OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file | |
2 // for details. All rights reserved. Use of this source code is governed by a | |
3 // BSD-style license that can be found in the LICENSE file. | |
4 | |
5 part of fixnum; | |
6 | |
7 /** | |
8 * An immutable 32-bit signed integer, in the range [-2^31, 2^31 - 1]. | |
9 * Arithmetic operations may overflow in order to maintain this range. | |
10 */ | |
11 class Int32 implements IntX { | |
12 | |
13 /** | |
14 * The maximum positive value attainable by an [Int32], namely | |
15 * 2147483647. | |
16 */ | |
17 static const Int32 MAX_VALUE = const Int32._internal(0x7FFFFFFF); | |
18 | |
19 /** | |
20 * The minimum positive value attainable by an [Int32], namely | |
21 * -2147483648. | |
22 */ | |
23 static const Int32 MIN_VALUE = const Int32._internal(-0x80000000); | |
24 | |
25 /** | |
26 * An [Int32] constant equal to 0. | |
27 */ | |
28 static const Int32 ZERO = const Int32._internal(0); | |
29 | |
30 /** | |
31 * An [Int32] constant equal to 1. | |
32 */ | |
33 static const Int32 ONE = const Int32._internal(1); | |
34 | |
35 /** | |
36 * An [Int32] constant equal to 2. | |
37 */ | |
38 static const Int32 TWO = const Int32._internal(2); | |
39 | |
40 // Hex digit char codes | |
41 static const int _CC_0 = 48; // '0'.codeUnitAt(0) | |
42 static const int _CC_9 = 57; // '9'.codeUnitAt(0) | |
43 static const int _CC_a = 97; // 'a'.codeUnitAt(0) | |
44 static const int _CC_z = 122; // 'z'.codeUnitAt(0) | |
45 static const int _CC_A = 65; // 'A'.codeUnitAt(0) | |
46 static const int _CC_Z = 90; // 'Z'.codeUnitAt(0) | |
47 | |
48 static int _decodeDigit(int c) { | |
49 if (c >= _CC_0 && c <= _CC_9) { | |
50 return c - _CC_0; | |
51 } else if (c >= _CC_a && c <= _CC_z) { | |
52 return c - _CC_a + 10; | |
53 } else if (c >= _CC_A && c <= _CC_Z) { | |
54 return c - _CC_A + 10; | |
55 } else { | |
56 return -1; // bad char code | |
57 } | |
58 } | |
59 | |
60 static int _validateRadix(int radix) { | |
61 if (2 <= radix && radix <= 36) return radix; | |
62 throw new RangeError.range(radix, 2, 36, 'radix'); | |
63 } | |
64 | |
65 /** | |
66 * Parses a [String] in a given [radix] between 2 and 16 and returns an | |
67 * [Int32]. | |
68 */ | |
69 // TODO(rice) - Make this faster by converting several digits at once. | |
70 static Int32 parseRadix(String s, int radix) { | |
71 _validateRadix(radix); | |
72 Int32 x = ZERO; | |
73 for (int i = 0; i < s.length; i++) { | |
74 int c = s.codeUnitAt(i); | |
75 int digit = _decodeDigit(c); | |
76 if (digit < 0 || digit >= radix) { | |
77 throw new FormatException("Non-radix code unit: $c"); | |
78 } | |
79 x = (x * radix) + digit; | |
80 } | |
81 return x; | |
82 } | |
83 | |
84 /** | |
85 * Parses a decimal [String] and returns an [Int32]. | |
86 */ | |
87 static Int32 parseInt(String s) => new Int32(int.parse(s)); | |
88 | |
89 /** | |
90 * Parses a hexadecimal [String] and returns an [Int32]. | |
91 */ | |
92 static Int32 parseHex(String s) => parseRadix(s, 16); | |
93 | |
94 // Assumes i is <= 32-bit. | |
95 static int _bitCount(int i) { | |
96 // See "Hacker's Delight", section 5-1, "Counting 1-Bits". | |
97 | |
98 // The basic strategy is to use "divide and conquer" to | |
99 // add pairs (then quads, etc.) of bits together to obtain | |
100 // sub-counts. | |
101 // | |
102 // A straightforward approach would look like: | |
103 // | |
104 // i = (i & 0x55555555) + ((i >> 1) & 0x55555555); | |
105 // i = (i & 0x33333333) + ((i >> 2) & 0x33333333); | |
106 // i = (i & 0x0F0F0F0F) + ((i >> 4) & 0x0F0F0F0F); | |
107 // i = (i & 0x00FF00FF) + ((i >> 8) & 0x00FF00FF); | |
108 // i = (i & 0x0000FFFF) + ((i >> 16) & 0x0000FFFF); | |
109 // | |
110 // The code below removes unnecessary &'s and uses a | |
111 // trick to remove one instruction in the first line. | |
112 | |
113 i -= ((i >> 1) & 0x55555555); | |
114 i = (i & 0x33333333) + ((i >> 2) & 0x33333333); | |
115 i = ((i + (i >> 4)) & 0x0F0F0F0F); | |
116 i += (i >> 8); | |
117 i += (i >> 16); | |
118 return (i & 0x0000003F); | |
119 } | |
120 | |
121 // Assumes i is <= 32-bit | |
122 static int _numberOfLeadingZeros(int i) { | |
123 i |= i >> 1; | |
124 i |= i >> 2; | |
125 i |= i >> 4; | |
126 i |= i >> 8; | |
127 i |= i >> 16; | |
128 return _bitCount(~i); | |
129 } | |
130 | |
131 static int _numberOfTrailingZeros(int i) => _bitCount((i & -i) - 1); | |
132 | |
133 // The internal value, kept in the range [MIN_VALUE, MAX_VALUE]. | |
134 final int _i; | |
135 | |
136 const Int32._internal(int i) : _i = i; | |
137 | |
138 /** | |
139 * Constructs an [Int32] from an [int]. Only the low 32 bits of the input | |
140 * are used. | |
141 */ | |
142 Int32([int i=0]) : _i = (i & 0x7fffffff) - (i & 0x80000000); | |
143 | |
144 // Returns the [int] representation of the specified value. Throws | |
145 // [ArgumentError] for non-integer arguments. | |
146 int _toInt(val) { | |
147 if (val is Int32) { | |
148 return val._i; | |
149 } else if (val is int) { | |
150 return val; | |
151 } | |
152 throw new ArgumentError(val); | |
153 } | |
154 | |
155 // The +, -, * , &, |, and ^ operaters deal with types as follows: | |
156 // | |
157 // Int32 + int => Int32 | |
158 // Int32 + Int32 => Int32 | |
159 // Int32 + Int64 => Int64 | |
160 // | |
161 // The %, ~/ and remainder operators return an Int32 even with an Int64 | |
162 // argument, since the result cannot be greater than the value on the | |
163 // left-hand side: | |
164 // | |
165 // Int32 % int => Int32 | |
166 // Int32 % Int32 => Int32 | |
167 // Int32 % Int64 => Int32 | |
168 | |
169 IntX operator +(other) { | |
170 if (other is Int64) { | |
171 return this.toInt64() + other; | |
172 } | |
173 return new Int32(_i + _toInt(other)); | |
174 } | |
175 | |
176 IntX operator -(other) { | |
177 if (other is Int64) { | |
178 return this.toInt64() - other; | |
179 } | |
180 return new Int32(_i - _toInt(other)); | |
181 } | |
182 | |
183 Int32 operator -() => new Int32(-_i); | |
184 | |
185 IntX operator *(other) { | |
186 if (other is Int64) { | |
187 return this.toInt64() * other; | |
188 } | |
189 // TODO(rice) - optimize | |
190 return (this.toInt64() * other).toInt32(); | |
191 } | |
192 | |
193 Int32 operator %(other) { | |
194 if (other is Int64) { | |
195 // Result will be Int32 | |
196 return (this.toInt64() % other).toInt32(); | |
197 } | |
198 return new Int32(_i % _toInt(other)); | |
199 } | |
200 | |
201 Int32 operator ~/(other) { | |
202 if (other is Int64) { | |
203 return (this.toInt64() ~/ other).toInt32(); | |
204 } | |
205 return new Int32(_i ~/ _toInt(other)); | |
206 } | |
207 | |
208 Int32 remainder(other) { | |
209 if (other is Int64) { | |
210 Int64 t = this.toInt64(); | |
211 return (t - (t ~/ other) * other).toInt32(); | |
212 } | |
213 return this - (this ~/ other) * other; | |
214 } | |
215 | |
216 Int32 operator &(other) { | |
217 if (other is Int64) { | |
218 return (this.toInt64() & other).toInt32(); | |
219 } | |
220 return new Int32(_i & _toInt(other)); | |
221 } | |
222 | |
223 Int32 operator |(other) { | |
224 if (other is Int64) { | |
225 return (this.toInt64() | other).toInt32(); | |
226 } | |
227 return new Int32(_i | _toInt(other)); | |
228 } | |
229 | |
230 Int32 operator ^(other) { | |
231 if (other is Int64) { | |
232 return (this.toInt64() ^ other).toInt32(); | |
233 } | |
234 return new Int32(_i ^ _toInt(other)); | |
235 } | |
236 | |
237 Int32 operator ~() => new Int32(~_i); | |
238 | |
239 Int32 operator <<(int n) { | |
240 if (n < 0) { | |
241 throw new ArgumentError(n); | |
242 } | |
243 n &= 31; | |
244 return new Int32(_i << n); | |
245 } | |
246 | |
247 Int32 operator >>(int n) { | |
248 if (n < 0) { | |
249 throw new ArgumentError(n); | |
250 } | |
251 n &= 31; | |
252 int value; | |
253 if (_i >= 0) { | |
254 value = _i >> n; | |
255 } else { | |
256 value = (_i >> n) | (0xffffffff << (32 - n)); | |
257 } | |
258 return new Int32(value); | |
259 } | |
260 | |
261 Int32 shiftRightUnsigned(int n) { | |
262 if (n < 0) { | |
263 throw new ArgumentError(n); | |
264 } | |
265 n &= 31; | |
266 int value; | |
267 if (_i >= 0) { | |
268 value = _i >> n; | |
269 } else { | |
270 value = (_i >> n) & ((1 << (32 - n)) - 1); | |
271 } | |
272 return new Int32(value); | |
273 } | |
274 | |
275 /** | |
276 * Returns [:true:] if this [Int32] has the same numeric value as the | |
277 * given object. The argument may be an [int] or an [IntX]. | |
278 */ | |
279 bool operator ==(other) { | |
280 if (other is Int32) { | |
281 return _i == other._i; | |
282 } else if (other is Int64) { | |
283 return this.toInt64() == other; | |
284 } else if (other is int) { | |
285 return _i == other; | |
286 } | |
287 return false; | |
288 } | |
289 | |
290 int compareTo(IntX other) { | |
291 if (other is Int64) { | |
292 return this.toInt64().compareTo(other); | |
293 } | |
294 return _i.compareTo(_toInt(other)); | |
295 } | |
296 | |
297 bool operator <(other) { | |
298 if (other is Int64) { | |
299 return this.toInt64() < other; | |
300 } | |
301 return _i < _toInt(other); | |
302 } | |
303 | |
304 bool operator <=(other) { | |
305 if (other is Int64) { | |
306 return this.toInt64() <= other; | |
307 } | |
308 return _i <= _toInt(other); | |
309 } | |
310 | |
311 bool operator >(other) { | |
312 if (other is Int64) { | |
313 return this.toInt64() > other; | |
314 } | |
315 return _i > _toInt(other); | |
316 } | |
317 | |
318 bool operator >=(other) { | |
319 if (other is Int64) { | |
320 return this.toInt64() >= other; | |
321 } | |
322 return _i >= _toInt(other); | |
323 } | |
324 | |
325 bool get isEven => (_i & 0x1) == 0; | |
326 bool get isMaxValue => _i == 2147483647; | |
327 bool get isMinValue => _i == -2147483648; | |
328 bool get isNegative => _i < 0; | |
329 bool get isOdd => (_i & 0x1) == 1; | |
330 bool get isZero => _i == 0; | |
331 int get bitLength => _i.bitLength; | |
332 | |
333 int get hashCode => _i; | |
334 | |
335 Int32 abs() => _i < 0 ? new Int32(-_i) : this; | |
336 | |
337 Int32 clamp(lowerLimit, upperLimit) { | |
338 if (this < lowerLimit) { | |
339 if (lowerLimit is IntX) return lowerLimit.toInt32(); | |
340 if (lowerLimit is int) return new Int32(lowerLimit); | |
341 throw new ArgumentError(lowerLimit); | |
342 } else if (this > upperLimit) { | |
343 if (upperLimit is IntX) return upperLimit.toInt32(); | |
344 if (upperLimit is int) return new Int32(upperLimit); | |
345 throw new ArgumentError(upperLimit); | |
346 } | |
347 return this; | |
348 } | |
349 | |
350 int numberOfLeadingZeros() => _numberOfLeadingZeros(_i); | |
351 int numberOfTrailingZeros() => _numberOfTrailingZeros(_i); | |
352 | |
353 Int32 toSigned(int width) { | |
354 if (width < 1 || width > 32) throw new RangeError.range(width, 1, 32); | |
355 return new Int32(_i.toSigned(width)); | |
356 } | |
357 | |
358 Int32 toUnsigned(int width) { | |
359 if (width < 0 || width > 32) throw new RangeError.range(width, 0, 32); | |
360 return new Int32(_i.toUnsigned(width)); | |
361 } | |
362 | |
363 List<int> toBytes() { | |
364 List<int> result = new List<int>(4); | |
365 result[0] = _i & 0xff; | |
366 result[1] = (_i >> 8) & 0xff; | |
367 result[2] = (_i >> 16) & 0xff; | |
368 result[3] = (_i >> 24) & 0xff; | |
369 return result; | |
370 } | |
371 | |
372 double toDouble() => _i.toDouble(); | |
373 int toInt() => _i; | |
374 Int32 toInt32() => this; | |
375 Int64 toInt64() => new Int64(_i); | |
376 | |
377 String toString() => _i.toString(); | |
378 String toHexString() => _i.toRadixString(16); | |
379 String toRadixString(int radix) => _i.toRadixString(radix); | |
380 } | |
OLD | NEW |