | |
418 template<class C, class FP> inline | |
419 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) { | |
420 return p == b.get(); | |
421 } | |
422 | |
423 template<class C, class FP> inline | |
424 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) { | |
425 return p != b.get(); | |
426 } | |
427 | |
428 #endif // BASE_SCOPED_PTR_H__ | |
OLD | NEW |