Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(317)

Side by Side Diff: net/disk_cache/blockfile/index_table_v3.cc

Issue 1910023002: Remove partial blockfile v3 disk_cache implementation. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 4 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/disk_cache/blockfile/index_table_v3.h"
6
7 #include <algorithm>
8 #include <limits>
9 #include <set>
10 #include <utility>
11
12 #include "base/bit_cast.h"
13 #include "base/bits.h"
14 #include "net/base/io_buffer.h"
15 #include "net/base/net_errors.h"
16 #include "net/disk_cache/disk_cache.h"
17
18 using base::Time;
19 using base::TimeDelta;
20 using disk_cache::CellInfo;
21 using disk_cache::CellList;
22 using disk_cache::IndexCell;
23 using disk_cache::IndexIterator;
24
25 namespace {
26
27 // The following constants describe the bitfields of an IndexCell so they are
28 // implicitly synchronized with the descrption of IndexCell on file_format_v3.h.
29 const uint64_t kCellLocationMask = (1 << 22) - 1;
30 const uint64_t kCellIdMask = (1 << 18) - 1;
31 const uint64_t kCellTimestampMask = (1 << 20) - 1;
32 const uint64_t kCellReuseMask = (1 << 4) - 1;
33 const uint8_t kCellStateMask = (1 << 3) - 1;
34 const uint8_t kCellGroupMask = (1 << 3) - 1;
35 const uint8_t kCellSumMask = (1 << 2) - 1;
36
37 const uint64_t kCellSmallTableLocationMask = (1 << 16) - 1;
38 const uint64_t kCellSmallTableIdMask = (1 << 24) - 1;
39
40 const int kCellIdOffset = 22;
41 const int kCellTimestampOffset = 40;
42 const int kCellReuseOffset = 60;
43 const int kCellGroupOffset = 3;
44 const int kCellSumOffset = 6;
45
46 const int kCellSmallTableIdOffset = 16;
47
48 // The number of bits that a hash has to be shifted to grab the part that
49 // defines the cell id.
50 const int kHashShift = 14;
51 const int kSmallTableHashShift = 8;
52
53 // Unfortunately we have to break the abstaction a little here: the file number
54 // where entries are stored is outside of the control of this code, and it is
55 // usually part of the stored address. However, for small tables we only store
56 // 16 bits of the address so the file number is never stored on a cell. We have
57 // to infere the file number from the type of entry (normal vs evicted), and
58 // the knowledge that given that the table will not keep more than 64k entries,
59 // a single file of each type is enough.
60 const int kEntriesFile = disk_cache::BLOCK_ENTRIES - 1;
61 const int kEvictedEntriesFile = disk_cache::BLOCK_EVICTED - 1;
62 const int kMaxLocation = 1 << 22;
63 const int kMinFileNumber = 1 << 16;
64
65 uint32_t GetCellLocation(const IndexCell& cell) {
66 return cell.first_part & kCellLocationMask;
67 }
68
69 uint32_t GetCellSmallTableLocation(const IndexCell& cell) {
70 return cell.first_part & kCellSmallTableLocationMask;
71 }
72
73 uint32_t GetCellId(const IndexCell& cell) {
74 return (cell.first_part >> kCellIdOffset) & kCellIdMask;
75 }
76
77 uint32_t GetCellSmallTableId(const IndexCell& cell) {
78 return (cell.first_part >> kCellSmallTableIdOffset) &
79 kCellSmallTableIdMask;
80 }
81
82 int GetCellTimestamp(const IndexCell& cell) {
83 return (cell.first_part >> kCellTimestampOffset) & kCellTimestampMask;
84 }
85
86 int GetCellReuse(const IndexCell& cell) {
87 return (cell.first_part >> kCellReuseOffset) & kCellReuseMask;
88 }
89
90 int GetCellState(const IndexCell& cell) {
91 return cell.last_part & kCellStateMask;
92 }
93
94 int GetCellGroup(const IndexCell& cell) {
95 return (cell.last_part >> kCellGroupOffset) & kCellGroupMask;
96 }
97
98 int GetCellSum(const IndexCell& cell) {
99 return (cell.last_part >> kCellSumOffset) & kCellSumMask;
100 }
101
102 void SetCellLocation(IndexCell* cell, uint32_t address) {
103 DCHECK_LE(address, static_cast<uint32_t>(kCellLocationMask));
104 cell->first_part &= ~kCellLocationMask;
105 cell->first_part |= address;
106 }
107
108 void SetCellSmallTableLocation(IndexCell* cell, uint32_t address) {
109 DCHECK_LE(address, static_cast<uint32_t>(kCellSmallTableLocationMask));
110 cell->first_part &= ~kCellSmallTableLocationMask;
111 cell->first_part |= address;
112 }
113
114 void SetCellId(IndexCell* cell, uint32_t hash) {
115 DCHECK_LE(hash, static_cast<uint32_t>(kCellIdMask));
116 cell->first_part &= ~(kCellIdMask << kCellIdOffset);
117 cell->first_part |= static_cast<int64_t>(hash) << kCellIdOffset;
118 }
119
120 void SetCellSmallTableId(IndexCell* cell, uint32_t hash) {
121 DCHECK_LE(hash, static_cast<uint32_t>(kCellSmallTableIdMask));
122 cell->first_part &= ~(kCellSmallTableIdMask << kCellSmallTableIdOffset);
123 cell->first_part |= static_cast<int64_t>(hash) << kCellSmallTableIdOffset;
124 }
125
126 void SetCellTimestamp(IndexCell* cell, int timestamp) {
127 DCHECK_LT(timestamp, 1 << 20);
128 DCHECK_GE(timestamp, 0);
129 cell->first_part &= ~(kCellTimestampMask << kCellTimestampOffset);
130 cell->first_part |= static_cast<int64_t>(timestamp) << kCellTimestampOffset;
131 }
132
133 void SetCellReuse(IndexCell* cell, int count) {
134 DCHECK_LT(count, 16);
135 DCHECK_GE(count, 0);
136 cell->first_part &= ~(kCellReuseMask << kCellReuseOffset);
137 cell->first_part |= static_cast<int64_t>(count) << kCellReuseOffset;
138 }
139
140 void SetCellState(IndexCell* cell, disk_cache::EntryState state) {
141 cell->last_part &= ~kCellStateMask;
142 cell->last_part |= state;
143 }
144
145 void SetCellGroup(IndexCell* cell, disk_cache::EntryGroup group) {
146 cell->last_part &= ~(kCellGroupMask << kCellGroupOffset);
147 cell->last_part |= group << kCellGroupOffset;
148 }
149
150 void SetCellSum(IndexCell* cell, int sum) {
151 DCHECK_LT(sum, 4);
152 DCHECK_GE(sum, 0);
153 cell->last_part &= ~(kCellSumMask << kCellSumOffset);
154 cell->last_part |= sum << kCellSumOffset;
155 }
156
157 // This is a very particular way to calculate the sum, so it will not match if
158 // compared a gainst a pure 2 bit, modulo 2 sum.
159 int CalculateCellSum(const IndexCell& cell) {
160 uint32_t* words = bit_cast<uint32_t*>(&cell);
161 uint8_t* bytes = bit_cast<uint8_t*>(&cell);
162 uint32_t result = words[0] + words[1];
163 result += result >> 16;
164 result += (result >> 8) + (bytes[8] & 0x3f);
165 result += result >> 4;
166 result += result >> 2;
167 return result & 3;
168 }
169
170 bool SanityCheck(const IndexCell& cell) {
171 if (GetCellSum(cell) != CalculateCellSum(cell))
172 return false;
173
174 if (GetCellState(cell) > disk_cache::ENTRY_USED ||
175 GetCellGroup(cell) == disk_cache::ENTRY_RESERVED ||
176 GetCellGroup(cell) > disk_cache::ENTRY_EVICTED) {
177 return false;
178 }
179
180 return true;
181 }
182
183 int FileNumberFromLocation(int location) {
184 return location / kMinFileNumber;
185 }
186
187 int StartBlockFromLocation(int location) {
188 return location % kMinFileNumber;
189 }
190
191 bool IsValidAddress(disk_cache::Addr address) {
192 if (!address.is_initialized() ||
193 (address.file_type() != disk_cache::BLOCK_EVICTED &&
194 address.file_type() != disk_cache::BLOCK_ENTRIES)) {
195 return false;
196 }
197
198 return address.FileNumber() < FileNumberFromLocation(kMaxLocation);
199 }
200
201 bool IsNormalState(const IndexCell& cell) {
202 disk_cache::EntryState state =
203 static_cast<disk_cache::EntryState>(GetCellState(cell));
204 DCHECK_NE(state, disk_cache::ENTRY_FREE);
205 return state != disk_cache::ENTRY_DELETED &&
206 state != disk_cache::ENTRY_FIXING;
207 }
208
209 inline int GetNextBucket(int min_bucket_num, int max_bucket_num,
210 disk_cache::IndexBucket* table,
211 disk_cache::IndexBucket** bucket) {
212 if (!(*bucket)->next)
213 return 0;
214
215 int bucket_num = (*bucket)->next / disk_cache::kCellsPerBucket;
216 if (bucket_num < min_bucket_num || bucket_num > max_bucket_num) {
217 // The next bucket must fall within the extra table. Note that this is not
218 // an uncommon path as growing the table may not cleanup the link from the
219 // main table to the extra table, and that cleanup is performed here when
220 // accessing that bucket for the first time. This behavior has to change if
221 // the tables are ever shrinked.
222 (*bucket)->next = 0;
223 return 0;
224 }
225 *bucket = &table[bucket_num - min_bucket_num];
226 return bucket_num;
227 }
228
229 // Updates the |iterator| with the current |cell|. This cell may cause all
230 // previous cells to be deleted (when a new target timestamp is found), the cell
231 // may be added to the list (if it matches the target timestamp), or may it be
232 // ignored.
233 void UpdateIterator(const disk_cache::EntryCell& cell,
234 int limit_time,
235 IndexIterator* iterator) {
236 int time = cell.GetTimestamp();
237 // Look for not interesting times.
238 if (iterator->forward && time <= limit_time)
239 return;
240 if (!iterator->forward && time >= limit_time)
241 return;
242
243 if ((iterator->forward && time < iterator->timestamp) ||
244 (!iterator->forward && time > iterator->timestamp)) {
245 // This timestamp is better than the one we had.
246 iterator->timestamp = time;
247 iterator->cells.clear();
248 }
249 if (time == iterator->timestamp) {
250 CellInfo cell_info = { cell.hash(), cell.GetAddress() };
251 iterator->cells.push_back(cell_info);
252 }
253 }
254
255 void InitIterator(IndexIterator* iterator) {
256 iterator->cells.clear();
257 iterator->timestamp =
258 iterator->forward ? std::numeric_limits<int32_t>::max() : 0;
259 }
260
261 } // namespace
262
263 namespace disk_cache {
264
265 EntryCell::~EntryCell() {
266 }
267
268 bool EntryCell::IsValid() const {
269 return GetCellLocation(cell_) != 0;
270 }
271
272 // This code has to map the cell address (up to 22 bits) to a general cache Addr
273 // (up to 24 bits of general addressing). It also set the implied file_number
274 // in the case of small tables. See also the comment by the definition of
275 // kEntriesFile.
276 Addr EntryCell::GetAddress() const {
277 uint32_t location = GetLocation();
278 int file_number = FileNumberFromLocation(location);
279 if (small_table_) {
280 DCHECK_EQ(0, file_number);
281 file_number = (GetGroup() == ENTRY_EVICTED) ? kEvictedEntriesFile :
282 kEntriesFile;
283 }
284 DCHECK_NE(0, file_number);
285 FileType file_type = (GetGroup() == ENTRY_EVICTED) ? BLOCK_EVICTED :
286 BLOCK_ENTRIES;
287 return Addr(file_type, 1, file_number, StartBlockFromLocation(location));
288 }
289
290 EntryState EntryCell::GetState() const {
291 return static_cast<EntryState>(GetCellState(cell_));
292 }
293
294 EntryGroup EntryCell::GetGroup() const {
295 return static_cast<EntryGroup>(GetCellGroup(cell_));
296 }
297
298 int EntryCell::GetReuse() const {
299 return GetCellReuse(cell_);
300 }
301
302 int EntryCell::GetTimestamp() const {
303 return GetCellTimestamp(cell_);
304 }
305
306 void EntryCell::SetState(EntryState state) {
307 SetCellState(&cell_, state);
308 }
309
310 void EntryCell::SetGroup(EntryGroup group) {
311 SetCellGroup(&cell_, group);
312 }
313
314 void EntryCell::SetReuse(int count) {
315 SetCellReuse(&cell_, count);
316 }
317
318 void EntryCell::SetTimestamp(int timestamp) {
319 SetCellTimestamp(&cell_, timestamp);
320 }
321
322 // Static.
323 EntryCell EntryCell::GetEntryCellForTest(int32_t cell_num,
324 uint32_t hash,
325 Addr address,
326 IndexCell* cell,
327 bool small_table) {
328 if (cell) {
329 EntryCell entry_cell(cell_num, hash, *cell, small_table);
330 return entry_cell;
331 }
332
333 return EntryCell(cell_num, hash, address, small_table);
334 }
335
336 void EntryCell::SerializaForTest(IndexCell* destination) {
337 FixSum();
338 Serialize(destination);
339 }
340
341 EntryCell::EntryCell() : cell_num_(0), hash_(0), small_table_(false) {
342 cell_.Clear();
343 }
344
345 EntryCell::EntryCell(int32_t cell_num,
346 uint32_t hash,
347 Addr address,
348 bool small_table)
349 : cell_num_(cell_num), hash_(hash), small_table_(small_table) {
350 DCHECK(IsValidAddress(address) || !address.value());
351
352 cell_.Clear();
353 SetCellState(&cell_, ENTRY_NEW);
354 SetCellGroup(&cell_, ENTRY_NO_USE);
355 if (small_table) {
356 DCHECK(address.FileNumber() == kEntriesFile ||
357 address.FileNumber() == kEvictedEntriesFile);
358 SetCellSmallTableLocation(&cell_, address.start_block());
359 SetCellSmallTableId(&cell_, hash >> kSmallTableHashShift);
360 } else {
361 uint32_t location = address.FileNumber() << 16 | address.start_block();
362 SetCellLocation(&cell_, location);
363 SetCellId(&cell_, hash >> kHashShift);
364 }
365 }
366
367 EntryCell::EntryCell(int32_t cell_num,
368 uint32_t hash,
369 const IndexCell& cell,
370 bool small_table)
371 : cell_num_(cell_num),
372 hash_(hash),
373 cell_(cell),
374 small_table_(small_table) {}
375
376 void EntryCell::FixSum() {
377 SetCellSum(&cell_, CalculateCellSum(cell_));
378 }
379
380 uint32_t EntryCell::GetLocation() const {
381 if (small_table_)
382 return GetCellSmallTableLocation(cell_);
383
384 return GetCellLocation(cell_);
385 }
386
387 uint32_t EntryCell::RecomputeHash() {
388 if (small_table_) {
389 hash_ &= (1 << kSmallTableHashShift) - 1;
390 hash_ |= GetCellSmallTableId(cell_) << kSmallTableHashShift;
391 return hash_;
392 }
393
394 hash_ &= (1 << kHashShift) - 1;
395 hash_ |= GetCellId(cell_) << kHashShift;
396 return hash_;
397 }
398
399 void EntryCell::Serialize(IndexCell* destination) const {
400 *destination = cell_;
401 }
402
403 EntrySet::EntrySet() : evicted_count(0), current(0) {
404 }
405
406 EntrySet::EntrySet(const EntrySet& other) = default;
407
408 EntrySet::~EntrySet() {
409 }
410
411 IndexIterator::IndexIterator() {
412 }
413
414 IndexIterator::~IndexIterator() {
415 }
416
417 IndexTableInitData::IndexTableInitData() {
418 }
419
420 IndexTableInitData::~IndexTableInitData() {
421 }
422
423 // -----------------------------------------------------------------------
424
425 IndexTable::IndexTable(IndexTableBackend* backend)
426 : backend_(backend),
427 header_(NULL),
428 main_table_(NULL),
429 extra_table_(NULL),
430 modified_(false),
431 small_table_(false) {
432 }
433
434 IndexTable::~IndexTable() {
435 }
436
437 // For a general description of the index tables see:
438 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/ disk-cache-v3#TOC-Index
439 //
440 // The index is split between two tables: the main_table_ and the extra_table_.
441 // The main table can grow only by doubling its number of cells, while the
442 // extra table can grow slowly, because it only contain cells that overflow
443 // from the main table. In order to locate a given cell, part of the hash is
444 // used directly as an index into the main table; once that bucket is located,
445 // all cells with that partial hash (i.e., belonging to that bucket) are
446 // inspected, and if present, the next bucket (located on the extra table) is
447 // then located. For more information on bucket chaining see:
448 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/ disk-cache-v3#TOC-Buckets
449 //
450 // There are two cases when increasing the size:
451 // - Doubling the size of the main table
452 // - Adding more entries to the extra table
453 //
454 // For example, consider a 64k main table with 8k cells on the extra table (for
455 // a total of 72k cells). Init can be called to add another 8k cells at the end
456 // (grow to 80k cells). When the size of the extra table approaches 64k, Init
457 // can be called to double the main table (to 128k) and go back to a small extra
458 // table.
459 void IndexTable::Init(IndexTableInitData* params) {
460 bool growing = header_ != NULL;
461 std::unique_ptr<IndexBucket[]> old_extra_table;
462 header_ = &params->index_bitmap->header;
463
464 if (params->main_table) {
465 if (main_table_) {
466 // This is doubling the size of main table.
467 DCHECK_EQ(base::bits::Log2Floor(header_->table_len),
468 base::bits::Log2Floor(backup_header_->table_len) + 1);
469 int extra_size = (header()->max_bucket - mask_) * kCellsPerBucket;
470 DCHECK_GE(extra_size, 0);
471
472 // Doubling the size implies deleting the extra table and moving as many
473 // cells as we can to the main table, so we first copy the old one. This
474 // is not required when just growing the extra table because we don't
475 // move any cell in that case.
476 old_extra_table.reset(new IndexBucket[extra_size]);
477 memcpy(old_extra_table.get(), extra_table_,
478 extra_size * sizeof(IndexBucket));
479 memset(params->extra_table, 0, extra_size * sizeof(IndexBucket));
480 }
481 main_table_ = params->main_table;
482 }
483 DCHECK(main_table_);
484 extra_table_ = params->extra_table;
485
486 // extra_bits_ is really measured against table-size specific values.
487 const int kMaxAbsoluteExtraBits = 12; // From smallest to largest table.
488 const int kMaxExtraBitsSmallTable = 6; // From smallest to 64K table.
489
490 extra_bits_ = base::bits::Log2Floor(header_->table_len) -
491 base::bits::Log2Floor(kBaseTableLen);
492 DCHECK_GE(extra_bits_, 0);
493 DCHECK_LT(extra_bits_, kMaxAbsoluteExtraBits);
494
495 // Note that following the previous code the constants could be derived as
496 // kMaxAbsoluteExtraBits = base::bits::Log2Floor(max table len) -
497 // base::bits::Log2Floor(kBaseTableLen);
498 // = 22 - base::bits::Log2Floor(1024) = 22 - 10;
499 // kMaxExtraBitsSmallTable = base::bits::Log2Floor(max 16 bit table) - 10.
500
501 mask_ = ((kBaseTableLen / kCellsPerBucket) << extra_bits_) - 1;
502 small_table_ = extra_bits_ < kMaxExtraBitsSmallTable;
503 if (!small_table_)
504 extra_bits_ -= kMaxExtraBitsSmallTable;
505
506 // table_len keeps the max number of cells stored by the index. We need a
507 // bitmap with 1 bit per cell, and that bitmap has num_words 32-bit words.
508 int num_words = (header_->table_len + 31) / 32;
509
510 if (old_extra_table) {
511 // All the cells from the extra table are moving to the new tables so before
512 // creating the bitmaps, clear the part of the bitmap referring to the extra
513 // table.
514 int old_main_table_bit_words = ((mask_ >> 1) + 1) * kCellsPerBucket / 32;
515 DCHECK_GT(num_words, old_main_table_bit_words);
516 memset(params->index_bitmap->bitmap + old_main_table_bit_words, 0,
517 (num_words - old_main_table_bit_words) * sizeof(int32_t));
518
519 DCHECK(growing);
520 int old_num_words = (backup_header_.get()->table_len + 31) / 32;
521 DCHECK_GT(old_num_words, old_main_table_bit_words);
522 memset(backup_bitmap_storage_.get() + old_main_table_bit_words, 0,
523 (old_num_words - old_main_table_bit_words) * sizeof(int32_t));
524 }
525 bitmap_.reset(new Bitmap(params->index_bitmap->bitmap, header_->table_len,
526 num_words));
527
528 if (growing) {
529 int old_num_words = (backup_header_.get()->table_len + 31) / 32;
530 DCHECK_GE(num_words, old_num_words);
531 std::unique_ptr<uint32_t[]> storage(new uint32_t[num_words]);
532 memcpy(storage.get(), backup_bitmap_storage_.get(),
533 old_num_words * sizeof(int32_t));
534 memset(storage.get() + old_num_words, 0,
535 (num_words - old_num_words) * sizeof(int32_t));
536
537 backup_bitmap_storage_.swap(storage);
538 backup_header_->table_len = header_->table_len;
539 } else {
540 backup_bitmap_storage_.reset(params->backup_bitmap.release());
541 backup_header_.reset(params->backup_header.release());
542 }
543
544 num_words = (backup_header_->table_len + 31) / 32;
545 backup_bitmap_.reset(new Bitmap(backup_bitmap_storage_.get(),
546 backup_header_->table_len, num_words));
547 if (old_extra_table)
548 MoveCells(old_extra_table.get());
549
550 if (small_table_)
551 DCHECK(header_->flags & SMALL_CACHE);
552
553 // All tables and backups are needed for operation.
554 DCHECK(main_table_);
555 DCHECK(extra_table_);
556 DCHECK(bitmap_.get());
557 }
558
559 void IndexTable::Shutdown() {
560 header_ = NULL;
561 main_table_ = NULL;
562 extra_table_ = NULL;
563 bitmap_.reset();
564 backup_bitmap_.reset();
565 backup_header_.reset();
566 backup_bitmap_storage_.reset();
567 modified_ = false;
568 }
569
570 // The general method for locating cells is to:
571 // 1. Get the first bucket. This usually means directly indexing the table (as
572 // this method does), or iterating through all possible buckets.
573 // 2. Iterate through all the cells in that first bucket.
574 // 3. If there is a linked bucket, locate it directly in the extra table.
575 // 4. Go back to 2, as needed.
576 //
577 // One consequence of this pattern is that we never start looking at buckets in
578 // the extra table, unless we are following a link from the main table.
579 EntrySet IndexTable::LookupEntries(uint32_t hash) {
580 EntrySet entries;
581 int bucket_num = static_cast<int>(hash & mask_);
582 IndexBucket* bucket = &main_table_[bucket_num];
583 do {
584 for (int i = 0; i < kCellsPerBucket; i++) {
585 IndexCell* current_cell = &bucket->cells[i];
586 if (!GetLocation(*current_cell))
587 continue;
588 if (!SanityCheck(*current_cell)) {
589 NOTREACHED();
590 int cell_num = bucket_num * kCellsPerBucket + i;
591 current_cell->Clear();
592 bitmap_->Set(cell_num, false);
593 backup_bitmap_->Set(cell_num, false);
594 modified_ = true;
595 continue;
596 }
597 int cell_num = bucket_num * kCellsPerBucket + i;
598 if (MisplacedHash(*current_cell, hash)) {
599 HandleMisplacedCell(current_cell, cell_num, hash & mask_);
600 } else if (IsHashMatch(*current_cell, hash)) {
601 EntryCell entry_cell(cell_num, hash, *current_cell, small_table_);
602 CheckState(entry_cell);
603 if (entry_cell.GetState() != ENTRY_DELETED) {
604 entries.cells.push_back(entry_cell);
605 if (entry_cell.GetGroup() == ENTRY_EVICTED)
606 entries.evicted_count++;
607 }
608 }
609 }
610 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
611 &bucket);
612 } while (bucket_num);
613 return entries;
614 }
615
616 EntryCell IndexTable::CreateEntryCell(uint32_t hash, Addr address) {
617 DCHECK(IsValidAddress(address));
618 DCHECK(address.FileNumber() || address.start_block());
619
620 int bucket_num = static_cast<int>(hash & mask_);
621 int cell_num = 0;
622 IndexBucket* bucket = &main_table_[bucket_num];
623 IndexCell* current_cell = NULL;
624 bool found = false;
625 do {
626 for (int i = 0; i < kCellsPerBucket && !found; i++) {
627 current_cell = &bucket->cells[i];
628 if (!GetLocation(*current_cell)) {
629 cell_num = bucket_num * kCellsPerBucket + i;
630 found = true;
631 }
632 }
633 if (found)
634 break;
635 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
636 &bucket);
637 } while (bucket_num);
638
639 if (!found) {
640 bucket_num = NewExtraBucket();
641 if (bucket_num) {
642 cell_num = bucket_num * kCellsPerBucket;
643 bucket->next = cell_num;
644 bucket = &extra_table_[bucket_num - (mask_ + 1)];
645 bucket->hash = hash & mask_;
646 found = true;
647 } else {
648 // address 0 is a reserved value, and the caller interprets it as invalid.
649 address.set_value(0);
650 }
651 }
652
653 EntryCell entry_cell(cell_num, hash, address, small_table_);
654 if (address.file_type() == BLOCK_EVICTED)
655 entry_cell.SetGroup(ENTRY_EVICTED);
656 else
657 entry_cell.SetGroup(ENTRY_NO_USE);
658 Save(&entry_cell);
659
660 if (found) {
661 bitmap_->Set(cell_num, true);
662 backup_bitmap_->Set(cell_num, true);
663 header()->used_cells++;
664 modified_ = true;
665 }
666
667 return entry_cell;
668 }
669
670 EntryCell IndexTable::FindEntryCell(uint32_t hash, Addr address) {
671 return FindEntryCellImpl(hash, address, false);
672 }
673
674 int IndexTable::CalculateTimestamp(Time time) {
675 TimeDelta delta = time - Time::FromInternalValue(header_->base_time);
676 return std::max(delta.InMinutes(), 0);
677 }
678
679 base::Time IndexTable::TimeFromTimestamp(int timestamp) {
680 return Time::FromInternalValue(header_->base_time) +
681 TimeDelta::FromMinutes(timestamp);
682 }
683
684 void IndexTable::SetSate(uint32_t hash, Addr address, EntryState state) {
685 EntryCell cell = FindEntryCellImpl(hash, address, state == ENTRY_FREE);
686 if (!cell.IsValid()) {
687 NOTREACHED();
688 return;
689 }
690
691 EntryState old_state = cell.GetState();
692 switch (state) {
693 case ENTRY_FREE:
694 DCHECK_EQ(old_state, ENTRY_DELETED);
695 break;
696 case ENTRY_NEW:
697 DCHECK_EQ(old_state, ENTRY_FREE);
698 break;
699 case ENTRY_OPEN:
700 DCHECK_EQ(old_state, ENTRY_USED);
701 break;
702 case ENTRY_MODIFIED:
703 DCHECK_EQ(old_state, ENTRY_OPEN);
704 break;
705 case ENTRY_DELETED:
706 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN ||
707 old_state == ENTRY_MODIFIED);
708 break;
709 case ENTRY_USED:
710 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN ||
711 old_state == ENTRY_MODIFIED);
712 break;
713 case ENTRY_FIXING:
714 break;
715 };
716
717 modified_ = true;
718 if (state == ENTRY_DELETED) {
719 bitmap_->Set(cell.cell_num(), false);
720 backup_bitmap_->Set(cell.cell_num(), false);
721 } else if (state == ENTRY_FREE) {
722 cell.Clear();
723 Write(cell);
724 header()->used_cells--;
725 return;
726 }
727 cell.SetState(state);
728
729 Save(&cell);
730 }
731
732 void IndexTable::UpdateTime(uint32_t hash, Addr address, base::Time current) {
733 EntryCell cell = FindEntryCell(hash, address);
734 if (!cell.IsValid())
735 return;
736
737 int minutes = CalculateTimestamp(current);
738
739 // Keep about 3 months of headroom.
740 const int kMaxTimestamp = (1 << 20) - 60 * 24 * 90;
741 if (minutes > kMaxTimestamp) {
742 // TODO(rvargas):
743 // Update header->old_time and trigger a timer
744 // Rebaseline timestamps and don't update sums
745 // Start a timer (about 2 backups)
746 // fix all ckecksums and trigger another timer
747 // update header->old_time because rebaseline is done.
748 minutes = std::min(minutes, (1 << 20) - 1);
749 }
750
751 cell.SetTimestamp(minutes);
752 Save(&cell);
753 }
754
755 void IndexTable::Save(EntryCell* cell) {
756 cell->FixSum();
757 Write(*cell);
758 }
759
760 void IndexTable::GetOldest(IndexIterator* no_use,
761 IndexIterator* low_use,
762 IndexIterator* high_use) {
763 no_use->forward = true;
764 low_use->forward = true;
765 high_use->forward = true;
766 InitIterator(no_use);
767 InitIterator(low_use);
768 InitIterator(high_use);
769
770 WalkTables(-1, no_use, low_use, high_use);
771 }
772
773 bool IndexTable::GetNextCells(IndexIterator* iterator) {
774 int current_time = iterator->timestamp;
775 InitIterator(iterator);
776
777 WalkTables(current_time, iterator, iterator, iterator);
778 return !iterator->cells.empty();
779 }
780
781 void IndexTable::OnBackupTimer() {
782 if (!modified_)
783 return;
784
785 int num_words = (header_->table_len + 31) / 32;
786 int num_bytes = num_words * 4 + static_cast<int>(sizeof(*header_));
787 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(num_bytes));
788 memcpy(buffer->data(), header_, sizeof(*header_));
789 memcpy(buffer->data() + sizeof(*header_), backup_bitmap_storage_.get(),
790 num_words * 4);
791 backend_->SaveIndex(buffer.get(), num_bytes);
792 modified_ = false;
793 }
794
795 // -----------------------------------------------------------------------
796
797 EntryCell IndexTable::FindEntryCellImpl(uint32_t hash,
798 Addr address,
799 bool allow_deleted) {
800 int bucket_num = static_cast<int>(hash & mask_);
801 IndexBucket* bucket = &main_table_[bucket_num];
802 do {
803 for (int i = 0; i < kCellsPerBucket; i++) {
804 IndexCell* current_cell = &bucket->cells[i];
805 if (!GetLocation(*current_cell))
806 continue;
807 DCHECK(SanityCheck(*current_cell));
808 if (IsHashMatch(*current_cell, hash)) {
809 // We have a match.
810 int cell_num = bucket_num * kCellsPerBucket + i;
811 EntryCell entry_cell(cell_num, hash, *current_cell, small_table_);
812 if (entry_cell.GetAddress() != address)
813 continue;
814
815 if (!allow_deleted && entry_cell.GetState() == ENTRY_DELETED)
816 continue;
817
818 return entry_cell;
819 }
820 }
821 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
822 &bucket);
823 } while (bucket_num);
824 return EntryCell();
825 }
826
827 void IndexTable::CheckState(const EntryCell& cell) {
828 int current_state = cell.GetState();
829 if (current_state != ENTRY_FIXING) {
830 bool present = ((current_state & 3) != 0); // Look at the last two bits.
831 if (present != bitmap_->Get(cell.cell_num()) ||
832 present != backup_bitmap_->Get(cell.cell_num())) {
833 // There's a mismatch.
834 if (current_state == ENTRY_DELETED) {
835 // We were in the process of deleting this entry. Finish now.
836 backend_->DeleteCell(cell);
837 } else {
838 current_state = ENTRY_FIXING;
839 EntryCell bad_cell(cell);
840 bad_cell.SetState(ENTRY_FIXING);
841 Save(&bad_cell);
842 }
843 }
844 }
845
846 if (current_state == ENTRY_FIXING)
847 backend_->FixCell(cell);
848 }
849
850 void IndexTable::Write(const EntryCell& cell) {
851 IndexBucket* bucket = NULL;
852 int bucket_num = cell.cell_num() / kCellsPerBucket;
853 if (bucket_num < static_cast<int32_t>(mask_ + 1)) {
854 bucket = &main_table_[bucket_num];
855 } else {
856 DCHECK_LE(bucket_num, header()->max_bucket);
857 bucket = &extra_table_[bucket_num - (mask_ + 1)];
858 }
859
860 int cell_number = cell.cell_num() % kCellsPerBucket;
861 if (GetLocation(bucket->cells[cell_number]) && cell.GetLocation()) {
862 DCHECK_EQ(cell.GetLocation(),
863 GetLocation(bucket->cells[cell_number]));
864 }
865 cell.Serialize(&bucket->cells[cell_number]);
866 }
867
868 int IndexTable::NewExtraBucket() {
869 int safe_window = (header()->table_len < kNumExtraBlocks * 2) ?
870 kNumExtraBlocks / 4 : kNumExtraBlocks;
871 if (header()->table_len - header()->max_bucket * kCellsPerBucket <
872 safe_window) {
873 backend_->GrowIndex();
874 }
875
876 if (header()->max_bucket * kCellsPerBucket ==
877 header()->table_len - kCellsPerBucket) {
878 return 0;
879 }
880
881 header()->max_bucket++;
882 return header()->max_bucket;
883 }
884
885 void IndexTable::WalkTables(int limit_time,
886 IndexIterator* no_use,
887 IndexIterator* low_use,
888 IndexIterator* high_use) {
889 header_->num_no_use_entries = 0;
890 header_->num_low_use_entries = 0;
891 header_->num_high_use_entries = 0;
892 header_->num_evicted_entries = 0;
893
894 for (int i = 0; i < static_cast<int32_t>(mask_ + 1); i++) {
895 int bucket_num = i;
896 IndexBucket* bucket = &main_table_[i];
897 do {
898 UpdateFromBucket(bucket, i, limit_time, no_use, low_use, high_use);
899
900 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
901 &bucket);
902 } while (bucket_num);
903 }
904 header_->num_entries = header_->num_no_use_entries +
905 header_->num_low_use_entries +
906 header_->num_high_use_entries +
907 header_->num_evicted_entries;
908 modified_ = true;
909 }
910
911 void IndexTable::UpdateFromBucket(IndexBucket* bucket, int bucket_hash,
912 int limit_time,
913 IndexIterator* no_use,
914 IndexIterator* low_use,
915 IndexIterator* high_use) {
916 for (int i = 0; i < kCellsPerBucket; i++) {
917 IndexCell& current_cell = bucket->cells[i];
918 if (!GetLocation(current_cell))
919 continue;
920 DCHECK(SanityCheck(current_cell));
921 if (!IsNormalState(current_cell))
922 continue;
923
924 EntryCell entry_cell(0, GetFullHash(current_cell, bucket_hash),
925 current_cell, small_table_);
926 switch (GetCellGroup(current_cell)) {
927 case ENTRY_NO_USE:
928 UpdateIterator(entry_cell, limit_time, no_use);
929 header_->num_no_use_entries++;
930 break;
931 case ENTRY_LOW_USE:
932 UpdateIterator(entry_cell, limit_time, low_use);
933 header_->num_low_use_entries++;
934 break;
935 case ENTRY_HIGH_USE:
936 UpdateIterator(entry_cell, limit_time, high_use);
937 header_->num_high_use_entries++;
938 break;
939 case ENTRY_EVICTED:
940 header_->num_evicted_entries++;
941 break;
942 default:
943 NOTREACHED();
944 }
945 }
946 }
947
948 // This code is only called from Init() so the internal state of this object is
949 // in flux (this method is performing the last steps of re-initialization). As
950 // such, random methods are not supposed to work at this point, so whatever this
951 // method calls should be relatively well controlled and it may require some
952 // degree of "stable state faking".
953 void IndexTable::MoveCells(IndexBucket* old_extra_table) {
954 int max_hash = (mask_ + 1) / 2;
955 int max_bucket = header()->max_bucket;
956 header()->max_bucket = mask_;
957 int used_cells = header()->used_cells;
958
959 // Consider a large cache: a cell stores the upper 18 bits of the hash
960 // (h >> 14). If the table is say 8 times the original size (growing from 4x),
961 // the bit that we are interested in would be the 3rd bit of the stored value,
962 // in other words 'multiplier' >> 1.
963 uint32_t new_bit = (1 << extra_bits_) >> 1;
964
965 std::unique_ptr<IndexBucket[]> old_main_table;
966 IndexBucket* source_table = main_table_;
967 bool upgrade_format = !extra_bits_;
968 if (upgrade_format) {
969 // This method should deal with migrating a small table to a big one. Given
970 // that the first thing to do is read the old table, set small_table_ for
971 // the size of the old table. Now, when moving a cell, the result cannot be
972 // placed in the old table or we will end up reading it again and attempting
973 // to move it, so we have to copy the whole table at once.
974 DCHECK(!small_table_);
975 small_table_ = true;
976 old_main_table.reset(new IndexBucket[max_hash]);
977 memcpy(old_main_table.get(), main_table_, max_hash * sizeof(IndexBucket));
978 memset(main_table_, 0, max_hash * sizeof(IndexBucket));
979 source_table = old_main_table.get();
980 }
981
982 for (int i = 0; i < max_hash; i++) {
983 int bucket_num = i;
984 IndexBucket* bucket = &source_table[i];
985 do {
986 for (int j = 0; j < kCellsPerBucket; j++) {
987 IndexCell& current_cell = bucket->cells[j];
988 if (!GetLocation(current_cell))
989 continue;
990 DCHECK(SanityCheck(current_cell));
991 if (bucket_num == i) {
992 if (upgrade_format || (GetHashValue(current_cell) & new_bit)) {
993 // Move this cell to the upper half of the table.
994 MoveSingleCell(&current_cell, bucket_num * kCellsPerBucket + j, i,
995 true);
996 }
997 } else {
998 // All cells on extra buckets have to move.
999 MoveSingleCell(&current_cell, bucket_num * kCellsPerBucket + j, i,
1000 true);
1001 }
1002 }
1003
1004 // There is no need to clear the old bucket->next value because if falls
1005 // within the main table so it will be fixed when attempting to follow
1006 // the link.
1007 bucket_num = GetNextBucket(max_hash, max_bucket, old_extra_table,
1008 &bucket);
1009 } while (bucket_num);
1010 }
1011
1012 DCHECK_EQ(header()->used_cells, used_cells);
1013
1014 if (upgrade_format) {
1015 small_table_ = false;
1016 header()->flags &= ~SMALL_CACHE;
1017 }
1018 }
1019
1020 void IndexTable::MoveSingleCell(IndexCell* current_cell, int cell_num,
1021 int main_table_index, bool growing) {
1022 uint32_t hash = GetFullHash(*current_cell, main_table_index);
1023 EntryCell old_cell(cell_num, hash, *current_cell, small_table_);
1024
1025 // This method may be called when moving entries from a small table to a
1026 // normal table. In that case, the caller (MoveCells) has to read the old
1027 // table, so it needs small_table_ set to true, but this method needs to
1028 // write to the new table so small_table_ has to be set to false, and the
1029 // value restored to true before returning.
1030 bool upgrade_format = !extra_bits_ && growing;
1031 if (upgrade_format)
1032 small_table_ = false;
1033 EntryCell new_cell = CreateEntryCell(hash, old_cell.GetAddress());
1034
1035 if (!new_cell.IsValid()) {
1036 // We'll deal with this entry later.
1037 if (upgrade_format)
1038 small_table_ = true;
1039 return;
1040 }
1041
1042 new_cell.SetState(old_cell.GetState());
1043 new_cell.SetGroup(old_cell.GetGroup());
1044 new_cell.SetReuse(old_cell.GetReuse());
1045 new_cell.SetTimestamp(old_cell.GetTimestamp());
1046 Save(&new_cell);
1047 modified_ = true;
1048 if (upgrade_format)
1049 small_table_ = true;
1050
1051 if (old_cell.GetState() == ENTRY_DELETED) {
1052 bitmap_->Set(new_cell.cell_num(), false);
1053 backup_bitmap_->Set(new_cell.cell_num(), false);
1054 }
1055
1056 if (!growing || cell_num / kCellsPerBucket == main_table_index) {
1057 // Only delete entries that live on the main table.
1058 if (!upgrade_format) {
1059 old_cell.Clear();
1060 Write(old_cell);
1061 }
1062
1063 if (cell_num != new_cell.cell_num()) {
1064 bitmap_->Set(old_cell.cell_num(), false);
1065 backup_bitmap_->Set(old_cell.cell_num(), false);
1066 }
1067 }
1068 header()->used_cells--;
1069 }
1070
1071 void IndexTable::HandleMisplacedCell(IndexCell* current_cell, int cell_num,
1072 int main_table_index) {
1073 NOTREACHED(); // No unit tests yet.
1074
1075 // The cell may be misplaced, or a duplicate cell exists with this data.
1076 uint32_t hash = GetFullHash(*current_cell, main_table_index);
1077 MoveSingleCell(current_cell, cell_num, main_table_index, false);
1078
1079 // Now look for a duplicate cell.
1080 CheckBucketList(hash & mask_);
1081 }
1082
1083 void IndexTable::CheckBucketList(int bucket_num) {
1084 typedef std::pair<int, EntryGroup> AddressAndGroup;
1085 std::set<AddressAndGroup> entries;
1086 IndexBucket* bucket = &main_table_[bucket_num];
1087 int bucket_hash = bucket_num;
1088 do {
1089 for (int i = 0; i < kCellsPerBucket; i++) {
1090 IndexCell* current_cell = &bucket->cells[i];
1091 if (!GetLocation(*current_cell))
1092 continue;
1093 if (!SanityCheck(*current_cell)) {
1094 NOTREACHED();
1095 current_cell->Clear();
1096 continue;
1097 }
1098 int cell_num = bucket_num * kCellsPerBucket + i;
1099 EntryCell cell(cell_num, GetFullHash(*current_cell, bucket_hash),
1100 *current_cell, small_table_);
1101 if (!entries.insert(std::make_pair(cell.GetAddress().value(),
1102 cell.GetGroup())).second) {
1103 current_cell->Clear();
1104 continue;
1105 }
1106 CheckState(cell);
1107 }
1108
1109 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
1110 &bucket);
1111 } while (bucket_num);
1112 }
1113
1114 uint32_t IndexTable::GetLocation(const IndexCell& cell) {
1115 if (small_table_)
1116 return GetCellSmallTableLocation(cell);
1117
1118 return GetCellLocation(cell);
1119 }
1120
1121 uint32_t IndexTable::GetHashValue(const IndexCell& cell) {
1122 if (small_table_)
1123 return GetCellSmallTableId(cell);
1124
1125 return GetCellId(cell);
1126 }
1127
1128 uint32_t IndexTable::GetFullHash(const IndexCell& cell, uint32_t lower_part) {
1129 // It is OK for the high order bits of lower_part to overlap with the stored
1130 // part of the hash.
1131 if (small_table_)
1132 return (GetCellSmallTableId(cell) << kSmallTableHashShift) | lower_part;
1133
1134 return (GetCellId(cell) << kHashShift) | lower_part;
1135 }
1136
1137 // All the bits stored in the cell should match the provided hash.
1138 bool IndexTable::IsHashMatch(const IndexCell& cell, uint32_t hash) {
1139 hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift;
1140 return GetHashValue(cell) == hash;
1141 }
1142
1143 bool IndexTable::MisplacedHash(const IndexCell& cell, uint32_t hash) {
1144 if (!extra_bits_)
1145 return false;
1146
1147 uint32_t mask = (1 << extra_bits_) - 1;
1148 hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift;
1149 return (GetHashValue(cell) & mask) != (hash & mask);
1150 }
1151
1152 } // namespace disk_cache
OLDNEW
« no previous file with comments | « net/disk_cache/blockfile/index_table_v3.h ('k') | net/disk_cache/blockfile/index_table_v3_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698