Index: src/hydrogen-bce.cc |
diff --git a/src/hydrogen-bce.cc b/src/hydrogen-bce.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..e50cd7aaf0380b5f85efadea594d269b3b90986b |
--- /dev/null |
+++ b/src/hydrogen-bce.cc |
@@ -0,0 +1,390 @@ |
+// Copyright 2013 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#include "hydrogen-bce.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+// We try to "factor up" HBoundsCheck instructions towards the root of the |
+// dominator tree. |
+// For now we handle checks where the index is like "exp + int32value". |
+// If in the dominator tree we check "exp + v1" and later (dominated) |
+// "exp + v2", if v2 <= v1 we can safely remove the second check, and if |
+// v2 > v1 we can use v2 in the 1st check and again remove the second. |
+// To do so we keep a dictionary of all checks where the key if the pair |
+// "exp, length". |
+// The class BoundsCheckKey represents this key. |
+class BoundsCheckKey : public ZoneObject { |
+ public: |
+ HValue* IndexBase() const { return index_base_; } |
+ HValue* Length() const { return length_; } |
+ |
+ uint32_t Hash() { |
+ return static_cast<uint32_t>(index_base_->Hashcode() ^ length_->Hashcode()); |
+ } |
+ |
+ static BoundsCheckKey* Create(Zone* zone, |
+ HBoundsCheck* check, |
+ int32_t* offset) { |
+ if (!check->index()->representation().IsSmiOrInteger32()) return NULL; |
+ |
+ HValue* index_base = NULL; |
+ HConstant* constant = NULL; |
+ bool is_sub = false; |
+ |
+ if (check->index()->IsAdd()) { |
+ HAdd* index = HAdd::cast(check->index()); |
+ if (index->left()->IsConstant()) { |
+ constant = HConstant::cast(index->left()); |
+ index_base = index->right(); |
+ } else if (index->right()->IsConstant()) { |
+ constant = HConstant::cast(index->right()); |
+ index_base = index->left(); |
+ } |
+ } else if (check->index()->IsSub()) { |
+ HSub* index = HSub::cast(check->index()); |
+ is_sub = true; |
+ if (index->left()->IsConstant()) { |
+ constant = HConstant::cast(index->left()); |
+ index_base = index->right(); |
+ } else if (index->right()->IsConstant()) { |
+ constant = HConstant::cast(index->right()); |
+ index_base = index->left(); |
+ } |
+ } |
+ |
+ if (constant != NULL && constant->HasInteger32Value()) { |
+ *offset = is_sub ? - constant->Integer32Value() |
+ : constant->Integer32Value(); |
+ } else { |
+ *offset = 0; |
+ index_base = check->index(); |
+ } |
+ |
+ return new(zone) BoundsCheckKey(index_base, check->length()); |
+ } |
+ |
+ private: |
+ BoundsCheckKey(HValue* index_base, HValue* length) |
+ : index_base_(index_base), |
+ length_(length) { } |
+ |
+ HValue* index_base_; |
+ HValue* length_; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(BoundsCheckKey); |
+}; |
+ |
+ |
+// Data about each HBoundsCheck that can be eliminated or moved. |
+// It is the "value" in the dictionary indexed by "base-index, length" |
+// (the key is BoundsCheckKey). |
+// We scan the code with a dominator tree traversal. |
+// Traversing the dominator tree we keep a stack (implemented as a singly |
+// linked list) of "data" for each basic block that contains a relevant check |
+// with the same key (the dictionary holds the head of the list). |
+// We also keep all the "data" created for a given basic block in a list, and |
+// use it to "clean up" the dictionary when backtracking in the dominator tree |
+// traversal. |
+// Doing this each dictionary entry always directly points to the check that |
+// is dominating the code being examined now. |
+// We also track the current "offset" of the index expression and use it to |
+// decide if any check is already "covered" (so it can be removed) or not. |
+class BoundsCheckBbData: public ZoneObject { |
+ public: |
+ BoundsCheckKey* Key() const { return key_; } |
+ int32_t LowerOffset() const { return lower_offset_; } |
+ int32_t UpperOffset() const { return upper_offset_; } |
+ HBasicBlock* BasicBlock() const { return basic_block_; } |
+ HBoundsCheck* LowerCheck() const { return lower_check_; } |
+ HBoundsCheck* UpperCheck() const { return upper_check_; } |
+ BoundsCheckBbData* NextInBasicBlock() const { return next_in_bb_; } |
+ BoundsCheckBbData* FatherInDominatorTree() const { return father_in_dt_; } |
+ |
+ bool OffsetIsCovered(int32_t offset) const { |
+ return offset >= LowerOffset() && offset <= UpperOffset(); |
+ } |
+ |
+ bool HasSingleCheck() { return lower_check_ == upper_check_; } |
+ |
+ // The goal of this method is to modify either upper_offset_ or |
+ // lower_offset_ so that also new_offset is covered (the covered |
+ // range grows). |
+ // |
+ // The precondition is that new_check follows UpperCheck() and |
+ // LowerCheck() in the same basic block, and that new_offset is not |
+ // covered (otherwise we could simply remove new_check). |
+ // |
+ // If HasSingleCheck() is true then new_check is added as "second check" |
+ // (either upper or lower; note that HasSingleCheck() becomes false). |
+ // Otherwise one of the current checks is modified so that it also covers |
+ // new_offset, and new_check is removed. |
+ // |
+ // If the check cannot be modified because the context is unknown it |
+ // returns false, otherwise it returns true. |
+ bool CoverCheck(HBoundsCheck* new_check, |
+ int32_t new_offset) { |
+ ASSERT(new_check->index()->representation().IsSmiOrInteger32()); |
+ bool keep_new_check = false; |
+ |
+ if (new_offset > upper_offset_) { |
+ upper_offset_ = new_offset; |
+ if (HasSingleCheck()) { |
+ keep_new_check = true; |
+ upper_check_ = new_check; |
+ } else { |
+ bool result = BuildOffsetAdd(upper_check_, |
+ &added_upper_index_, |
+ &added_upper_offset_, |
+ Key()->IndexBase(), |
+ new_check->index()->representation(), |
+ new_offset); |
+ if (!result) return false; |
+ upper_check_->ReplaceAllUsesWith(upper_check_->index()); |
+ upper_check_->SetOperandAt(0, added_upper_index_); |
+ } |
+ } else if (new_offset < lower_offset_) { |
+ lower_offset_ = new_offset; |
+ if (HasSingleCheck()) { |
+ keep_new_check = true; |
+ lower_check_ = new_check; |
+ } else { |
+ bool result = BuildOffsetAdd(lower_check_, |
+ &added_lower_index_, |
+ &added_lower_offset_, |
+ Key()->IndexBase(), |
+ new_check->index()->representation(), |
+ new_offset); |
+ if (!result) return false; |
+ lower_check_->ReplaceAllUsesWith(lower_check_->index()); |
+ lower_check_->SetOperandAt(0, added_lower_index_); |
+ } |
+ } else { |
+ ASSERT(false); |
+ } |
+ |
+ if (!keep_new_check) { |
+ new_check->DeleteAndReplaceWith(new_check->ActualValue()); |
+ } |
+ |
+ return true; |
+ } |
+ |
+ void RemoveZeroOperations() { |
+ RemoveZeroAdd(&added_lower_index_, &added_lower_offset_); |
+ RemoveZeroAdd(&added_upper_index_, &added_upper_offset_); |
+ } |
+ |
+ BoundsCheckBbData(BoundsCheckKey* key, |
+ int32_t lower_offset, |
+ int32_t upper_offset, |
+ HBasicBlock* bb, |
+ HBoundsCheck* lower_check, |
+ HBoundsCheck* upper_check, |
+ BoundsCheckBbData* next_in_bb, |
+ BoundsCheckBbData* father_in_dt) |
+ : key_(key), |
+ lower_offset_(lower_offset), |
+ upper_offset_(upper_offset), |
+ basic_block_(bb), |
+ lower_check_(lower_check), |
+ upper_check_(upper_check), |
+ added_lower_index_(NULL), |
+ added_lower_offset_(NULL), |
+ added_upper_index_(NULL), |
+ added_upper_offset_(NULL), |
+ next_in_bb_(next_in_bb), |
+ father_in_dt_(father_in_dt) { } |
+ |
+ private: |
+ BoundsCheckKey* key_; |
+ int32_t lower_offset_; |
+ int32_t upper_offset_; |
+ HBasicBlock* basic_block_; |
+ HBoundsCheck* lower_check_; |
+ HBoundsCheck* upper_check_; |
+ HInstruction* added_lower_index_; |
+ HConstant* added_lower_offset_; |
+ HInstruction* added_upper_index_; |
+ HConstant* added_upper_offset_; |
+ BoundsCheckBbData* next_in_bb_; |
+ BoundsCheckBbData* father_in_dt_; |
+ |
+ // Given an existing add instruction and a bounds check it tries to |
+ // find the current context (either of the add or of the check index). |
+ HValue* IndexContext(HInstruction* add, HBoundsCheck* check) { |
+ if (add != NULL && add->IsAdd()) { |
+ return HAdd::cast(add)->context(); |
+ } |
+ if (check->index()->IsBinaryOperation()) { |
+ return HBinaryOperation::cast(check->index())->context(); |
+ } |
+ return NULL; |
+ } |
+ |
+ // This function returns false if it cannot build the add because the |
+ // current context cannot be determined. |
+ bool BuildOffsetAdd(HBoundsCheck* check, |
+ HInstruction** add, |
+ HConstant** constant, |
+ HValue* original_value, |
+ Representation representation, |
+ int32_t new_offset) { |
+ HValue* index_context = IndexContext(*add, check); |
+ if (index_context == NULL) return false; |
+ |
+ HConstant* new_constant = new(BasicBlock()->zone()) HConstant( |
+ new_offset, representation); |
+ if (*add == NULL) { |
+ new_constant->InsertBefore(check); |
+ (*add) = HAdd::New( |
+ BasicBlock()->zone(), index_context, original_value, new_constant); |
+ (*add)->AssumeRepresentation(representation); |
+ (*add)->InsertBefore(check); |
+ } else { |
+ new_constant->InsertBefore(*add); |
+ (*constant)->DeleteAndReplaceWith(new_constant); |
+ } |
+ *constant = new_constant; |
+ return true; |
+ } |
+ |
+ void RemoveZeroAdd(HInstruction** add, HConstant** constant) { |
+ if (*add != NULL && (*add)->IsAdd() && (*constant)->Integer32Value() == 0) { |
+ (*add)->DeleteAndReplaceWith(HAdd::cast(*add)->left()); |
+ (*constant)->DeleteAndReplaceWith(NULL); |
+ } |
+ } |
+ |
+ DISALLOW_COPY_AND_ASSIGN(BoundsCheckBbData); |
+}; |
+ |
+ |
+static bool BoundsCheckKeyMatch(void* key1, void* key2) { |
+ BoundsCheckKey* k1 = static_cast<BoundsCheckKey*>(key1); |
+ BoundsCheckKey* k2 = static_cast<BoundsCheckKey*>(key2); |
+ return k1->IndexBase() == k2->IndexBase() && k1->Length() == k2->Length(); |
+} |
+ |
+ |
+BoundsCheckTable::BoundsCheckTable(Zone* zone) |
+ : ZoneHashMap(BoundsCheckKeyMatch, ZoneHashMap::kDefaultHashMapCapacity, |
+ ZoneAllocationPolicy(zone)) { } |
+ |
+ |
+BoundsCheckBbData** BoundsCheckTable::LookupOrInsert(BoundsCheckKey* key, |
+ Zone* zone) { |
+ return reinterpret_cast<BoundsCheckBbData**>( |
+ &(Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value)); |
+} |
+ |
+ |
+void BoundsCheckTable::Insert(BoundsCheckKey* key, |
+ BoundsCheckBbData* data, |
+ Zone* zone) { |
+ Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value = data; |
+} |
+ |
+ |
+void BoundsCheckTable::Delete(BoundsCheckKey* key) { |
+ Remove(key, key->Hash()); |
+} |
+ |
+ |
+// Eliminates checks in bb and recursively in the dominated blocks. |
+// Also replace the results of check instructions with the original value, if |
+// the result is used. This is safe now, since we don't do code motion after |
+// this point. It enables better register allocation since the value produced |
+// by check instructions is really a copy of the original value. |
+void HBoundsCheckEliminationPhase::EliminateRedundantBoundsChecks( |
+ HBasicBlock* bb) { |
+ BoundsCheckBbData* bb_data_list = NULL; |
+ |
+ for (HInstructionIterator it(bb); !it.Done(); it.Advance()) { |
+ HInstruction* i = it.Current(); |
+ if (!i->IsBoundsCheck()) continue; |
+ |
+ HBoundsCheck* check = HBoundsCheck::cast(i); |
+ int32_t offset; |
+ BoundsCheckKey* key = |
+ BoundsCheckKey::Create(zone(), check, &offset); |
+ if (key == NULL) continue; |
+ BoundsCheckBbData** data_p = table_.LookupOrInsert(key, zone()); |
+ BoundsCheckBbData* data = *data_p; |
+ if (data == NULL) { |
+ bb_data_list = new(zone()) BoundsCheckBbData(key, |
+ offset, |
+ offset, |
+ bb, |
+ check, |
+ check, |
+ bb_data_list, |
+ NULL); |
+ *data_p = bb_data_list; |
+ } else if (data->OffsetIsCovered(offset)) { |
+ check->DeleteAndReplaceWith(check->ActualValue()); |
+ } else if (data->BasicBlock() != bb || |
+ !data->CoverCheck(check, offset)) { |
+ // If the check is in the current BB we try to modify it by calling |
+ // "CoverCheck", but if also that fails we record the current offsets |
+ // in a new data instance because from now on they are covered. |
+ int32_t new_lower_offset = offset < data->LowerOffset() |
+ ? offset |
+ : data->LowerOffset(); |
+ int32_t new_upper_offset = offset > data->UpperOffset() |
+ ? offset |
+ : data->UpperOffset(); |
+ bb_data_list = new(zone()) BoundsCheckBbData(key, |
+ new_lower_offset, |
+ new_upper_offset, |
+ bb, |
+ data->LowerCheck(), |
+ data->UpperCheck(), |
+ bb_data_list, |
+ data); |
+ table_.Insert(key, bb_data_list, zone()); |
+ } |
+ } |
+ |
+ for (int i = 0; i < bb->dominated_blocks()->length(); ++i) { |
+ EliminateRedundantBoundsChecks(bb->dominated_blocks()->at(i)); |
+ } |
+ |
+ for (BoundsCheckBbData* data = bb_data_list; |
+ data != NULL; |
+ data = data->NextInBasicBlock()) { |
+ data->RemoveZeroOperations(); |
+ if (data->FatherInDominatorTree()) { |
+ table_.Insert(data->Key(), data->FatherInDominatorTree(), zone()); |
+ } else { |
+ table_.Delete(data->Key()); |
+ } |
+ } |
+} |
+ |
+} } // namespace v8::internal |