Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(231)

Side by Side Diff: pkg/fixnum/lib/src/int64.dart

Issue 1909043004: Moved pkg/fixnum to github (Closed) Base URL: https://github.com/dart-lang/sdk.git@master
Patch Set: Created 4 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « pkg/fixnum/lib/src/int32.dart ('k') | pkg/fixnum/lib/src/intx.dart » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
2 // for details. All rights reserved. Use of this source code is governed by a
3 // BSD-style license that can be found in the LICENSE file.
4
5 part of fixnum;
6
7 /**
8 * An immutable 64-bit signed integer, in the range [-2^63, 2^63 - 1].
9 * Arithmetic operations may overflow in order to maintain this range.
10 */
11 class Int64 implements IntX {
12
13 // A 64-bit integer is represented internally as three non-negative
14 // integers, storing the 22 low, 22 middle, and 20 high bits of the
15 // 64-bit value. _l (low) and _m (middle) are in the range
16 // [0, 2^22 - 1] and _h (high) is in the range [0, 2^20 - 1].
17 //
18 // The values being assigned to _l, _m and _h in initialization are masked to
19 // force them into the above ranges. Sometimes we know that the value is a
20 // small non-negative integer but the dart2js compiler can't infer that, so a
21 // few of the masking operations are not needed for correctness but are
22 // helpful for dart2js code quality.
23
24 final int _l, _m, _h;
25
26 // Note: several functions require _BITS == 22 -- do not change this value.
27 static const int _BITS = 22;
28 static const int _BITS01 = 44; // 2 * _BITS
29 static const int _BITS2 = 20; // 64 - _BITS01
30 static const int _MASK = 4194303; // (1 << _BITS) - 1
31 static const int _MASK2 = 1048575; // (1 << _BITS2) - 1
32 static const int _SIGN_BIT = 19; // _BITS2 - 1
33 static const int _SIGN_BIT_MASK = 1 << _SIGN_BIT;
34
35 /**
36 * The maximum positive value attainable by an [Int64], namely
37 * 9,223,372,036,854,775,807.
38 */
39 static const Int64 MAX_VALUE = const Int64._bits(_MASK, _MASK, _MASK2 >> 1);
40
41 /**
42 * The minimum positive value attainable by an [Int64], namely
43 * -9,223,372,036,854,775,808.
44 */
45 static const Int64 MIN_VALUE = const Int64._bits(0, 0, _SIGN_BIT_MASK);
46
47 /**
48 * An [Int64] constant equal to 0.
49 */
50 static const Int64 ZERO = const Int64._bits(0, 0, 0);
51
52 /**
53 * An [Int64] constant equal to 1.
54 */
55 static const Int64 ONE = const Int64._bits(1, 0, 0);
56
57 /**
58 * An [Int64] constant equal to 2.
59 */
60 static const Int64 TWO = const Int64._bits(2, 0, 0);
61
62 /**
63 * Constructs an [Int64] with a given bitwise representation. No validation
64 * is performed.
65 */
66 const Int64._bits(int this._l, int this._m, int this._h);
67
68 /**
69 * Parses a [String] in a given [radix] between 2 and 36 and returns an
70 * [Int64].
71 */
72 static Int64 parseRadix(String s, int radix) {
73 return _parseRadix(s, Int32._validateRadix(radix));
74 }
75
76 static Int64 _parseRadix(String s, int radix) {
77 int i = 0;
78 bool negative = false;
79 if (s[0] == '-') {
80 negative = true;
81 i++;
82 }
83 int d0 = 0, d1 = 0, d2 = 0; // low, middle, high components.
84 for (; i < s.length; i++) {
85 int c = s.codeUnitAt(i);
86 int digit = Int32._decodeDigit(c);
87 if (digit < 0 || digit >= radix) {
88 throw new FormatException("Non-radix char code: $c");
89 }
90
91 // [radix] and [digit] are at most 6 bits, component is 22, so we can
92 // multiply and add within 30 bit temporary values.
93 d0 = d0 * radix + digit;
94 int carry = d0 >> _BITS;
95 d0 = _MASK & d0;
96
97 d1 = d1 * radix + carry;
98 carry = d1 >> _BITS;
99 d1 = _MASK & d1;
100
101 d2 = d2 * radix + carry;
102 d2 = _MASK2 & d2;
103 }
104
105 if (negative) return _negate(d0, d1, d2);
106
107 return Int64._masked(d0, d1, d2);
108 }
109
110 /**
111 * Parses a decimal [String] and returns an [Int64].
112 */
113 static Int64 parseInt(String s) => _parseRadix(s, 10);
114
115 /**
116 * Parses a hexadecimal [String] and returns an [Int64].
117 */
118 static Int64 parseHex(String s) => _parseRadix(s, 16);
119
120 //
121 // Public constructors
122 //
123
124 /**
125 * Constructs an [Int64] with a given [int] value; zero by default.
126 */
127 factory Int64([int value=0]) {
128 int v0 = 0, v1 = 0, v2 = 0;
129 bool negative = false;
130 if (value < 0) {
131 negative = true;
132 value = -value - 1;
133 }
134 // Avoid using bitwise operations that in JavaScript coerce their input to
135 // 32 bits.
136 v2 = value ~/ 17592186044416; // 2^44
137 value -= v2 * 17592186044416;
138 v1 = value ~/ 4194304; // 2^22
139 value -= v1 * 4194304;
140 v0 = value;
141
142 if (negative) {
143 v0 = ~v0;
144 v1 = ~v1;
145 v2 = ~v2;
146 }
147 return Int64._masked(v0, v1, v2);
148 }
149
150 factory Int64.fromBytes(List<int> bytes) {
151 int top = bytes[7] & 0xff;
152 top <<= 8;
153 top |= bytes[6] & 0xff;
154 top <<= 8;
155 top |= bytes[5] & 0xff;
156 top <<= 8;
157 top |= bytes[4] & 0xff;
158
159 int bottom = bytes[3] & 0xff;
160 bottom <<= 8;
161 bottom |= bytes[2] & 0xff;
162 bottom <<= 8;
163 bottom |= bytes[1] & 0xff;
164 bottom <<= 8;
165 bottom |= bytes[0] & 0xff;
166
167 return new Int64.fromInts(top, bottom);
168 }
169
170 factory Int64.fromBytesBigEndian(List<int> bytes) {
171 int top = bytes[0] & 0xff;
172 top <<= 8;
173 top |= bytes[1] & 0xff;
174 top <<= 8;
175 top |= bytes[2] & 0xff;
176 top <<= 8;
177 top |= bytes[3] & 0xff;
178
179 int bottom = bytes[4] & 0xff;
180 bottom <<= 8;
181 bottom |= bytes[5] & 0xff;
182 bottom <<= 8;
183 bottom |= bytes[6] & 0xff;
184 bottom <<= 8;
185 bottom |= bytes[7] & 0xff;
186
187 return new Int64.fromInts(top, bottom);
188 }
189
190 /**
191 * Constructs an [Int64] from a pair of 32-bit integers having the value
192 * [:((top & 0xffffffff) << 32) | (bottom & 0xffffffff):].
193 */
194 factory Int64.fromInts(int top, int bottom) {
195 top &= 0xffffffff;
196 bottom &= 0xffffffff;
197 int d0 = _MASK & bottom;
198 int d1 = ((0xfff & top) << 10) | (0x3ff & (bottom >> _BITS));
199 int d2 = _MASK2 & (top >> 12);
200 return Int64._masked(d0, d1, d2);
201 }
202
203 // Returns the [Int64] representation of the specified value. Throws
204 // [ArgumentError] for non-integer arguments.
205 static Int64 _promote(value) {
206 if (value is Int64) {
207 return value;
208 } else if (value is int) {
209 return new Int64(value);
210 } else if (value is Int32) {
211 return value.toInt64();
212 }
213 throw new ArgumentError.value(value);
214 }
215
216 Int64 operator +(other) {
217 Int64 o = _promote(other);
218 int sum0 = _l + o._l;
219 int sum1 = _m + o._m + (sum0 >> _BITS);
220 int sum2 = _h + o._h + (sum1 >> _BITS);
221 return Int64._masked(sum0, sum1, sum2);
222 }
223
224 Int64 operator -(other) {
225 Int64 o = _promote(other);
226 return _sub(_l, _m, _h, o._l, o._m, o._h);
227 }
228
229 Int64 operator -() => _negate(_l, _m, _h);
230
231 Int64 operator *(other) {
232 Int64 o = _promote(other);
233
234 // Grab 13-bit chunks.
235 int a0 = _l & 0x1fff;
236 int a1 = (_l >> 13) | ((_m & 0xf) << 9);
237 int a2 = (_m >> 4) & 0x1fff;
238 int a3 = (_m >> 17) | ((_h & 0xff) << 5);
239 int a4 = (_h & 0xfff00) >> 8;
240
241 int b0 = o._l & 0x1fff;
242 int b1 = (o._l >> 13) | ((o._m & 0xf) << 9);
243 int b2 = (o._m >> 4) & 0x1fff;
244 int b3 = (o._m >> 17) | ((o._h & 0xff) << 5);
245 int b4 = (o._h & 0xfff00) >> 8;
246
247 // Compute partial products.
248 // Optimization: if b is small, avoid multiplying by parts that are 0.
249 int p0 = a0 * b0; // << 0
250 int p1 = a1 * b0; // << 13
251 int p2 = a2 * b0; // << 26
252 int p3 = a3 * b0; // << 39
253 int p4 = a4 * b0; // << 52
254
255 if (b1 != 0) {
256 p1 += a0 * b1;
257 p2 += a1 * b1;
258 p3 += a2 * b1;
259 p4 += a3 * b1;
260 }
261 if (b2 != 0) {
262 p2 += a0 * b2;
263 p3 += a1 * b2;
264 p4 += a2 * b2;
265 }
266 if (b3 != 0) {
267 p3 += a0 * b3;
268 p4 += a1 * b3;
269 }
270 if (b4 != 0) {
271 p4 += a0 * b4;
272 }
273
274 // Accumulate into 22-bit chunks:
275 // .........................................c10|...................c00|
276 // |....................|..................xxxx|xxxxxxxxxxxxxxxxxxxxxx| p0
277 // |....................|......................|......................|
278 // |....................|...................c11|......c01.............|
279 // |....................|....xxxxxxxxxxxxxxxxxx|xxxxxxxxx.............| p1
280 // |....................|......................|......................|
281 // |.................c22|...............c12....|......................|
282 // |..........xxxxxxxxxx|xxxxxxxxxxxxxxxxxx....|......................| p2
283 // |....................|......................|......................|
284 // |.................c23|..c13.................|......................|
285 // |xxxxxxxxxxxxxxxxxxxx|xxxxx.................|......................| p3
286 // |....................|......................|......................|
287 // |.........c24........|......................|......................|
288 // |xxxxxxxxxxxx........|......................|......................| p4
289
290 int c00 = p0 & 0x3fffff;
291 int c01 = (p1 & 0x1ff) << 13;
292 int c0 = c00 + c01;
293
294 int c10 = p0 >> 22;
295 int c11 = p1 >> 9;
296 int c12 = (p2 & 0x3ffff) << 4;
297 int c13 = (p3 & 0x1f) << 17;
298 int c1 = c10 + c11 + c12 + c13;
299
300 int c22 = p2 >> 18;
301 int c23 = p3 >> 5;
302 int c24 = (p4 & 0xfff) << 8;
303 int c2 = c22 + c23 + c24;
304
305 // Propagate high bits from c0 -> c1, c1 -> c2.
306 c1 += c0 >> _BITS;
307 c2 += c1 >> _BITS;
308
309 return Int64._masked(c0, c1, c2);
310 }
311
312 Int64 operator %(other) => _divide(this, other, _RETURN_MOD);
313
314 Int64 operator ~/(other) => _divide(this, other, _RETURN_DIV);
315
316 Int64 remainder(other) => _divide(this, other, _RETURN_REM);
317
318 Int64 operator &(other) {
319 Int64 o = _promote(other);
320 int a0 = _l & o._l;
321 int a1 = _m & o._m;
322 int a2 = _h & o._h;
323 return Int64._masked(a0, a1, a2);
324 }
325
326 Int64 operator |(other) {
327 Int64 o = _promote(other);
328 int a0 = _l | o._l;
329 int a1 = _m | o._m;
330 int a2 = _h | o._h;
331 return Int64._masked(a0, a1, a2);
332 }
333
334 Int64 operator ^(other) {
335 Int64 o = _promote(other);
336 int a0 = _l ^ o._l;
337 int a1 = _m ^ o._m;
338 int a2 = _h ^ o._h;
339 return Int64._masked(a0, a1, a2);
340 }
341
342 Int64 operator ~() {
343 return Int64._masked(~_l, ~_m, ~_h);
344 }
345
346 Int64 operator <<(int n) {
347 if (n < 0) {
348 throw new ArgumentError.value(n);
349 }
350 n &= 63;
351
352 int res0, res1, res2;
353 if (n < _BITS) {
354 res0 = _l << n;
355 res1 = (_m << n) | (_l >> (_BITS - n));
356 res2 = (_h << n) | (_m >> (_BITS - n));
357 } else if (n < _BITS01) {
358 res0 = 0;
359 res1 = _l << (n - _BITS);
360 res2 = (_m << (n - _BITS)) | (_l >> (_BITS01 - n));
361 } else {
362 res0 = 0;
363 res1 = 0;
364 res2 = _l << (n - _BITS01);
365 }
366
367 return Int64._masked(res0, res1, res2);
368 }
369
370 Int64 operator >>(int n) {
371 if (n < 0) {
372 throw new ArgumentError.value(n);
373 }
374 n &= 63;
375
376 int res0, res1, res2;
377
378 // Sign extend h(a).
379 int a2 = _h;
380 bool negative = (a2 & _SIGN_BIT_MASK) != 0;
381 if (negative && _MASK > _MASK2) {
382 // Add extra one bits on the left so the sign gets shifted into the wider
383 // lower words.
384 a2 += (_MASK - _MASK2);
385 }
386
387 if (n < _BITS) {
388 res2 = _shiftRight(a2, n);
389 if (negative) {
390 res2 |= _MASK2 & ~(_MASK2 >> n);
391 }
392 res1 = _shiftRight(_m, n) | (a2 << (_BITS - n));
393 res0 = _shiftRight(_l, n) | (_m << (_BITS - n));
394 } else if (n < _BITS01) {
395 res2 = negative ? _MASK2 : 0;
396 res1 = _shiftRight(a2, n - _BITS);
397 if (negative) {
398 res1 |= _MASK & ~(_MASK >> (n - _BITS));
399 }
400 res0 = _shiftRight(_m, n - _BITS) | (a2 << (_BITS01 - n));
401 } else {
402 res2 = negative ? _MASK2 : 0;
403 res1 = negative ? _MASK : 0;
404 res0 = _shiftRight(a2, n - _BITS01);
405 if (negative) {
406 res0 |= _MASK & ~(_MASK >> (n - _BITS01));
407 }
408 }
409
410 return Int64._masked(res0, res1, res2);
411 }
412
413 Int64 shiftRightUnsigned(int n) {
414 if (n < 0) {
415 throw new ArgumentError.value(n);
416 }
417 n &= 63;
418
419 int res0, res1, res2;
420 int a2 = _MASK2 & _h; // Ensure a2 is positive.
421 if (n < _BITS) {
422 res2 = a2 >> n;
423 res1 = (_m >> n) | (a2 << (_BITS - n));
424 res0 = (_l >> n) | (_m << (_BITS - n));
425 } else if (n < _BITS01) {
426 res2 = 0;
427 res1 = a2 >> (n - _BITS);
428 res0 = (_m >> (n - _BITS)) | (_h << (_BITS01 - n));
429 } else {
430 res2 = 0;
431 res1 = 0;
432 res0 = a2 >> (n - _BITS01);
433 }
434
435 return Int64._masked(res0, res1, res2);
436 }
437
438 /**
439 * Returns [:true:] if this [Int64] has the same numeric value as the
440 * given object. The argument may be an [int] or an [IntX].
441 */
442 bool operator ==(other) {
443 Int64 o;
444 if (other is Int64) {
445 o = other;
446 } else if (other is int) {
447 if (_h == 0 && _m == 0) return _l == other;
448 // Since we know one of [_h] or [_m] is non-zero, if [other] fits in the
449 // low word then it can't be numerically equal.
450 if ((_MASK & other) == other) return false;
451 o = new Int64(other);
452 } else if (other is Int32) {
453 o = other.toInt64();
454 }
455 if (o != null) {
456 return _l == o._l && _m == o._m && _h == o._h;
457 }
458 return false;
459 }
460
461 int compareTo(IntX other) =>_compareTo(other);
462
463 int _compareTo(other) {
464 Int64 o = _promote(other);
465 int signa = _h >> (_BITS2 - 1);
466 int signb = o._h >> (_BITS2 - 1);
467 if (signa != signb) {
468 return signa == 0 ? 1 : -1;
469 }
470 if (_h > o._h) {
471 return 1;
472 } else if (_h < o._h) {
473 return -1;
474 }
475 if (_m > o._m) {
476 return 1;
477 } else if (_m < o._m) {
478 return -1;
479 }
480 if (_l > o._l) {
481 return 1;
482 } else if (_l < o._l) {
483 return -1;
484 }
485 return 0;
486 }
487
488 bool operator <(other) => _compareTo(other) < 0;
489 bool operator <=(other) => _compareTo(other) <= 0;
490 bool operator >(other) => this._compareTo(other) > 0;
491 bool operator >=(other) => _compareTo(other) >= 0;
492
493 bool get isEven => (_l & 0x1) == 0;
494 bool get isMaxValue => (_h == _MASK2 >> 1) && _m == _MASK && _l == _MASK;
495 bool get isMinValue => _h == _SIGN_BIT_MASK && _m == 0 && _l == 0;
496 bool get isNegative => (_h & _SIGN_BIT_MASK) != 0;
497 bool get isOdd => (_l & 0x1) == 1;
498 bool get isZero => _h == 0 && _m == 0 && _l == 0;
499
500 int get bitLength {
501 if (isZero) return 0;
502 int a0 = _l, a1 = _m, a2 = _h;
503 if (isNegative) {
504 a0 = _MASK & ~a0;
505 a1 = _MASK & ~a1;
506 a2 = _MASK2 & ~a2;
507 }
508 if (a2 != 0) return _BITS01 + a2.bitLength;
509 if (a1 != 0) return _BITS + a1.bitLength;
510 return a0.bitLength;
511 }
512
513 /**
514 * Returns a hash code based on all the bits of this [Int64].
515 */
516 int get hashCode {
517 // TODO(sra): Should we ensure that hashCode values match corresponding int?
518 // i.e. should `new Int64(x).hashCode == x.hashCode`?
519 int bottom = ((_m & 0x3ff) << _BITS) | _l;
520 int top = (_h << 12) | ((_m >> 10) & 0xfff);
521 return bottom ^ top;
522 }
523
524 Int64 abs() {
525 return this.isNegative ? -this : this;
526 }
527
528 Int64 clamp(lowerLimit, upperLimit) {
529 Int64 lower = _promote(lowerLimit);
530 Int64 upper = _promote(upperLimit);
531 if (this < lower) return lower;
532 if (this > upper) return upper;
533 return this;
534 }
535
536 /**
537 * Returns the number of leading zeros in this [Int64] as an [int]
538 * between 0 and 64.
539 */
540 int numberOfLeadingZeros() {
541 int b2 = Int32._numberOfLeadingZeros(_h);
542 if (b2 == 32) {
543 int b1 = Int32._numberOfLeadingZeros(_m);
544 if (b1 == 32) {
545 return Int32._numberOfLeadingZeros(_l) + 32;
546 } else {
547 return b1 + _BITS2 - (32 - _BITS);
548 }
549 } else {
550 return b2 - (32 - _BITS2);
551 }
552 }
553
554 /**
555 * Returns the number of trailing zeros in this [Int64] as an [int]
556 * between 0 and 64.
557 */
558 int numberOfTrailingZeros() {
559 int zeros = Int32._numberOfTrailingZeros(_l);
560 if (zeros < 32) {
561 return zeros;
562 }
563
564 zeros = Int32._numberOfTrailingZeros(_m);
565 if (zeros < 32) {
566 return _BITS + zeros;
567 }
568
569 zeros = Int32._numberOfTrailingZeros(_h);
570 if (zeros < 32) {
571 return _BITS01 + zeros;
572 }
573 // All zeros
574 return 64;
575 }
576
577 Int64 toSigned(int width) {
578 if (width < 1 || width > 64) throw new RangeError.range(width, 1, 64);
579 if (width > _BITS01) {
580 return Int64._masked(_l, _m, _h.toSigned(width - _BITS01));
581 } else if (width > _BITS) {
582 int m = _m.toSigned(width - _BITS);
583 return m.isNegative
584 ? Int64._masked(_l, m, _MASK2)
585 : Int64._masked(_l, m, 0); // Masking for type inferrer.
586 } else {
587 int l = _l.toSigned(width);
588 return l.isNegative
589 ? Int64._masked(l, _MASK, _MASK2)
590 : Int64._masked(l, 0, 0); // Masking for type inferrer.
591 }
592 }
593
594 Int64 toUnsigned(int width) {
595 if (width < 0 || width > 64) throw new RangeError.range(width, 0, 64);
596 if (width > _BITS01) {
597 int h = _h.toUnsigned(width - _BITS01);
598 return Int64._masked(_l, _m, h);
599 } else if (width > _BITS) {
600 int m = _m.toUnsigned(width - _BITS);
601 return Int64._masked(_l, m, 0);
602 } else {
603 int l = _l.toUnsigned(width);
604 return Int64._masked(l, 0, 0);
605 }
606 }
607
608 List<int> toBytes() {
609 List<int> result = new List<int>(8);
610 result[0] = _l & 0xff;
611 result[1] = (_l >> 8) & 0xff;
612 result[2] = ((_m << 6) & 0xfc) | ((_l >> 16) & 0x3f);
613 result[3] = (_m >> 2) & 0xff;
614 result[4] = (_m >> 10) & 0xff;
615 result[5] = ((_h << 4) & 0xf0) | ((_m >> 18) & 0xf);
616 result[6] = (_h >> 4) & 0xff;
617 result[7] = (_h >> 12) & 0xff;
618 return result;
619 }
620
621 double toDouble() => toInt().toDouble();
622
623 int toInt() {
624 int l = _l;
625 int m = _m;
626 int h = _h;
627 // In the sum we add least significant to most significant so that in
628 // JavaScript double arithmetic rounding occurs on only the last addition.
629 if ((_h & _SIGN_BIT_MASK) != 0) {
630 l = _MASK & ~_l;
631 m = _MASK & ~_m;
632 h = _MASK2 & ~_h;
633 return -((1 + l) + (4194304 * m) + (17592186044416 * h));
634 } else {
635 return l + (4194304 * m) + (17592186044416 * h);
636 }
637 }
638
639 /**
640 * Returns an [Int32] containing the low 32 bits of this [Int64].
641 */
642 Int32 toInt32() {
643 return new Int32(((_m & 0x3ff) << _BITS) | _l);
644 }
645
646 /**
647 * Returns [this].
648 */
649 Int64 toInt64() => this;
650
651 /**
652 * Returns the value of this [Int64] as a decimal [String].
653 */
654 String toString() => _toRadixString(10);
655
656 // TODO(rice) - Make this faster by avoiding arithmetic.
657 String toHexString() {
658 if (isZero) return "0";
659 Int64 x = this;
660 String hexStr = "";
661 while (!x.isZero) {
662 int digit = x._l & 0xf;
663 hexStr = "${_hexDigit(digit)}$hexStr";
664 x = x.shiftRightUnsigned(4);
665 }
666 return hexStr;
667 }
668
669 String toRadixString(int radix) {
670 return _toRadixString(Int32._validateRadix(radix));
671 }
672
673 String _toRadixString(int radix) {
674 int d0 = _l;
675 int d1 = _m;
676 int d2 = _h;
677
678 if (d0 == 0 && d1 == 0 && d2 == 0) return '0';
679
680 String sign = '';
681 if ((d2 & _SIGN_BIT_MASK) != 0) {
682 sign = '-';
683
684 // Negate in-place.
685 d0 = 0 - d0;
686 int borrow = (d0 >> _BITS) & 1;
687 d0 &= _MASK;
688 d1 = 0 - d1 - borrow;
689 borrow = (d1 >> _BITS) & 1;
690 d1 &= _MASK;
691 d2 = 0 - d2 - borrow;
692 d2 &= _MASK2;
693 // d2, d1, d0 now are an unsigned 64 bit integer for MIN_VALUE and an
694 // unsigned 63 bit integer for other values.
695 }
696
697 // Rearrange components into five components where all but the most
698 // significant are 10 bits wide.
699 //
700 // d4, d3, d4, d1, d0: 24 + 10 + 10 + 10 + 10 bits
701 //
702 // The choice of 10 bits allows a remainder of 20 bits to be scaled by 10
703 // bits and added during division while keeping all intermediate values
704 // within 30 bits (unsigned small integer range for 32 bit implementations
705 // of Dart VM and V8).
706 //
707 // 6 6 5 4 3 2 1
708 // 3210987654321098765432109876543210987654321098765432109876543210
709 // [--------d2--------][---------d1---------][---------d0---------]
710 // -->
711 // [----------d4----------][---d3---][---d2---][---d1---][---d0---]
712
713
714 int d4 = (d2 << 4) | (d1 >> 18);
715 int d3 = (d1 >> 8) & 0x3ff;
716 d2 = ((d1 << 2) | (d0 >> 20)) & 0x3ff;
717 d1 = (d0 >> 10) & 0x3ff;
718 d0 = d0 & 0x3ff;
719
720 int fatRadix = _fatRadixTable[radix];
721
722 // Generate chunks of digits. In radix 10, generate 6 digits per chunk.
723 //
724 // This loop generates at most 3 chunks, so we store the chunks in locals
725 // rather than a list. We are trying to generate digits 20 bits at a time
726 // until we have only 30 bits left. 20 + 20 + 30 > 64 would imply that we
727 // need only two chunks, but radix values 17-19 and 33-36 generate only 15
728 // or 16 bits per iteration, so sometimes the third chunk is needed.
729
730 String chunk1 = "", chunk2 = "", chunk3 = "";
731
732 while (!(d4 == 0 && d3 == 0)) {
733 int q = d4 ~/ fatRadix;
734 int r = d4 - q * fatRadix;
735 d4 = q;
736 d3 += r << 10;
737
738 q = d3 ~/ fatRadix;
739 r = d3 - q * fatRadix;
740 d3 = q;
741 d2 += r << 10;
742
743 q = d2 ~/ fatRadix;
744 r = d2 - q * fatRadix;
745 d2 = q;
746 d1 += r << 10;
747
748 q = d1 ~/ fatRadix;
749 r = d1 - q * fatRadix;
750 d1 = q;
751 d0 += r << 10;
752
753 q = d0 ~/ fatRadix;
754 r = d0 - q * fatRadix;
755 d0 = q;
756
757 assert(chunk3 == "");
758 chunk3 = chunk2;
759 chunk2 = chunk1;
760 // Adding [fatRadix] Forces an extra digit which we discard to get a fixed
761 // width. E.g. (1000000 + 123) -> "1000123" -> "000123". An alternative
762 // would be to pad to the left with zeroes.
763 chunk1 = (fatRadix + r).toRadixString(radix).substring(1);
764 }
765 int residue = (d2 << 20) + (d1 << 10) + d0;
766 String leadingDigits = residue == 0 ? '' : residue.toRadixString(radix);
767 return '$sign$leadingDigits$chunk1$chunk2$chunk3';
768 }
769
770 // Table of 'fat' radix values. Each entry for index `i` is the largest power
771 // of `i` whose remainder fits in 20 bits.
772 static const _fatRadixTable = const <int>[
773 0,
774 0,
775 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2
776 * 2,
777 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3,
778 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4,
779 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
780 6 * 6 * 6 * 6 * 6 * 6 * 6,
781 7 * 7 * 7 * 7 * 7 * 7 * 7,
782 8 * 8 * 8 * 8 * 8 * 8,
783 9 * 9 * 9 * 9 * 9 * 9,
784 10 * 10 * 10 * 10 * 10 * 10,
785 11 * 11 * 11 * 11 * 11,
786 12 * 12 * 12 * 12 * 12,
787 13 * 13 * 13 * 13 * 13,
788 14 * 14 * 14 * 14 * 14,
789 15 * 15 * 15 * 15 * 15,
790 16 * 16 * 16 * 16 * 16,
791 17 * 17 * 17 * 17,
792 18 * 18 * 18 * 18,
793 19 * 19 * 19 * 19,
794 20 * 20 * 20 * 20,
795 21 * 21 * 21 * 21,
796 22 * 22 * 22 * 22,
797 23 * 23 * 23 * 23,
798 24 * 24 * 24 * 24,
799 25 * 25 * 25 * 25,
800 26 * 26 * 26 * 26,
801 27 * 27 * 27 * 27,
802 28 * 28 * 28 * 28,
803 29 * 29 * 29 * 29,
804 30 * 30 * 30 * 30,
805 31 * 31 * 31 * 31,
806 32 * 32 * 32 * 32,
807 33 * 33 * 33,
808 34 * 34 * 34,
809 35 * 35 * 35,
810 36 * 36 * 36
811 ];
812
813 String toDebugString() {
814 return "Int64[_l=$_l, _m=$_m, _h=$_h]";
815 }
816
817
818 static Int64 _masked(int a0, int a1, int a2) =>
819 new Int64._bits(_MASK & a0, _MASK & a1, _MASK2 & a2);
820
821 static Int64 _sub(int a0, int a1, int a2, int b0, int b1, int b2) {
822 int diff0 = a0 - b0;
823 int diff1 = a1 - b1 - ((diff0 >> _BITS) & 1);
824 int diff2 = a2 - b2 - ((diff1 >> _BITS) & 1);
825 return _masked(diff0, diff1, diff2);
826 }
827
828 static Int64 _negate(int b0, int b1, int b2) {
829 return _sub(0, 0, 0, b0, b1, b2);
830 }
831
832 String _hexDigit(int digit) => "0123456789ABCDEF"[digit];
833
834 // Work around dart2js bugs with negative arguments to '>>' operator.
835 static int _shiftRight(int x, int n) {
836 if (x >= 0) {
837 return x >> n;
838 } else {
839 int shifted = x >> n;
840 if (shifted >= 0x80000000) {
841 shifted -= 4294967296;
842 }
843 return shifted;
844 }
845 }
846
847
848 // Implementation of '~/', '%' and 'remainder'.
849
850 static Int64 _divide(Int64 a, other, int what) {
851 Int64 b = _promote(other);
852 if (b.isZero) {
853 throw new IntegerDivisionByZeroException();
854 }
855 if (a.isZero) return ZERO;
856
857 bool aNeg = a.isNegative;
858 bool bNeg = b.isNegative;
859 a = a.abs();
860 b = b.abs();
861
862 int a0 = a._l;
863 int a1 = a._m;
864 int a2 = a._h;
865
866 int b0 = b._l;
867 int b1 = b._m;
868 int b2 = b._h;
869 return _divideHelper(a0, a1, a2, aNeg, b0, b1, b2, bNeg, what);
870 }
871
872 static const _RETURN_DIV = 1;
873 static const _RETURN_REM = 2;
874 static const _RETURN_MOD = 3;
875
876 static _divideHelper(
877 // up to 64 bits unsigned in a2/a1/a0 and b2/b1/b0
878 int a0, int a1, int a2, bool aNeg, // input A.
879 int b0, int b1, int b2, bool bNeg, // input B.
880 int what) {
881 int q0 = 0, q1 = 0, q2 = 0; // result Q.
882 int r0 = 0, r1 = 0, r2 = 0; // result R.
883
884 if (b2 == 0 && b1 == 0 && b0 < (1 << (30 - _BITS))) {
885 // Small divisor can be handled by single-digit division within Smi range.
886 //
887 // Handling small divisors here helps the estimate version below by
888 // handling cases where the estimate is off by more than a small amount.
889
890 q2 = a2 ~/ b0;
891 int carry = a2 - q2 * b0;
892 int d1 = a1 + (carry << _BITS);
893 q1 = d1 ~/ b0;
894 carry = d1 - q1 * b0;
895 int d0 = a0 + (carry << _BITS);
896 q0 = d0 ~/ b0;
897 r0 = d0 - q0 * b0;
898 } else {
899 // Approximate Q = A ~/ B and R = A - Q * B using doubles.
900
901 // The floating point approximation is very close to the correct value
902 // when floor(A/B) fits in fewer that 53 bits.
903
904 // We use double arithmetic for intermediate values. Double arithmetic on
905 // non-negative values is exact under the following conditions:
906 //
907 // - The values are integer values that fit in 53 bits.
908 // - Dividing by powers of two (adjusts exponent only).
909 // - Floor (zeroes bits with fractional weight).
910
911 const double K2 = 17592186044416.0; // 2^44
912 const double K1 = 4194304.0; // 2^22
913
914 // Approximate double values for [a] and [b].
915 double ad = a0 + K1 * a1 + K2 * a2;
916 double bd = b0 + K1 * b1 + K2 * b2;
917 // Approximate quotient.
918 double qd = (ad / bd).floorToDouble();
919
920 // Extract components of [qd] using double arithmetic.
921 double q2d = (qd / K2).floorToDouble();
922 qd = qd - K2 * q2d;
923 double q1d = (qd / K1).floorToDouble();
924 double q0d = qd - K1 * q1d;
925 q2 = q2d.toInt();
926 q1 = q1d.toInt();
927 q0 = q0d.toInt();
928
929 assert(q0 + K1 * q1 + K2 * q2 == (ad / bd).floorToDouble());
930 assert(q2 == 0 || b2 == 0); // Q and B can't both be big since Q*B <= A.
931
932 // P = Q * B, using doubles to hold intermediates.
933 // We don't need all partial sums since Q*B <= A.
934 double p0d = q0d * b0;
935 double p0carry = (p0d / K1).floorToDouble();
936 p0d = p0d - p0carry * K1;
937 double p1d = q1d * b0 + q0d * b1 + p0carry;
938 double p1carry = (p1d / K1).floorToDouble();
939 p1d = p1d - p1carry * K1;
940 double p2d = q2d * b0 + q1d * b1 + q0d * b2 + p1carry;
941 assert(p2d <= _MASK2); // No partial sum overflow.
942
943 // R = A - P
944 int diff0 = a0 - p0d.toInt();
945 int diff1 = a1 - p1d.toInt() - ((diff0 >> _BITS) & 1);
946 int diff2 = a2 - p2d.toInt() - ((diff1 >> _BITS) & 1);
947 r0 = _MASK & diff0;
948 r1 = _MASK & diff1;
949 r2 = _MASK2 & diff2;
950
951 // while (R < 0 || R >= B)
952 // adjust R towards [0, B)
953 while (
954 r2 >= _SIGN_BIT_MASK ||
955 r2 > b2 ||
956 (r2 == b2 && (r1 > b1 || (r1 == b1 && r0 >= b0)))) {
957 // Direction multiplier for adjustment.
958 int m = (r2 & _SIGN_BIT_MASK) == 0 ? 1 : -1;
959 // R = R - B or R = R + B
960 int d0 = r0 - m * b0;
961 int d1 = r1 - m * (b1 + ((d0 >> _BITS) & 1));
962 int d2 = r2 - m * (b2 + ((d1 >> _BITS) & 1));
963 r0 = _MASK & d0;
964 r1 = _MASK & d1;
965 r2 = _MASK2 & d2;
966
967 // Q = Q + 1 or Q = Q - 1
968 d0 = q0 + m;
969 d1 = q1 + m * ((d0 >> _BITS) & 1);
970 d2 = q2 + m * ((d1 >> _BITS) & 1);
971 q0 = _MASK & d0;
972 q1 = _MASK & d1;
973 q2 = _MASK2 & d2;
974 }
975 }
976
977 // 0 <= R < B
978 assert(Int64.ZERO <= new Int64._bits(r0, r1, r2));
979 assert(r2 < b2 || // Handles case where B = -(MIN_VALUE)
980 new Int64._bits(r0, r1, r2) < new Int64._bits(b0, b1, b2));
981
982 assert(what == _RETURN_DIV || what == _RETURN_MOD || what == _RETURN_REM);
983 if (what == _RETURN_DIV) {
984 if (aNeg != bNeg) return _negate(q0, q1, q2);
985 return Int64._masked(q0, q1, q2); // Masking for type inferrer.
986 }
987
988 if (!aNeg) {
989 return Int64._masked(r0, r1, r2); // Masking for type inferrer.
990 }
991
992 if (what == _RETURN_MOD) {
993 if (r0 == 0 && r1 == 0 && r2 == 0) {
994 return ZERO;
995 } else {
996 return _sub(b0, b1, b2, r0, r1, r2);
997 }
998 } else {
999 return _negate(r0, r1, r2);
1000 }
1001 }
1002 }
OLDNEW
« no previous file with comments | « pkg/fixnum/lib/src/int32.dart ('k') | pkg/fixnum/lib/src/intx.dart » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698