Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright 2013 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 // MSVC++ requires this to be set before any other includes to get M_PI. | |
| 6 #define _USE_MATH_DEFINES | |
| 7 | |
| 8 #include "media/filters/wsola_internals.h" | |
| 9 | |
| 10 #include <algorithm> | |
| 11 #include <cmath> | |
| 12 #include <limits> | |
| 13 | |
| 14 #include "base/logging.h" | |
| 15 #include "base/memory/scoped_ptr.h" | |
| 16 #include "media/base/audio_bus.h" | |
| 17 | |
| 18 namespace media { | |
| 19 | |
| 20 namespace internal { | |
| 21 | |
| 22 bool InInterval(int n, Interval q) { | |
| 23 return n >= q.first && n <= q.second; | |
| 24 } | |
| 25 | |
| 26 float MultiChannelSimilarityMeasure(const float* dot_prod_a_b, | |
| 27 const float* energy_a, | |
| 28 const float* energy_b, | |
| 29 int channels) { | |
| 30 const float kEpsilon = 1e-12; | |
| 31 float similarity_measure = 0; | |
| 32 for (int n = 0; n < channels; ++n) { | |
| 33 similarity_measure += dot_prod_a_b[n] / sqrt(energy_a[n] * energy_b[n] + | |
| 34 kEpsilon); | |
| 35 } | |
| 36 return similarity_measure; | |
| 37 } | |
| 38 | |
| 39 void MultiChannelDotProduct(const AudioBus* a, | |
| 40 int frame_offset_a, | |
| 41 const AudioBus* b, | |
| 42 int frame_offset_b, | |
| 43 int num_frames, | |
| 44 float* dot_product) { | |
| 45 DCHECK_EQ(a->channels(), b->channels()); | |
| 46 DCHECK_GE(frame_offset_a, 0); | |
| 47 DCHECK_GE(frame_offset_b, 0); | |
| 48 DCHECK_LE(frame_offset_a + num_frames, a->frames()); | |
| 49 DCHECK_LE(frame_offset_b + num_frames, b->frames()); | |
| 50 | |
| 51 memset(dot_product, 0, sizeof(*dot_product) * a->channels()); | |
| 52 for (int k = 0; k < a->channels(); ++k) { | |
| 53 const float* ch_a = a->channel(k) + frame_offset_a; | |
| 54 const float* ch_b = b->channel(k) + frame_offset_b; | |
| 55 for (int n = 0; n < num_frames; ++n) { | |
| 56 dot_product[k] += *ch_a++ * *ch_b++; | |
| 57 } | |
| 58 } | |
| 59 } | |
| 60 | |
| 61 void MultiChannelMovingBlockEnergies(const AudioBus* input, | |
| 62 int frames_per_block, | |
| 63 float* energy) { | |
| 64 int num_blocks = input->frames() - (frames_per_block - 1); | |
| 65 int channels = input->channels(); | |
| 66 | |
| 67 for (int k = 0; k < input->channels(); ++k) { | |
| 68 const float* input_channel = input->channel(k); | |
| 69 | |
| 70 energy[k] = 0; | |
| 71 | |
| 72 // First block of channel |k|. | |
| 73 for (int m = 0; m < frames_per_block; ++m) { | |
| 74 energy[k] += input_channel[m] * input_channel[m]; | |
| 75 } | |
| 76 | |
| 77 const float* slide_out = input_channel; | |
| 78 const float* slide_in = input_channel + frames_per_block; | |
| 79 for (int n = 1; n < num_blocks; ++n, ++slide_in, ++slide_out) { | |
| 80 energy[k + n * channels] = energy[k + (n - 1) * channels] - *slide_out * | |
| 81 *slide_out + *slide_in * *slide_in; | |
| 82 } | |
| 83 } | |
| 84 } | |
| 85 | |
| 86 // Fit the curve f(x) = a * x^2 + b * x + c such that | |
| 87 // f(-1) = |y[0]| | |
| 88 // f(0) = |y[1]| | |
| 89 // f(1) = |y[2]|. | |
| 90 void CubicInterpolation(const float* y_values, | |
| 91 float* extremum, | |
| 92 float* extremum_value) { | |
| 93 float a = 0.5f * (y_values[2] + y_values[0]) - y_values[1]; | |
| 94 float b = 0.5f * (y_values[2] - y_values[0]); | |
| 95 float c = y_values[1]; | |
| 96 | |
| 97 DCHECK_NE(a, 0); | |
| 98 *extremum = -b / (2.f * a); | |
| 99 *extremum_value = a * (*extremum) * (*extremum) + b * (*extremum) + c; | |
| 100 } | |
| 101 | |
| 102 int DecimatedSearch(int decimation, | |
| 103 Interval exclude_interval, | |
| 104 const AudioBus* target_block, | |
| 105 const AudioBus* search_segment, | |
| 106 const float* energy_target_block, | |
| 107 const float* energy_candidate_blocks) { | |
| 108 int channels = search_segment->channels(); | |
| 109 int block_size = target_block->frames(); | |
| 110 int num_candidate_blocks = search_segment->frames() - (block_size - 1); | |
| 111 scoped_ptr<float[]> dot_prod(new float[channels]); | |
| 112 float similarity[3]; // Three elements for cubic interpolation. | |
| 113 | |
| 114 int n = 0; | |
| 115 MultiChannelDotProduct(target_block, 0, search_segment, n, block_size, | |
| 116 dot_prod.get()); | |
| 117 similarity[0] = MultiChannelSimilarityMeasure( | |
| 118 dot_prod.get(), energy_target_block, | |
| 119 &energy_candidate_blocks[n * channels], channels); | |
| 120 | |
| 121 // Set the starting point as optimal point. | |
| 122 float best_similarity = similarity[0]; | |
| 123 int optimal_index = 0; | |
| 124 | |
| 125 n += decimation; | |
| 126 if (n >= num_candidate_blocks) { | |
| 127 return 0; | |
| 128 } | |
| 129 | |
| 130 MultiChannelDotProduct(target_block, 0, search_segment, n, block_size, | |
| 131 dot_prod.get()); | |
| 132 similarity[1] = MultiChannelSimilarityMeasure( | |
| 133 dot_prod.get(), energy_target_block, | |
| 134 &energy_candidate_blocks[n * channels], channels); | |
| 135 | |
| 136 n += decimation; | |
| 137 if (n >= num_candidate_blocks) { | |
| 138 // We cannot do any more sampling. Compare these two values and return the | |
| 139 // optimal index. | |
| 140 return similarity[1] > similarity[0] ? decimation : 0; | |
| 141 } | |
| 142 | |
| 143 for (; n < num_candidate_blocks; n += decimation) { | |
| 144 MultiChannelDotProduct(target_block, 0, search_segment, n, block_size, | |
| 145 dot_prod.get()); | |
| 146 | |
| 147 similarity[2] = MultiChannelSimilarityMeasure( | |
| 148 dot_prod.get(), energy_target_block, | |
| 149 &energy_candidate_blocks[n * channels], channels); | |
| 150 | |
| 151 if ((similarity[1] > similarity[0] && similarity[1] >= similarity[2]) || | |
| 152 (similarity[1] >= similarity[0] && similarity[1] > similarity[2])) { | |
| 153 // A local maximum is found. Do a cubic interpolation for a better | |
| 154 // estimate of candidate maximum. | |
| 155 float normalized_candidate_index; | |
| 156 float candidate_similarity; | |
| 157 CubicInterpolation(similarity, &normalized_candidate_index, | |
| 158 &candidate_similarity); | |
| 159 | |
| 160 int candidate_index = n - decimation + static_cast<int>( | |
| 161 normalized_candidate_index * decimation + 0.5f); | |
| 162 if (candidate_similarity > best_similarity && | |
| 163 !InInterval(candidate_index, exclude_interval)) { | |
| 164 optimal_index = candidate_index; | |
| 165 best_similarity = candidate_similarity; | |
| 166 } | |
| 167 } else if (n + decimation >= num_candidate_blocks && | |
| 168 similarity[2] > best_similarity && | |
| 169 !InInterval(n, exclude_interval)) { | |
| 170 // If this is the end-point and has a better similarity-measure than | |
| 171 // optimal, then we accept it as optimal point. | |
| 172 optimal_index = n; | |
| 173 best_similarity = similarity[2]; | |
| 174 } | |
| 175 memmove(similarity, &similarity[1], 2 * sizeof(*similarity)); | |
| 176 } | |
| 177 return optimal_index; | |
| 178 } | |
| 179 | |
| 180 int FullSearch(int low_limit, | |
| 181 int high_limit, | |
| 182 Interval exclude_interval, | |
| 183 const AudioBus* target_block, | |
| 184 const AudioBus* search_block, | |
| 185 const float* energy_target_block, | |
| 186 const float* energy_candidate_blocks) { | |
| 187 int channels = search_block->channels(); | |
| 188 int block_size = target_block->frames(); | |
| 189 scoped_ptr<float[]> dot_prod(new float[channels]); | |
| 190 | |
| 191 float best_similarity = std::numeric_limits<float>::min(); | |
| 192 int optimal_index = 0; | |
| 193 | |
| 194 for (int n = low_limit; n <= high_limit; ++n) { | |
| 195 if (InInterval(n, exclude_interval)) { | |
| 196 continue; | |
| 197 } | |
| 198 MultiChannelDotProduct(target_block, 0, search_block, n, block_size, | |
| 199 dot_prod.get()); | |
| 200 | |
| 201 float similarity = MultiChannelSimilarityMeasure( | |
| 202 dot_prod.get(), energy_target_block, | |
| 203 &energy_candidate_blocks[n * channels], channels); | |
| 204 | |
| 205 if (similarity > best_similarity) { | |
| 206 best_similarity = similarity; | |
| 207 optimal_index = n; | |
| 208 } | |
| 209 } | |
| 210 | |
| 211 return optimal_index; | |
| 212 } | |
| 213 | |
| 214 int OptimalIndex(const AudioBus* search_block, | |
| 215 const AudioBus* target_block, | |
| 216 Interval exclude_interval) { | |
| 217 int channels = search_block->channels(); | |
| 218 DCHECK_EQ(channels, target_block->channels()); | |
| 219 int target_size = target_block->frames(); | |
| 220 int num_candidate_blocks = search_block->frames() - (target_size - 1); | |
| 221 | |
| 222 // This is a compromise between complexity reduction and search accuracy. I | |
| 223 // don't have a proof that down sample of order 5 is optimal. One can compute | |
| 224 // a decimation factor that minimizes complexity given the size of | |
| 225 // |search_block| and |target_block|. However, my experiments show the rate of | |
| 226 // missing the optimal index is significant. This value is chosen | |
| 227 // heuristically based on experiments. | |
| 228 const int kSearchDecimation = 5; | |
| 229 | |
| 230 scoped_ptr<float[]> energy_target_block(new float[channels]); | |
| 231 scoped_ptr<float[]> energy_candidate_blocks( | |
| 232 new float[channels * num_candidate_blocks]); | |
| 233 | |
| 234 // Energy of all candid frames. | |
| 235 MultiChannelMovingBlockEnergies(search_block, target_size, | |
| 236 energy_candidate_blocks.get()); | |
| 237 | |
| 238 // Energy of target frame. | |
| 239 MultiChannelDotProduct(target_block, 0, target_block, 0, | |
| 240 target_size, energy_target_block.get()); | |
| 241 | |
| 242 int optimal_index = DecimatedSearch(kSearchDecimation, | |
| 243 exclude_interval, target_block, | |
| 244 search_block, energy_target_block.get(), | |
| 245 energy_candidate_blocks.get()); | |
| 246 | |
| 247 int lim_low = std::max(0, optimal_index - kSearchDecimation); | |
| 248 int lim_high = std::min(num_candidate_blocks - 1, | |
| 249 optimal_index + kSearchDecimation); | |
| 250 return FullSearch(lim_low, lim_high, exclude_interval, target_block, | |
| 251 search_block, energy_target_block.get(), | |
| 252 energy_candidate_blocks.get()); | |
| 253 } | |
| 254 | |
| 255 void GetSymmetricHanningWindow(int window_length, float* window) { | |
| 256 const float scale = 2.0f * M_PI / static_cast<float>(window_length); | |
|
DaleCurtis
2013/08/22 22:36:36
cast should be unnecessary.
turaj
2013/08/23 21:14:09
Done. I suppose M_PI is considered double, and the
| |
| 257 for (int n = 0; n < window_length; ++n) | |
| 258 window[n] = 0.5f * (1.0f - cosf(n * scale)); | |
| 259 } | |
| 260 | |
| 261 } // namespace internal | |
| 262 | |
| 263 } // namespace media | |
| 264 | |
| OLD | NEW |