OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * LibXDiff by Davide Libenzi ( File Differential Library ) |
| 3 * Copyright (C) 2003 Davide Libenzi |
| 4 * |
| 5 * This library is free software; you can redistribute it and/or |
| 6 * modify it under the terms of the GNU Lesser General Public |
| 7 * License as published by the Free Software Foundation; either |
| 8 * version 2.1 of the License, or (at your option) any later version. |
| 9 * |
| 10 * This library is distributed in the hope that it will be useful, |
| 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 * Lesser General Public License for more details. |
| 14 * |
| 15 * You should have received a copy of the GNU Lesser General Public |
| 16 * License along with this library; if not, write to the Free Software |
| 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 18 * |
| 19 * Davide Libenzi <davidel@xmailserver.org> |
| 20 * |
| 21 */ |
| 22 |
| 23 #include "xinclude.h" |
| 24 |
| 25 |
| 26 |
| 27 #define XDL_MAX_COST_MIN 256 |
| 28 #define XDL_HEUR_MIN_COST 256 |
| 29 #define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1) |
| 30 #define XDL_SNAKE_CNT 20 |
| 31 #define XDL_K_HEUR 4 |
| 32 |
| 33 |
| 34 |
| 35 typedef struct s_xdpsplit { |
| 36 long i1, i2; |
| 37 int min_lo, min_hi; |
| 38 } xdpsplit_t; |
| 39 |
| 40 |
| 41 |
| 42 |
| 43 static long xdl_split(unsigned long const *ha1, long off1, long lim1, |
| 44 unsigned long const *ha2, long off2, long lim2, |
| 45 long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl, |
| 46 xdalgoenv_t *xenv); |
| 47 static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1,
long chg2); |
| 48 |
| 49 |
| 50 |
| 51 |
| 52 |
| 53 /* |
| 54 * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers. |
| 55 * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both |
| 56 * the forward diagonal starting from (off1, off2) and the backward diagonal |
| 57 * starting from (lim1, lim2). If the K values on the same diagonal crosses |
| 58 * returns the furthest point of reach. We might end up having to expensive |
| 59 * cases using this algorithm is full, so a little bit of heuristic is needed |
| 60 * to cut the search and to return a suboptimal point. |
| 61 */ |
| 62 static long xdl_split(unsigned long const *ha1, long off1, long lim1, |
| 63 unsigned long const *ha2, long off2, long lim2, |
| 64 long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl, |
| 65 xdalgoenv_t *xenv) { |
| 66 long dmin = off1 - lim2, dmax = lim1 - off2; |
| 67 long fmid = off1 - off2, bmid = lim1 - lim2; |
| 68 long odd = (fmid - bmid) & 1; |
| 69 long fmin = fmid, fmax = fmid; |
| 70 long bmin = bmid, bmax = bmid; |
| 71 long ec, d, i1, i2, prev1, best, dd, v, k; |
| 72 |
| 73 /* |
| 74 * Set initial diagonal values for both forward and backward path. |
| 75 */ |
| 76 kvdf[fmid] = off1; |
| 77 kvdb[bmid] = lim1; |
| 78 |
| 79 for (ec = 1;; ec++) { |
| 80 int got_snake = 0; |
| 81 |
| 82 /* |
| 83 * We need to extent the diagonal "domain" by one. If the next |
| 84 * values exits the box boundaries we need to change it in the |
| 85 * opposite direction because (max - min) must be a power of two
. |
| 86 * Also we initialize the external K value to -1 so that we can |
| 87 * avoid extra conditions check inside the core loop. |
| 88 */ |
| 89 if (fmin > dmin) |
| 90 kvdf[--fmin - 1] = -1; |
| 91 else |
| 92 ++fmin; |
| 93 if (fmax < dmax) |
| 94 kvdf[++fmax + 1] = -1; |
| 95 else |
| 96 --fmax; |
| 97 |
| 98 for (d = fmax; d >= fmin; d -= 2) { |
| 99 if (kvdf[d - 1] >= kvdf[d + 1]) |
| 100 i1 = kvdf[d - 1] + 1; |
| 101 else |
| 102 i1 = kvdf[d + 1]; |
| 103 prev1 = i1; |
| 104 i2 = i1 - d; |
| 105 for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1+
+, i2++); |
| 106 if (i1 - prev1 > xenv->snake_cnt) |
| 107 got_snake = 1; |
| 108 kvdf[d] = i1; |
| 109 if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) { |
| 110 spl->i1 = i1; |
| 111 spl->i2 = i2; |
| 112 spl->min_lo = spl->min_hi = 1; |
| 113 return ec; |
| 114 } |
| 115 } |
| 116 |
| 117 /* |
| 118 * We need to extent the diagonal "domain" by one. If the next |
| 119 * values exits the box boundaries we need to change it in the |
| 120 * opposite direction because (max - min) must be a power of two
. |
| 121 * Also we initialize the external K value to -1 so that we can |
| 122 * avoid extra conditions check inside the core loop. |
| 123 */ |
| 124 if (bmin > dmin) |
| 125 kvdb[--bmin - 1] = XDL_LINE_MAX; |
| 126 else |
| 127 ++bmin; |
| 128 if (bmax < dmax) |
| 129 kvdb[++bmax + 1] = XDL_LINE_MAX; |
| 130 else |
| 131 --bmax; |
| 132 |
| 133 for (d = bmax; d >= bmin; d -= 2) { |
| 134 if (kvdb[d - 1] < kvdb[d + 1]) |
| 135 i1 = kvdb[d - 1]; |
| 136 else |
| 137 i1 = kvdb[d + 1] - 1; |
| 138 prev1 = i1; |
| 139 i2 = i1 - d; |
| 140 for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 -
1]; i1--, i2--); |
| 141 if (prev1 - i1 > xenv->snake_cnt) |
| 142 got_snake = 1; |
| 143 kvdb[d] = i1; |
| 144 if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) { |
| 145 spl->i1 = i1; |
| 146 spl->i2 = i2; |
| 147 spl->min_lo = spl->min_hi = 1; |
| 148 return ec; |
| 149 } |
| 150 } |
| 151 |
| 152 if (need_min) |
| 153 continue; |
| 154 |
| 155 /* |
| 156 * If the edit cost is above the heuristic trigger and if |
| 157 * we got a good snake, we sample current diagonals to see |
| 158 * if some of the, have reached an "interesting" path. Our |
| 159 * measure is a function of the distance from the diagonal |
| 160 * corner (i1 + i2) penalized with the distance from the |
| 161 * mid diagonal itself. If this value is above the current |
| 162 * edit cost times a magic factor (XDL_K_HEUR) we consider |
| 163 * it interesting. |
| 164 */ |
| 165 if (got_snake && ec > xenv->heur_min) { |
| 166 for (best = 0, d = fmax; d >= fmin; d -= 2) { |
| 167 dd = d > fmid ? d - fmid: fmid - d; |
| 168 i1 = kvdf[d]; |
| 169 i2 = i1 - d; |
| 170 v = (i1 - off1) + (i2 - off2) - dd; |
| 171 |
| 172 if (v > XDL_K_HEUR * ec && v > best && |
| 173 off1 + xenv->snake_cnt <= i1 && i1 < lim1 && |
| 174 off2 + xenv->snake_cnt <= i2 && i2 < lim2) { |
| 175 for (k = 1; ha1[i1 - k] == ha2[i2 - k];
k++) |
| 176 if (k == xenv->snake_cnt) { |
| 177 best = v; |
| 178 spl->i1 = i1; |
| 179 spl->i2 = i2; |
| 180 break; |
| 181 } |
| 182 } |
| 183 } |
| 184 if (best > 0) { |
| 185 spl->min_lo = 1; |
| 186 spl->min_hi = 0; |
| 187 return ec; |
| 188 } |
| 189 |
| 190 for (best = 0, d = bmax; d >= bmin; d -= 2) { |
| 191 dd = d > bmid ? d - bmid: bmid - d; |
| 192 i1 = kvdb[d]; |
| 193 i2 = i1 - d; |
| 194 v = (lim1 - i1) + (lim2 - i2) - dd; |
| 195 |
| 196 if (v > XDL_K_HEUR * ec && v > best && |
| 197 off1 < i1 && i1 <= lim1 - xenv->snake_cnt && |
| 198 off2 < i2 && i2 <= lim2 - xenv->snake_cnt) { |
| 199 for (k = 0; ha1[i1 + k] == ha2[i2 + k];
k++) |
| 200 if (k == xenv->snake_cnt - 1) { |
| 201 best = v; |
| 202 spl->i1 = i1; |
| 203 spl->i2 = i2; |
| 204 break; |
| 205 } |
| 206 } |
| 207 } |
| 208 if (best > 0) { |
| 209 spl->min_lo = 0; |
| 210 spl->min_hi = 1; |
| 211 return ec; |
| 212 } |
| 213 } |
| 214 |
| 215 /* |
| 216 * Enough is enough. We spent too much time here and now we coll
ect |
| 217 * the furthest reaching path using the (i1 + i2) measure. |
| 218 */ |
| 219 if (ec >= xenv->mxcost) { |
| 220 long fbest, fbest1, bbest, bbest1; |
| 221 |
| 222 fbest = fbest1 = -1; |
| 223 for (d = fmax; d >= fmin; d -= 2) { |
| 224 i1 = XDL_MIN(kvdf[d], lim1); |
| 225 i2 = i1 - d; |
| 226 if (lim2 < i2) |
| 227 i1 = lim2 + d, i2 = lim2; |
| 228 if (fbest < i1 + i2) { |
| 229 fbest = i1 + i2; |
| 230 fbest1 = i1; |
| 231 } |
| 232 } |
| 233 |
| 234 bbest = bbest1 = XDL_LINE_MAX; |
| 235 for (d = bmax; d >= bmin; d -= 2) { |
| 236 i1 = XDL_MAX(off1, kvdb[d]); |
| 237 i2 = i1 - d; |
| 238 if (i2 < off2) |
| 239 i1 = off2 + d, i2 = off2; |
| 240 if (i1 + i2 < bbest) { |
| 241 bbest = i1 + i2; |
| 242 bbest1 = i1; |
| 243 } |
| 244 } |
| 245 |
| 246 if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) { |
| 247 spl->i1 = fbest1; |
| 248 spl->i2 = fbest - fbest1; |
| 249 spl->min_lo = 1; |
| 250 spl->min_hi = 0; |
| 251 } else { |
| 252 spl->i1 = bbest1; |
| 253 spl->i2 = bbest - bbest1; |
| 254 spl->min_lo = 0; |
| 255 spl->min_hi = 1; |
| 256 } |
| 257 return ec; |
| 258 } |
| 259 } |
| 260 } |
| 261 |
| 262 |
| 263 /* |
| 264 * Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling |
| 265 * the box splitting function. Note that the real job (marking changed lines) |
| 266 * is done in the two boundary reaching checks. |
| 267 */ |
| 268 int xdl_recs_cmp(diffdata_t *dd1, long off1, long lim1, |
| 269 diffdata_t *dd2, long off2, long lim2, |
| 270 long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) { |
| 271 unsigned long const *ha1 = dd1->ha, *ha2 = dd2->ha; |
| 272 |
| 273 /* |
| 274 * Shrink the box by walking through each diagonal snake (SW and NE). |
| 275 */ |
| 276 for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off
2++); |
| 277 for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim
1--, lim2--); |
| 278 |
| 279 /* |
| 280 * If one dimension is empty, then all records on the other one must |
| 281 * be obviously changed. |
| 282 */ |
| 283 if (off1 == lim1) { |
| 284 char *rchg2 = dd2->rchg; |
| 285 long *rindex2 = dd2->rindex; |
| 286 |
| 287 for (; off2 < lim2; off2++) |
| 288 rchg2[rindex2[off2]] = 1; |
| 289 } else if (off2 == lim2) { |
| 290 char *rchg1 = dd1->rchg; |
| 291 long *rindex1 = dd1->rindex; |
| 292 |
| 293 for (; off1 < lim1; off1++) |
| 294 rchg1[rindex1[off1]] = 1; |
| 295 } else { |
| 296 xdpsplit_t spl; |
| 297 spl.i1 = spl.i2 = 0; |
| 298 |
| 299 /* |
| 300 * Divide ... |
| 301 */ |
| 302 if (xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb, |
| 303 need_min, &spl, xenv) < 0) { |
| 304 |
| 305 return -1; |
| 306 } |
| 307 |
| 308 /* |
| 309 * ... et Impera. |
| 310 */ |
| 311 if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2, |
| 312 kvdf, kvdb, spl.min_lo, xenv) < 0 || |
| 313 xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2, |
| 314 kvdf, kvdb, spl.min_hi, xenv) < 0) { |
| 315 |
| 316 return -1; |
| 317 } |
| 318 } |
| 319 |
| 320 return 0; |
| 321 } |
| 322 |
| 323 |
| 324 int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp, |
| 325 xdfenv_t *xe) { |
| 326 long ndiags; |
| 327 long *kvd, *kvdf, *kvdb; |
| 328 xdalgoenv_t xenv; |
| 329 diffdata_t dd1, dd2; |
| 330 |
| 331 if (XDF_DIFF_ALG(xpp->flags) == XDF_PATIENCE_DIFF) |
| 332 return xdl_do_patience_diff(mf1, mf2, xpp, xe); |
| 333 |
| 334 if (XDF_DIFF_ALG(xpp->flags) == XDF_HISTOGRAM_DIFF) |
| 335 return xdl_do_histogram_diff(mf1, mf2, xpp, xe); |
| 336 |
| 337 if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) { |
| 338 |
| 339 return -1; |
| 340 } |
| 341 |
| 342 /* |
| 343 * Allocate and setup K vectors to be used by the differential algorithm
. |
| 344 * One is to store the forward path and one to store the backward path. |
| 345 */ |
| 346 ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3; |
| 347 if (!(kvd = (long *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) { |
| 348 |
| 349 xdl_free_env(xe); |
| 350 return -1; |
| 351 } |
| 352 kvdf = kvd; |
| 353 kvdb = kvdf + ndiags; |
| 354 kvdf += xe->xdf2.nreff + 1; |
| 355 kvdb += xe->xdf2.nreff + 1; |
| 356 |
| 357 xenv.mxcost = xdl_bogosqrt(ndiags); |
| 358 if (xenv.mxcost < XDL_MAX_COST_MIN) |
| 359 xenv.mxcost = XDL_MAX_COST_MIN; |
| 360 xenv.snake_cnt = XDL_SNAKE_CNT; |
| 361 xenv.heur_min = XDL_HEUR_MIN_COST; |
| 362 |
| 363 dd1.nrec = xe->xdf1.nreff; |
| 364 dd1.ha = xe->xdf1.ha; |
| 365 dd1.rchg = xe->xdf1.rchg; |
| 366 dd1.rindex = xe->xdf1.rindex; |
| 367 dd2.nrec = xe->xdf2.nreff; |
| 368 dd2.ha = xe->xdf2.ha; |
| 369 dd2.rchg = xe->xdf2.rchg; |
| 370 dd2.rindex = xe->xdf2.rindex; |
| 371 |
| 372 if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec, |
| 373 kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv
) < 0) { |
| 374 |
| 375 xdl_free(kvd); |
| 376 xdl_free_env(xe); |
| 377 return -1; |
| 378 } |
| 379 |
| 380 xdl_free(kvd); |
| 381 |
| 382 return 0; |
| 383 } |
| 384 |
| 385 |
| 386 static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1,
long chg2) { |
| 387 xdchange_t *xch; |
| 388 |
| 389 if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t)))) |
| 390 return NULL; |
| 391 |
| 392 xch->next = xscr; |
| 393 xch->i1 = i1; |
| 394 xch->i2 = i2; |
| 395 xch->chg1 = chg1; |
| 396 xch->chg2 = chg2; |
| 397 xch->ignore = 0; |
| 398 |
| 399 return xch; |
| 400 } |
| 401 |
| 402 |
| 403 int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, long flags) { |
| 404 long ix, ixo, ixs, ixref, grpsiz, nrec = xdf->nrec; |
| 405 char *rchg = xdf->rchg, *rchgo = xdfo->rchg; |
| 406 xrecord_t **recs = xdf->recs; |
| 407 |
| 408 /* |
| 409 * This is the same of what GNU diff does. Move back and forward |
| 410 * change groups for a consistent and pretty diff output. This also |
| 411 * helps in finding joinable change groups and reduce the diff size. |
| 412 */ |
| 413 for (ix = ixo = 0;;) { |
| 414 /* |
| 415 * Find the first changed line in the to-be-compacted file. |
| 416 * We need to keep track of both indexes, so if we find a |
| 417 * changed lines group on the other file, while scanning the |
| 418 * to-be-compacted file, we need to skip it properly. Note |
| 419 * that loops that are testing for changed lines on rchg* do |
| 420 * not need index bounding since the array is prepared with |
| 421 * a zero at position -1 and N. |
| 422 */ |
| 423 for (; ix < nrec && !rchg[ix]; ix++) |
| 424 while (rchgo[ixo++]); |
| 425 if (ix == nrec) |
| 426 break; |
| 427 |
| 428 /* |
| 429 * Record the start of a changed-group in the to-be-compacted fi
le |
| 430 * and find the end of it, on both to-be-compacted and other fil
e |
| 431 * indexes (ix and ixo). |
| 432 */ |
| 433 ixs = ix; |
| 434 for (ix++; rchg[ix]; ix++); |
| 435 for (; rchgo[ixo]; ixo++); |
| 436 |
| 437 do { |
| 438 grpsiz = ix - ixs; |
| 439 |
| 440 /* |
| 441 * If the line before the current change group, is equal
to |
| 442 * the last line of the current change group, shift back
ward |
| 443 * the group. |
| 444 */ |
| 445 while (ixs > 0 && recs[ixs - 1]->ha == recs[ix - 1]->ha
&& |
| 446 xdl_recmatch(recs[ixs - 1]->ptr, recs[ixs - 1]->s
ize, recs[ix - 1]->ptr, recs[ix - 1]->size, flags)) { |
| 447 rchg[--ixs] = 1; |
| 448 rchg[--ix] = 0; |
| 449 |
| 450 /* |
| 451 * This change might have joined two change grou
ps, |
| 452 * so we try to take this scenario in account by
moving |
| 453 * the start index accordingly (and so the other
-file |
| 454 * end-of-group index). |
| 455 */ |
| 456 for (; rchg[ixs - 1]; ixs--); |
| 457 while (rchgo[--ixo]); |
| 458 } |
| 459 |
| 460 /* |
| 461 * Record the end-of-group position in case we are match
ed |
| 462 * with a group of changes in the other file (that is, t
he |
| 463 * change record before the end-of-group index in the ot
her |
| 464 * file is set). |
| 465 */ |
| 466 ixref = rchgo[ixo - 1] ? ix: nrec; |
| 467 |
| 468 /* |
| 469 * If the first line of the current change group, is equ
al to |
| 470 * the line next of the current change group, shift forw
ard |
| 471 * the group. |
| 472 */ |
| 473 while (ix < nrec && recs[ixs]->ha == recs[ix]->ha && |
| 474 xdl_recmatch(recs[ixs]->ptr, recs[ixs]->size, rec
s[ix]->ptr, recs[ix]->size, flags)) { |
| 475 rchg[ixs++] = 0; |
| 476 rchg[ix++] = 1; |
| 477 |
| 478 /* |
| 479 * This change might have joined two change grou
ps, |
| 480 * so we try to take this scenario in account by
moving |
| 481 * the start index accordingly (and so the other
-file |
| 482 * end-of-group index). Keep tracking the refere
nce |
| 483 * index in case we are shifting together with a |
| 484 * corresponding group of changes in the other f
ile. |
| 485 */ |
| 486 for (; rchg[ix]; ix++); |
| 487 while (rchgo[++ixo]) |
| 488 ixref = ix; |
| 489 } |
| 490 } while (grpsiz != ix - ixs); |
| 491 |
| 492 /* |
| 493 * Try to move back the possibly merged group of changes, to mat
ch |
| 494 * the recorded position in the other file. |
| 495 */ |
| 496 while (ixref < ix) { |
| 497 rchg[--ixs] = 1; |
| 498 rchg[--ix] = 0; |
| 499 while (rchgo[--ixo]); |
| 500 } |
| 501 } |
| 502 |
| 503 return 0; |
| 504 } |
| 505 |
| 506 |
| 507 int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) { |
| 508 xdchange_t *cscr = NULL, *xch; |
| 509 char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg; |
| 510 long i1, i2, l1, l2; |
| 511 |
| 512 /* |
| 513 * Trivial. Collects "groups" of changes and creates an edit script. |
| 514 */ |
| 515 for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i
2--) |
| 516 if (rchg1[i1 - 1] || rchg2[i2 - 1]) { |
| 517 for (l1 = i1; rchg1[i1 - 1]; i1--); |
| 518 for (l2 = i2; rchg2[i2 - 1]; i2--); |
| 519 |
| 520 if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i
2))) { |
| 521 xdl_free_script(cscr); |
| 522 return -1; |
| 523 } |
| 524 cscr = xch; |
| 525 } |
| 526 |
| 527 *xscr = cscr; |
| 528 |
| 529 return 0; |
| 530 } |
| 531 |
| 532 |
| 533 void xdl_free_script(xdchange_t *xscr) { |
| 534 xdchange_t *xch; |
| 535 |
| 536 while ((xch = xscr) != NULL) { |
| 537 xscr = xscr->next; |
| 538 xdl_free(xch); |
| 539 } |
| 540 } |
| 541 |
| 542 static int xdl_call_hunk_func(xdfenv_t *xe, xdchange_t *xscr, xdemitcb_t *ecb, |
| 543 xdemitconf_t const *xecfg) |
| 544 { |
| 545 xdchange_t *xch, *xche; |
| 546 |
| 547 for (xch = xscr; xch; xch = xche->next) { |
| 548 xche = xdl_get_hunk(&xch, xecfg); |
| 549 if (!xch) |
| 550 break; |
| 551 if (xecfg->hunk_func(xch->i1, xche->i1 + xche->chg1 - xch->i1, |
| 552 xch->i2, xche->i2 + xche->chg2 - xch->i2, |
| 553 ecb->priv) < 0) |
| 554 return -1; |
| 555 } |
| 556 return 0; |
| 557 } |
| 558 |
| 559 static void xdl_mark_ignorable(xdchange_t *xscr, xdfenv_t *xe, long flags) |
| 560 { |
| 561 xdchange_t *xch; |
| 562 |
| 563 for (xch = xscr; xch; xch = xch->next) { |
| 564 int ignore = 1; |
| 565 xrecord_t **rec; |
| 566 long i; |
| 567 |
| 568 rec = &xe->xdf1.recs[xch->i1]; |
| 569 for (i = 0; i < xch->chg1 && ignore; i++) |
| 570 ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags)
; |
| 571 |
| 572 rec = &xe->xdf2.recs[xch->i2]; |
| 573 for (i = 0; i < xch->chg2 && ignore; i++) |
| 574 ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags)
; |
| 575 |
| 576 xch->ignore = ignore; |
| 577 } |
| 578 } |
| 579 |
| 580 int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp, |
| 581 xdemitconf_t const *xecfg, xdemitcb_t *ecb) { |
| 582 xdchange_t *xscr; |
| 583 xdfenv_t xe; |
| 584 emit_func_t ef = xecfg->hunk_func ? xdl_call_hunk_func : xdl_emit_diff; |
| 585 |
| 586 if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) { |
| 587 |
| 588 return -1; |
| 589 } |
| 590 if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 || |
| 591 xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 || |
| 592 xdl_build_script(&xe, &xscr) < 0) { |
| 593 |
| 594 xdl_free_env(&xe); |
| 595 return -1; |
| 596 } |
| 597 if (xscr) { |
| 598 if (xpp->flags & XDF_IGNORE_BLANK_LINES) |
| 599 xdl_mark_ignorable(xscr, &xe, xpp->flags); |
| 600 |
| 601 if (ef(&xe, xscr, ecb, xecfg) < 0) { |
| 602 |
| 603 xdl_free_script(xscr); |
| 604 xdl_free_env(&xe); |
| 605 return -1; |
| 606 } |
| 607 xdl_free_script(xscr); |
| 608 } |
| 609 xdl_free_env(&xe); |
| 610 |
| 611 return 0; |
| 612 } |
OLD | NEW |