| Index: net/third_party/nss/ssl/dtlscon.c
|
| diff --git a/net/third_party/nss/ssl/dtlscon.c b/net/third_party/nss/ssl/dtlscon.c
|
| deleted file mode 100644
|
| index 35d995e91756f353eb67479c29348c21e09689c5..0000000000000000000000000000000000000000
|
| --- a/net/third_party/nss/ssl/dtlscon.c
|
| +++ /dev/null
|
| @@ -1,1195 +0,0 @@
|
| -/* This Source Code Form is subject to the terms of the Mozilla Public
|
| - * License, v. 2.0. If a copy of the MPL was not distributed with this
|
| - * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
| -
|
| -/*
|
| - * DTLS Protocol
|
| - */
|
| -
|
| -#include "ssl.h"
|
| -#include "sslimpl.h"
|
| -#include "sslproto.h"
|
| -
|
| -#ifndef PR_ARRAY_SIZE
|
| -#define PR_ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
|
| -#endif
|
| -
|
| -static SECStatus dtls_TransmitMessageFlight(sslSocket *ss);
|
| -static void dtls_RetransmitTimerExpiredCb(sslSocket *ss);
|
| -static SECStatus dtls_SendSavedWriteData(sslSocket *ss);
|
| -
|
| -/* -28 adjusts for the IP/UDP header */
|
| -static const PRUint16 COMMON_MTU_VALUES[] = {
|
| - 1500 - 28, /* Ethernet MTU */
|
| - 1280 - 28, /* IPv6 minimum MTU */
|
| - 576 - 28, /* Common assumption */
|
| - 256 - 28 /* We're in serious trouble now */
|
| -};
|
| -
|
| -#define DTLS_COOKIE_BYTES 32
|
| -
|
| -/* List copied from ssl3con.c:cipherSuites */
|
| -static const ssl3CipherSuite nonDTLSSuites[] = {
|
| -#ifndef NSS_DISABLE_ECC
|
| - TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
|
| - TLS_ECDHE_RSA_WITH_RC4_128_SHA,
|
| -#endif /* NSS_DISABLE_ECC */
|
| - TLS_DHE_DSS_WITH_RC4_128_SHA,
|
| -#ifndef NSS_DISABLE_ECC
|
| - TLS_ECDH_RSA_WITH_RC4_128_SHA,
|
| - TLS_ECDH_ECDSA_WITH_RC4_128_SHA,
|
| -#endif /* NSS_DISABLE_ECC */
|
| - TLS_RSA_WITH_RC4_128_MD5,
|
| - TLS_RSA_WITH_RC4_128_SHA,
|
| - TLS_RSA_EXPORT1024_WITH_RC4_56_SHA,
|
| - TLS_RSA_EXPORT_WITH_RC4_40_MD5,
|
| - 0 /* End of list marker */
|
| -};
|
| -
|
| -/* Map back and forth between TLS and DTLS versions in wire format.
|
| - * Mapping table is:
|
| - *
|
| - * TLS DTLS
|
| - * 1.1 (0302) 1.0 (feff)
|
| - * 1.2 (0303) 1.2 (fefd)
|
| - * 1.3 (0304) 1.3 (fefc)
|
| - */
|
| -SSL3ProtocolVersion
|
| -dtls_TLSVersionToDTLSVersion(SSL3ProtocolVersion tlsv)
|
| -{
|
| - if (tlsv == SSL_LIBRARY_VERSION_TLS_1_1) {
|
| - return SSL_LIBRARY_VERSION_DTLS_1_0_WIRE;
|
| - }
|
| - if (tlsv == SSL_LIBRARY_VERSION_TLS_1_2) {
|
| - return SSL_LIBRARY_VERSION_DTLS_1_2_WIRE;
|
| - }
|
| - if (tlsv == SSL_LIBRARY_VERSION_TLS_1_3) {
|
| - return SSL_LIBRARY_VERSION_DTLS_1_3_WIRE;
|
| - }
|
| -
|
| - /* Anything other than TLS 1.1 or 1.2 is an error, so return
|
| - * the invalid version 0xffff. */
|
| - return 0xffff;
|
| -}
|
| -
|
| -/* Map known DTLS versions to known TLS versions.
|
| - * - Invalid versions (< 1.0) return a version of 0
|
| - * - Versions > known return a version one higher than we know of
|
| - * to accomodate a theoretically newer version */
|
| -SSL3ProtocolVersion
|
| -dtls_DTLSVersionToTLSVersion(SSL3ProtocolVersion dtlsv)
|
| -{
|
| - if (MSB(dtlsv) == 0xff) {
|
| - return 0;
|
| - }
|
| -
|
| - if (dtlsv == SSL_LIBRARY_VERSION_DTLS_1_0_WIRE) {
|
| - return SSL_LIBRARY_VERSION_TLS_1_1;
|
| - }
|
| - /* Handle the skipped version of DTLS 1.1 by returning
|
| - * an error. */
|
| - if (dtlsv == ((~0x0101) & 0xffff)) {
|
| - return 0;
|
| - }
|
| - if (dtlsv == SSL_LIBRARY_VERSION_DTLS_1_2_WIRE) {
|
| - return SSL_LIBRARY_VERSION_TLS_1_2;
|
| - }
|
| - if (dtlsv == SSL_LIBRARY_VERSION_DTLS_1_3_WIRE) {
|
| - return SSL_LIBRARY_VERSION_TLS_1_3;
|
| - }
|
| -
|
| - /* Return a fictional higher version than we know of */
|
| - return SSL_LIBRARY_VERSION_MAX_SUPPORTED + 1;
|
| -}
|
| -
|
| -/* On this socket, Disable non-DTLS cipher suites in the argument's list */
|
| -SECStatus
|
| -ssl3_DisableNonDTLSSuites(sslSocket *ss)
|
| -{
|
| - const ssl3CipherSuite *suite;
|
| -
|
| - for (suite = nonDTLSSuites; *suite; ++suite) {
|
| - PORT_CheckSuccess(ssl3_CipherPrefSet(ss, *suite, PR_FALSE));
|
| - }
|
| - return SECSuccess;
|
| -}
|
| -
|
| -/* Allocate a DTLSQueuedMessage.
|
| - *
|
| - * Called from dtls_QueueMessage()
|
| - */
|
| -static DTLSQueuedMessage *
|
| -dtls_AllocQueuedMessage(PRUint16 epoch, SSL3ContentType type,
|
| - const unsigned char *data, PRUint32 len)
|
| -{
|
| - DTLSQueuedMessage *msg = NULL;
|
| -
|
| - msg = PORT_ZAlloc(sizeof(DTLSQueuedMessage));
|
| - if (!msg)
|
| - return NULL;
|
| -
|
| - msg->data = PORT_Alloc(len);
|
| - if (!msg->data) {
|
| - PORT_Free(msg);
|
| - return NULL;
|
| - }
|
| - PORT_Memcpy(msg->data, data, len);
|
| -
|
| - msg->len = len;
|
| - msg->epoch = epoch;
|
| - msg->type = type;
|
| -
|
| - return msg;
|
| -}
|
| -
|
| -/*
|
| - * Free a handshake message
|
| - *
|
| - * Called from dtls_FreeHandshakeMessages()
|
| - */
|
| -static void
|
| -dtls_FreeHandshakeMessage(DTLSQueuedMessage *msg)
|
| -{
|
| - if (!msg)
|
| - return;
|
| -
|
| - PORT_ZFree(msg->data, msg->len);
|
| - PORT_Free(msg);
|
| -}
|
| -
|
| -/*
|
| - * Free a list of handshake messages
|
| - *
|
| - * Called from:
|
| - * dtls_HandleHandshake()
|
| - * ssl3_DestroySSL3Info()
|
| - */
|
| -void
|
| -dtls_FreeHandshakeMessages(PRCList *list)
|
| -{
|
| - PRCList *cur_p;
|
| -
|
| - while (!PR_CLIST_IS_EMPTY(list)) {
|
| - cur_p = PR_LIST_TAIL(list);
|
| - PR_REMOVE_LINK(cur_p);
|
| - dtls_FreeHandshakeMessage((DTLSQueuedMessage *)cur_p);
|
| - }
|
| -}
|
| -
|
| -/* Called only from ssl3_HandleRecord, for each (deciphered) DTLS record.
|
| - * origBuf is the decrypted ssl record content and is expected to contain
|
| - * complete handshake records
|
| - * Caller must hold the handshake and RecvBuf locks.
|
| - *
|
| - * Note that this code uses msg_len for two purposes:
|
| - *
|
| - * (1) To pass the length to ssl3_HandleHandshakeMessage()
|
| - * (2) To carry the length of a message currently being reassembled
|
| - *
|
| - * However, unlike ssl3_HandleHandshake(), it is not used to carry
|
| - * the state of reassembly (i.e., whether one is in progress). That
|
| - * is carried in recvdHighWater and recvdFragments.
|
| - */
|
| -#define OFFSET_BYTE(o) (o / 8)
|
| -#define OFFSET_MASK(o) (1 << (o % 8))
|
| -
|
| -SECStatus
|
| -dtls_HandleHandshake(sslSocket *ss, sslBuffer *origBuf)
|
| -{
|
| - /* XXX OK for now.
|
| - * This doesn't work properly with asynchronous certificate validation.
|
| - * because that returns a WOULDBLOCK error. The current DTLS
|
| - * applications do not need asynchronous validation, but in the
|
| - * future we will need to add this.
|
| - */
|
| - sslBuffer buf = *origBuf;
|
| - SECStatus rv = SECSuccess;
|
| -
|
| - PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
|
| - PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
| -
|
| - while (buf.len > 0) {
|
| - PRUint8 type;
|
| - PRUint32 message_length;
|
| - PRUint16 message_seq;
|
| - PRUint32 fragment_offset;
|
| - PRUint32 fragment_length;
|
| - PRUint32 offset;
|
| -
|
| - if (buf.len < 12) {
|
| - PORT_SetError(SSL_ERROR_RX_MALFORMED_HANDSHAKE);
|
| - rv = SECFailure;
|
| - break;
|
| - }
|
| -
|
| - /* Parse the header */
|
| - type = buf.buf[0];
|
| - message_length = (buf.buf[1] << 16) | (buf.buf[2] << 8) | buf.buf[3];
|
| - message_seq = (buf.buf[4] << 8) | buf.buf[5];
|
| - fragment_offset = (buf.buf[6] << 16) | (buf.buf[7] << 8) | buf.buf[8];
|
| - fragment_length = (buf.buf[9] << 16) | (buf.buf[10] << 8) | buf.buf[11];
|
| -
|
| -#define MAX_HANDSHAKE_MSG_LEN 0x1ffff /* 128k - 1 */
|
| - if (message_length > MAX_HANDSHAKE_MSG_LEN) {
|
| - (void)ssl3_DecodeError(ss);
|
| - PORT_SetError(SSL_ERROR_RX_MALFORMED_HANDSHAKE);
|
| - return SECFailure;
|
| - }
|
| -#undef MAX_HANDSHAKE_MSG_LEN
|
| -
|
| - buf.buf += 12;
|
| - buf.len -= 12;
|
| -
|
| - /* This fragment must be complete */
|
| - if (buf.len < fragment_length) {
|
| - PORT_SetError(SSL_ERROR_RX_MALFORMED_HANDSHAKE);
|
| - rv = SECFailure;
|
| - break;
|
| - }
|
| -
|
| - /* Sanity check the packet contents */
|
| - if ((fragment_length + fragment_offset) > message_length) {
|
| - PORT_SetError(SSL_ERROR_RX_MALFORMED_HANDSHAKE);
|
| - rv = SECFailure;
|
| - break;
|
| - }
|
| -
|
| - /* There are three ways we could not be ready for this packet.
|
| - *
|
| - * 1. It's a partial next message.
|
| - * 2. It's a partial or complete message beyond the next
|
| - * 3. It's a message we've already seen
|
| - *
|
| - * If it's the complete next message we accept it right away.
|
| - * This is the common case for short messages
|
| - */
|
| - if ((message_seq == ss->ssl3.hs.recvMessageSeq) &&
|
| - (fragment_offset == 0) &&
|
| - (fragment_length == message_length)) {
|
| - /* Complete next message. Process immediately */
|
| - ss->ssl3.hs.msg_type = (SSL3HandshakeType)type;
|
| - ss->ssl3.hs.msg_len = message_length;
|
| -
|
| - /* At this point we are advancing our state machine, so
|
| - * we can free our last flight of messages */
|
| - dtls_FreeHandshakeMessages(&ss->ssl3.hs.lastMessageFlight);
|
| - ss->ssl3.hs.recvdHighWater = -1;
|
| - dtls_CancelTimer(ss);
|
| -
|
| - /* Reset the timer to the initial value if the retry counter
|
| - * is 0, per Sec. 4.2.4.1 */
|
| - if (ss->ssl3.hs.rtRetries == 0) {
|
| - ss->ssl3.hs.rtTimeoutMs = INITIAL_DTLS_TIMEOUT_MS;
|
| - }
|
| -
|
| - rv = ssl3_HandleHandshakeMessage(ss, buf.buf, ss->ssl3.hs.msg_len);
|
| - if (rv == SECFailure) {
|
| - /* Do not attempt to process rest of messages in this record */
|
| - break;
|
| - }
|
| - } else {
|
| - if (message_seq < ss->ssl3.hs.recvMessageSeq) {
|
| - /* Case 3: we do an immediate retransmit if we're
|
| - * in a waiting state*/
|
| - if (ss->ssl3.hs.rtTimerCb == NULL) {
|
| - /* Ignore */
|
| - } else if (ss->ssl3.hs.rtTimerCb ==
|
| - dtls_RetransmitTimerExpiredCb) {
|
| - SSL_TRC(30, ("%d: SSL3[%d]: Retransmit detected",
|
| - SSL_GETPID(), ss->fd));
|
| - /* Check to see if we retransmitted recently. If so,
|
| - * suppress the triggered retransmit. This avoids
|
| - * retransmit wars after packet loss.
|
| - * This is not in RFC 5346 but should be
|
| - */
|
| - if ((PR_IntervalNow() - ss->ssl3.hs.rtTimerStarted) >
|
| - (ss->ssl3.hs.rtTimeoutMs / 4)) {
|
| - SSL_TRC(30,
|
| - ("%d: SSL3[%d]: Shortcutting retransmit timer",
|
| - SSL_GETPID(), ss->fd));
|
| -
|
| - /* Cancel the timer and call the CB,
|
| - * which re-arms the timer */
|
| - dtls_CancelTimer(ss);
|
| - dtls_RetransmitTimerExpiredCb(ss);
|
| - rv = SECSuccess;
|
| - break;
|
| - } else {
|
| - SSL_TRC(30,
|
| - ("%d: SSL3[%d]: We just retransmitted. Ignoring.",
|
| - SSL_GETPID(), ss->fd));
|
| - rv = SECSuccess;
|
| - break;
|
| - }
|
| - } else if (ss->ssl3.hs.rtTimerCb == dtls_FinishedTimerCb) {
|
| - /* Retransmit the messages and re-arm the timer
|
| - * Note that we are not backing off the timer here.
|
| - * The spec isn't clear and my reasoning is that this
|
| - * may be a re-ordered packet rather than slowness,
|
| - * so let's be aggressive. */
|
| - dtls_CancelTimer(ss);
|
| - rv = dtls_TransmitMessageFlight(ss);
|
| - if (rv == SECSuccess) {
|
| - rv = dtls_StartTimer(ss, dtls_FinishedTimerCb);
|
| - }
|
| - if (rv != SECSuccess)
|
| - return rv;
|
| - break;
|
| - }
|
| - } else if (message_seq > ss->ssl3.hs.recvMessageSeq) {
|
| - /* Case 2
|
| - *
|
| - * Ignore this message. This means we don't handle out of
|
| - * order complete messages that well, but we're still
|
| - * compliant and this probably does not happen often
|
| - *
|
| - * XXX OK for now. Maybe do something smarter at some point?
|
| - */
|
| - } else {
|
| - /* Case 1
|
| - *
|
| - * Buffer the fragment for reassembly
|
| - */
|
| - /* Make room for the message */
|
| - if (ss->ssl3.hs.recvdHighWater == -1) {
|
| - PRUint32 map_length = OFFSET_BYTE(message_length) + 1;
|
| -
|
| - rv = sslBuffer_Grow(&ss->ssl3.hs.msg_body, message_length);
|
| - if (rv != SECSuccess)
|
| - break;
|
| - /* Make room for the fragment map */
|
| - rv = sslBuffer_Grow(&ss->ssl3.hs.recvdFragments,
|
| - map_length);
|
| - if (rv != SECSuccess)
|
| - break;
|
| -
|
| - /* Reset the reassembly map */
|
| - ss->ssl3.hs.recvdHighWater = 0;
|
| - PORT_Memset(ss->ssl3.hs.recvdFragments.buf, 0,
|
| - ss->ssl3.hs.recvdFragments.space);
|
| - ss->ssl3.hs.msg_type = (SSL3HandshakeType)type;
|
| - ss->ssl3.hs.msg_len = message_length;
|
| - }
|
| -
|
| - /* If we have a message length mismatch, abandon the reassembly
|
| - * in progress and hope that the next retransmit will give us
|
| - * something sane
|
| - */
|
| - if (message_length != ss->ssl3.hs.msg_len) {
|
| - ss->ssl3.hs.recvdHighWater = -1;
|
| - PORT_SetError(SSL_ERROR_RX_MALFORMED_HANDSHAKE);
|
| - rv = SECFailure;
|
| - break;
|
| - }
|
| -
|
| - /* Now copy this fragment into the buffer */
|
| - PORT_Assert((fragment_offset + fragment_length) <=
|
| - ss->ssl3.hs.msg_body.space);
|
| - PORT_Memcpy(ss->ssl3.hs.msg_body.buf + fragment_offset,
|
| - buf.buf, fragment_length);
|
| -
|
| - /* This logic is a bit tricky. We have two values for
|
| - * reassembly state:
|
| - *
|
| - * - recvdHighWater contains the highest contiguous number of
|
| - * bytes received
|
| - * - recvdFragments contains a bitmask of packets received
|
| - * above recvdHighWater
|
| - *
|
| - * This avoids having to fill in the bitmask in the common
|
| - * case of adjacent fragments received in sequence
|
| - */
|
| - if (fragment_offset <= (unsigned int)ss->ssl3.hs.recvdHighWater) {
|
| - /* Either this is the adjacent fragment or an overlapping
|
| - * fragment */
|
| - ss->ssl3.hs.recvdHighWater = fragment_offset +
|
| - fragment_length;
|
| - } else {
|
| - for (offset = fragment_offset;
|
| - offset < fragment_offset + fragment_length;
|
| - offset++) {
|
| - ss->ssl3.hs.recvdFragments.buf[OFFSET_BYTE(offset)] |=
|
| - OFFSET_MASK(offset);
|
| - }
|
| - }
|
| -
|
| - /* Now figure out the new high water mark if appropriate */
|
| - for (offset = ss->ssl3.hs.recvdHighWater;
|
| - offset < ss->ssl3.hs.msg_len; offset++) {
|
| - /* Note that this loop is not efficient, since it counts
|
| - * bit by bit. If we have a lot of out-of-order packets,
|
| - * we should optimize this */
|
| - if (ss->ssl3.hs.recvdFragments.buf[OFFSET_BYTE(offset)] &
|
| - OFFSET_MASK(offset)) {
|
| - ss->ssl3.hs.recvdHighWater++;
|
| - } else {
|
| - break;
|
| - }
|
| - }
|
| -
|
| - /* If we have all the bytes, then we are good to go */
|
| - if (ss->ssl3.hs.recvdHighWater == ss->ssl3.hs.msg_len) {
|
| - ss->ssl3.hs.recvdHighWater = -1;
|
| -
|
| - rv = ssl3_HandleHandshakeMessage(ss,
|
| - ss->ssl3.hs.msg_body.buf,
|
| - ss->ssl3.hs.msg_len);
|
| - if (rv == SECFailure)
|
| - break; /* Skip rest of record */
|
| -
|
| - /* At this point we are advancing our state machine, so
|
| - * we can free our last flight of messages */
|
| - dtls_FreeHandshakeMessages(&ss->ssl3.hs.lastMessageFlight);
|
| - dtls_CancelTimer(ss);
|
| -
|
| - /* If there have been no retries this time, reset the
|
| - * timer value to the default per Section 4.2.4.1 */
|
| - if (ss->ssl3.hs.rtRetries == 0) {
|
| - ss->ssl3.hs.rtTimeoutMs = INITIAL_DTLS_TIMEOUT_MS;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - buf.buf += fragment_length;
|
| - buf.len -= fragment_length;
|
| - }
|
| -
|
| - origBuf->len = 0; /* So ssl3_GatherAppDataRecord will keep looping. */
|
| -
|
| - /* XXX OK for now. In future handle rv == SECWouldBlock safely in order
|
| - * to deal with asynchronous certificate verification */
|
| - return rv;
|
| -}
|
| -
|
| -/* Enqueue a message (either handshake or CCS)
|
| - *
|
| - * Called from:
|
| - * dtls_StageHandshakeMessage()
|
| - * ssl3_SendChangeCipherSpecs()
|
| - */
|
| -SECStatus
|
| -dtls_QueueMessage(sslSocket *ss, SSL3ContentType type,
|
| - const SSL3Opaque *pIn, PRInt32 nIn)
|
| -{
|
| - SECStatus rv = SECSuccess;
|
| - DTLSQueuedMessage *msg = NULL;
|
| -
|
| - PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
| - PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
| -
|
| - msg = dtls_AllocQueuedMessage(ss->ssl3.cwSpec->epoch, type, pIn, nIn);
|
| -
|
| - if (!msg) {
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - rv = SECFailure;
|
| - } else {
|
| - PR_APPEND_LINK(&msg->link, &ss->ssl3.hs.lastMessageFlight);
|
| - }
|
| -
|
| - return rv;
|
| -}
|
| -
|
| -/* Add DTLS handshake message to the pending queue
|
| - * Empty the sendBuf buffer.
|
| - * This function returns SECSuccess or SECFailure, never SECWouldBlock.
|
| - * Always set sendBuf.len to 0, even when returning SECFailure.
|
| - *
|
| - * Called from:
|
| - * ssl3_AppendHandshakeHeader()
|
| - * dtls_FlushHandshake()
|
| - */
|
| -SECStatus
|
| -dtls_StageHandshakeMessage(sslSocket *ss)
|
| -{
|
| - SECStatus rv = SECSuccess;
|
| -
|
| - PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
| - PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
| -
|
| - /* This function is sometimes called when no data is actually to
|
| - * be staged, so just return SECSuccess. */
|
| - if (!ss->sec.ci.sendBuf.buf || !ss->sec.ci.sendBuf.len)
|
| - return rv;
|
| -
|
| - rv = dtls_QueueMessage(ss, content_handshake,
|
| - ss->sec.ci.sendBuf.buf, ss->sec.ci.sendBuf.len);
|
| -
|
| - /* Whether we succeeded or failed, toss the old handshake data. */
|
| - ss->sec.ci.sendBuf.len = 0;
|
| - return rv;
|
| -}
|
| -
|
| -/* Enqueue the handshake message in sendBuf (if any) and then
|
| - * transmit the resulting flight of handshake messages.
|
| - *
|
| - * Called from:
|
| - * ssl3_FlushHandshake()
|
| - */
|
| -SECStatus
|
| -dtls_FlushHandshakeMessages(sslSocket *ss, PRInt32 flags)
|
| -{
|
| - SECStatus rv = SECSuccess;
|
| -
|
| - PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
| - PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
| -
|
| - rv = dtls_StageHandshakeMessage(ss);
|
| - if (rv != SECSuccess)
|
| - return rv;
|
| -
|
| - if (!(flags & ssl_SEND_FLAG_FORCE_INTO_BUFFER)) {
|
| - rv = dtls_TransmitMessageFlight(ss);
|
| - if (rv != SECSuccess)
|
| - return rv;
|
| -
|
| - if (!(flags & ssl_SEND_FLAG_NO_RETRANSMIT)) {
|
| - ss->ssl3.hs.rtRetries = 0;
|
| - rv = dtls_StartTimer(ss, dtls_RetransmitTimerExpiredCb);
|
| - }
|
| - }
|
| -
|
| - return rv;
|
| -}
|
| -
|
| -/* The callback for when the retransmit timer expires
|
| - *
|
| - * Called from:
|
| - * dtls_CheckTimer()
|
| - * dtls_HandleHandshake()
|
| - */
|
| -static void
|
| -dtls_RetransmitTimerExpiredCb(sslSocket *ss)
|
| -{
|
| - SECStatus rv = SECFailure;
|
| -
|
| - ss->ssl3.hs.rtRetries++;
|
| -
|
| - if (!(ss->ssl3.hs.rtRetries % 3)) {
|
| - /* If one of the messages was potentially greater than > MTU,
|
| - * then downgrade. Do this every time we have retransmitted a
|
| - * message twice, per RFC 6347 Sec. 4.1.1 */
|
| - dtls_SetMTU(ss, ss->ssl3.hs.maxMessageSent - 1);
|
| - }
|
| -
|
| - rv = dtls_TransmitMessageFlight(ss);
|
| - if (rv == SECSuccess) {
|
| -
|
| - /* Re-arm the timer */
|
| - rv = dtls_RestartTimer(ss, PR_TRUE, dtls_RetransmitTimerExpiredCb);
|
| - }
|
| -
|
| - if (rv == SECFailure) {
|
| - /* XXX OK for now. In future maybe signal the stack that we couldn't
|
| - * transmit. For now, let the read handle any real network errors */
|
| - }
|
| -}
|
| -
|
| -/* Transmit a flight of handshake messages, stuffing them
|
| - * into as few records as seems reasonable
|
| - *
|
| - * Called from:
|
| - * dtls_FlushHandshake()
|
| - * dtls_RetransmitTimerExpiredCb()
|
| - */
|
| -static SECStatus
|
| -dtls_TransmitMessageFlight(sslSocket *ss)
|
| -{
|
| - SECStatus rv = SECSuccess;
|
| - PRCList *msg_p;
|
| - PRUint16 room_left = ss->ssl3.mtu;
|
| - PRInt32 sent;
|
| -
|
| - ssl_GetXmitBufLock(ss);
|
| - ssl_GetSpecReadLock(ss);
|
| -
|
| - /* DTLS does not buffer its handshake messages in
|
| - * ss->pendingBuf, but rather in the lastMessageFlight
|
| - * structure. This is just a sanity check that
|
| - * some programming error hasn't inadvertantly
|
| - * stuffed something in ss->pendingBuf
|
| - */
|
| - PORT_Assert(!ss->pendingBuf.len);
|
| - for (msg_p = PR_LIST_HEAD(&ss->ssl3.hs.lastMessageFlight);
|
| - msg_p != &ss->ssl3.hs.lastMessageFlight;
|
| - msg_p = PR_NEXT_LINK(msg_p)) {
|
| - DTLSQueuedMessage *msg = (DTLSQueuedMessage *)msg_p;
|
| -
|
| - /* The logic here is:
|
| - *
|
| - * 1. If this is a message that will not fit into the remaining
|
| - * space, then flush.
|
| - * 2. If the message will now fit into the remaining space,
|
| - * encrypt, buffer, and loop.
|
| - * 3. If the message will not fit, then fragment.
|
| - *
|
| - * At the end of the function, flush.
|
| - */
|
| - if ((msg->len + SSL3_BUFFER_FUDGE) > room_left) {
|
| - /* The message will not fit into the remaining space, so flush */
|
| - rv = dtls_SendSavedWriteData(ss);
|
| - if (rv != SECSuccess)
|
| - break;
|
| -
|
| - room_left = ss->ssl3.mtu;
|
| - }
|
| -
|
| - if ((msg->len + SSL3_BUFFER_FUDGE) <= room_left) {
|
| - /* The message will fit, so encrypt and then continue with the
|
| - * next packet */
|
| - sent = ssl3_SendRecord(ss, msg->epoch, msg->type,
|
| - msg->data, msg->len,
|
| - ssl_SEND_FLAG_FORCE_INTO_BUFFER |
|
| - ssl_SEND_FLAG_USE_EPOCH);
|
| - if (sent != msg->len) {
|
| - rv = SECFailure;
|
| - if (sent != -1) {
|
| - PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
| - }
|
| - break;
|
| - }
|
| -
|
| - room_left = ss->ssl3.mtu - ss->pendingBuf.len;
|
| - } else {
|
| - /* The message will not fit, so fragment.
|
| - *
|
| - * XXX OK for now. Arrange to coalesce the last fragment
|
| - * of this message with the next message if possible.
|
| - * That would be more efficient.
|
| - */
|
| - PRUint32 fragment_offset = 0;
|
| - unsigned char fragment[DTLS_MAX_MTU]; /* >= than largest
|
| - * plausible MTU */
|
| -
|
| - /* Assert that we have already flushed */
|
| - PORT_Assert(room_left == ss->ssl3.mtu);
|
| -
|
| - /* Case 3: We now need to fragment this message
|
| - * DTLS only supports fragmenting handshaking messages */
|
| - PORT_Assert(msg->type == content_handshake);
|
| -
|
| - /* The headers consume 12 bytes so the smalles possible
|
| - * message (i.e., an empty one) is 12 bytes
|
| - */
|
| - PORT_Assert(msg->len >= 12);
|
| -
|
| - while ((fragment_offset + 12) < msg->len) {
|
| - PRUint32 fragment_len;
|
| - const unsigned char *content = msg->data + 12;
|
| - PRUint32 content_len = msg->len - 12;
|
| -
|
| - /* The reason we use 8 here is that that's the length of
|
| - * the new DTLS data that we add to the header */
|
| - fragment_len = PR_MIN((PRUint32)room_left - (SSL3_BUFFER_FUDGE + 8),
|
| - content_len - fragment_offset);
|
| - PORT_Assert(fragment_len < DTLS_MAX_MTU - 12);
|
| - /* Make totally sure that we are within the buffer.
|
| - * Note that the only way that fragment len could get
|
| - * adjusted here is if
|
| - *
|
| - * (a) we are in release mode so the PORT_Assert is compiled out
|
| - * (b) either the MTU table is inconsistent with DTLS_MAX_MTU
|
| - * or ss->ssl3.mtu has become corrupt.
|
| - */
|
| - fragment_len = PR_MIN(fragment_len, DTLS_MAX_MTU - 12);
|
| -
|
| - /* Construct an appropriate-sized fragment */
|
| - /* Type, length, sequence */
|
| - PORT_Memcpy(fragment, msg->data, 6);
|
| -
|
| - /* Offset */
|
| - fragment[6] = (fragment_offset >> 16) & 0xff;
|
| - fragment[7] = (fragment_offset >> 8) & 0xff;
|
| - fragment[8] = (fragment_offset)&0xff;
|
| -
|
| - /* Fragment length */
|
| - fragment[9] = (fragment_len >> 16) & 0xff;
|
| - fragment[10] = (fragment_len >> 8) & 0xff;
|
| - fragment[11] = (fragment_len)&0xff;
|
| -
|
| - PORT_Memcpy(fragment + 12, content + fragment_offset,
|
| - fragment_len);
|
| -
|
| - /*
|
| - * Send the record. We do this in two stages
|
| - * 1. Encrypt
|
| - */
|
| - sent = ssl3_SendRecord(ss, msg->epoch, msg->type,
|
| - fragment, fragment_len + 12,
|
| - ssl_SEND_FLAG_FORCE_INTO_BUFFER |
|
| - ssl_SEND_FLAG_USE_EPOCH);
|
| - if (sent != (fragment_len + 12)) {
|
| - rv = SECFailure;
|
| - if (sent != -1) {
|
| - PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
| - }
|
| - break;
|
| - }
|
| -
|
| - /* 2. Flush */
|
| - rv = dtls_SendSavedWriteData(ss);
|
| - if (rv != SECSuccess)
|
| - break;
|
| -
|
| - fragment_offset += fragment_len;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* Finally, we need to flush */
|
| - if (rv == SECSuccess)
|
| - rv = dtls_SendSavedWriteData(ss);
|
| -
|
| - /* Give up the locks */
|
| - ssl_ReleaseSpecReadLock(ss);
|
| - ssl_ReleaseXmitBufLock(ss);
|
| -
|
| - return rv;
|
| -}
|
| -
|
| -/* Flush the data in the pendingBuf and update the max message sent
|
| - * so we can adjust the MTU estimate if we need to.
|
| - * Wrapper for ssl_SendSavedWriteData.
|
| - *
|
| - * Called from dtls_TransmitMessageFlight()
|
| - */
|
| -static SECStatus
|
| -dtls_SendSavedWriteData(sslSocket *ss)
|
| -{
|
| - PRInt32 sent;
|
| -
|
| - sent = ssl_SendSavedWriteData(ss);
|
| - if (sent < 0)
|
| - return SECFailure;
|
| -
|
| - /* We should always have complete writes b/c datagram sockets
|
| - * don't really block */
|
| - if (ss->pendingBuf.len > 0) {
|
| - ssl_MapLowLevelError(SSL_ERROR_SOCKET_WRITE_FAILURE);
|
| - return SECFailure;
|
| - }
|
| -
|
| - /* Update the largest message sent so we can adjust the MTU
|
| - * estimate if necessary */
|
| - if (sent > ss->ssl3.hs.maxMessageSent)
|
| - ss->ssl3.hs.maxMessageSent = sent;
|
| -
|
| - return SECSuccess;
|
| -}
|
| -
|
| -/* Compress, MAC, encrypt a DTLS record. Allows specification of
|
| - * the epoch using epoch value. If use_epoch is PR_TRUE then
|
| - * we use the provided epoch. If use_epoch is PR_FALSE then
|
| - * whatever the current value is in effect is used.
|
| - *
|
| - * Called from ssl3_SendRecord()
|
| - */
|
| -SECStatus
|
| -dtls_CompressMACEncryptRecord(sslSocket *ss,
|
| - DTLSEpoch epoch,
|
| - PRBool use_epoch,
|
| - SSL3ContentType type,
|
| - const SSL3Opaque *pIn,
|
| - PRUint32 contentLen,
|
| - sslBuffer *wrBuf)
|
| -{
|
| - SECStatus rv = SECFailure;
|
| - ssl3CipherSpec *cwSpec;
|
| -
|
| - ssl_GetSpecReadLock(ss); /********************************/
|
| -
|
| - /* The reason for this switch-hitting code is that we might have
|
| - * a flight of records spanning an epoch boundary, e.g.,
|
| - *
|
| - * ClientKeyExchange (epoch = 0)
|
| - * ChangeCipherSpec (epoch = 0)
|
| - * Finished (epoch = 1)
|
| - *
|
| - * Thus, each record needs a different cipher spec. The information
|
| - * about which epoch to use is carried with the record.
|
| - */
|
| - if (use_epoch) {
|
| - if (ss->ssl3.cwSpec->epoch == epoch)
|
| - cwSpec = ss->ssl3.cwSpec;
|
| - else if (ss->ssl3.pwSpec->epoch == epoch)
|
| - cwSpec = ss->ssl3.pwSpec;
|
| - else
|
| - cwSpec = NULL;
|
| - } else {
|
| - cwSpec = ss->ssl3.cwSpec;
|
| - }
|
| -
|
| - if (cwSpec) {
|
| - if (ss->ssl3.cwSpec->version < SSL_LIBRARY_VERSION_TLS_1_3) {
|
| - rv = ssl3_CompressMACEncryptRecord(cwSpec, ss->sec.isServer, PR_TRUE,
|
| - PR_FALSE, type, pIn, contentLen,
|
| - wrBuf);
|
| - } else {
|
| - rv = tls13_ProtectRecord(ss, type, pIn, contentLen, wrBuf);
|
| - }
|
| - } else {
|
| - PR_NOT_REACHED("Couldn't find a cipher spec matching epoch");
|
| - PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
| - }
|
| - ssl_ReleaseSpecReadLock(ss); /************************************/
|
| -
|
| - return rv;
|
| -}
|
| -
|
| -/* Start a timer
|
| - *
|
| - * Called from:
|
| - * dtls_HandleHandshake()
|
| - * dtls_FlushHAndshake()
|
| - * dtls_RestartTimer()
|
| - */
|
| -SECStatus
|
| -dtls_StartTimer(sslSocket *ss, DTLSTimerCb cb)
|
| -{
|
| - PORT_Assert(ss->ssl3.hs.rtTimerCb == NULL);
|
| -
|
| - ss->ssl3.hs.rtTimerStarted = PR_IntervalNow();
|
| - ss->ssl3.hs.rtTimerCb = cb;
|
| -
|
| - return SECSuccess;
|
| -}
|
| -
|
| -/* Restart a timer with optional backoff
|
| - *
|
| - * Called from dtls_RetransmitTimerExpiredCb()
|
| - */
|
| -SECStatus
|
| -dtls_RestartTimer(sslSocket *ss, PRBool backoff, DTLSTimerCb cb)
|
| -{
|
| - if (backoff) {
|
| - ss->ssl3.hs.rtTimeoutMs *= 2;
|
| - if (ss->ssl3.hs.rtTimeoutMs > MAX_DTLS_TIMEOUT_MS)
|
| - ss->ssl3.hs.rtTimeoutMs = MAX_DTLS_TIMEOUT_MS;
|
| - }
|
| -
|
| - return dtls_StartTimer(ss, cb);
|
| -}
|
| -
|
| -/* Cancel a pending timer
|
| - *
|
| - * Called from:
|
| - * dtls_HandleHandshake()
|
| - * dtls_CheckTimer()
|
| - */
|
| -void
|
| -dtls_CancelTimer(sslSocket *ss)
|
| -{
|
| - PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
|
| -
|
| - ss->ssl3.hs.rtTimerCb = NULL;
|
| -}
|
| -
|
| -/* Check the pending timer and fire the callback if it expired
|
| - *
|
| - * Called from ssl3_GatherCompleteHandshake()
|
| - */
|
| -void
|
| -dtls_CheckTimer(sslSocket *ss)
|
| -{
|
| - if (!ss->ssl3.hs.rtTimerCb)
|
| - return;
|
| -
|
| - if ((PR_IntervalNow() - ss->ssl3.hs.rtTimerStarted) >
|
| - PR_MillisecondsToInterval(ss->ssl3.hs.rtTimeoutMs)) {
|
| - /* Timer has expired */
|
| - DTLSTimerCb cb = ss->ssl3.hs.rtTimerCb;
|
| -
|
| - /* Cancel the timer so that we can call the CB safely */
|
| - dtls_CancelTimer(ss);
|
| -
|
| - /* Now call the CB */
|
| - cb(ss);
|
| - }
|
| -}
|
| -
|
| -/* The callback to fire when the holddown timer for the Finished
|
| - * message expires and we can delete it
|
| - *
|
| - * Called from dtls_CheckTimer()
|
| - */
|
| -void
|
| -dtls_FinishedTimerCb(sslSocket *ss)
|
| -{
|
| - ssl3_DestroyCipherSpec(ss->ssl3.pwSpec, PR_FALSE);
|
| -}
|
| -
|
| -/* Cancel the Finished hold-down timer and destroy the
|
| - * pending cipher spec. Note that this means that
|
| - * successive rehandshakes will fail if the Finished is
|
| - * lost.
|
| - *
|
| - * XXX OK for now. Figure out how to handle the combination
|
| - * of Finished lost and rehandshake
|
| - */
|
| -void
|
| -dtls_RehandshakeCleanup(sslSocket *ss)
|
| -{
|
| - dtls_CancelTimer(ss);
|
| - ssl3_DestroyCipherSpec(ss->ssl3.pwSpec, PR_FALSE);
|
| - ss->ssl3.hs.sendMessageSeq = 0;
|
| - ss->ssl3.hs.recvMessageSeq = 0;
|
| -}
|
| -
|
| -/* Set the MTU to the next step less than or equal to the
|
| - * advertised value. Also used to downgrade the MTU by
|
| - * doing dtls_SetMTU(ss, biggest packet set).
|
| - *
|
| - * Passing 0 means set this to the largest MTU known
|
| - * (effectively resetting the PMTU backoff value).
|
| - *
|
| - * Called by:
|
| - * ssl3_InitState()
|
| - * dtls_RetransmitTimerExpiredCb()
|
| - */
|
| -void
|
| -dtls_SetMTU(sslSocket *ss, PRUint16 advertised)
|
| -{
|
| - int i;
|
| -
|
| - if (advertised == 0) {
|
| - ss->ssl3.mtu = COMMON_MTU_VALUES[0];
|
| - SSL_TRC(30, ("Resetting MTU to %d", ss->ssl3.mtu));
|
| - return;
|
| - }
|
| -
|
| - for (i = 0; i < PR_ARRAY_SIZE(COMMON_MTU_VALUES); i++) {
|
| - if (COMMON_MTU_VALUES[i] <= advertised) {
|
| - ss->ssl3.mtu = COMMON_MTU_VALUES[i];
|
| - SSL_TRC(30, ("Resetting MTU to %d", ss->ssl3.mtu));
|
| - return;
|
| - }
|
| - }
|
| -
|
| - /* Fallback */
|
| - ss->ssl3.mtu = COMMON_MTU_VALUES[PR_ARRAY_SIZE(COMMON_MTU_VALUES) - 1];
|
| - SSL_TRC(30, ("Resetting MTU to %d", ss->ssl3.mtu));
|
| -}
|
| -
|
| -/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a
|
| - * DTLS hello_verify_request
|
| - * Caller must hold Handshake and RecvBuf locks.
|
| - */
|
| -SECStatus
|
| -dtls_HandleHelloVerifyRequest(sslSocket *ss, SSL3Opaque *b, PRUint32 length)
|
| -{
|
| - int errCode = SSL_ERROR_RX_MALFORMED_HELLO_VERIFY_REQUEST;
|
| - SECStatus rv;
|
| - PRInt32 temp;
|
| - SECItem cookie = { siBuffer, NULL, 0 };
|
| - SSL3AlertDescription desc = illegal_parameter;
|
| -
|
| - SSL_TRC(3, ("%d: SSL3[%d]: handle hello_verify_request handshake",
|
| - SSL_GETPID(), ss->fd));
|
| - PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
|
| - PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
| -
|
| - if (ss->ssl3.hs.ws != wait_server_hello) {
|
| - errCode = SSL_ERROR_RX_UNEXPECTED_HELLO_VERIFY_REQUEST;
|
| - desc = unexpected_message;
|
| - goto alert_loser;
|
| - }
|
| -
|
| - /* The version */
|
| - temp = ssl3_ConsumeHandshakeNumber(ss, 2, &b, &length);
|
| - if (temp < 0) {
|
| - goto loser; /* alert has been sent */
|
| - }
|
| -
|
| - if (temp != SSL_LIBRARY_VERSION_DTLS_1_0_WIRE &&
|
| - temp != SSL_LIBRARY_VERSION_DTLS_1_2_WIRE) {
|
| - goto alert_loser;
|
| - }
|
| -
|
| - /* The cookie */
|
| - rv = ssl3_ConsumeHandshakeVariable(ss, &cookie, 1, &b, &length);
|
| - if (rv != SECSuccess) {
|
| - goto loser; /* alert has been sent */
|
| - }
|
| - if (cookie.len > DTLS_COOKIE_BYTES) {
|
| - desc = decode_error;
|
| - goto alert_loser; /* malformed. */
|
| - }
|
| -
|
| - PORT_Memcpy(ss->ssl3.hs.cookie, cookie.data, cookie.len);
|
| - ss->ssl3.hs.cookieLen = cookie.len;
|
| -
|
| - ssl_GetXmitBufLock(ss); /*******************************/
|
| -
|
| - /* Now re-send the client hello */
|
| - rv = ssl3_SendClientHello(ss, PR_TRUE);
|
| -
|
| - ssl_ReleaseXmitBufLock(ss); /*******************************/
|
| -
|
| - if (rv == SECSuccess)
|
| - return rv;
|
| -
|
| -alert_loser:
|
| - (void)SSL3_SendAlert(ss, alert_fatal, desc);
|
| -
|
| -loser:
|
| - ssl_MapLowLevelError(errCode);
|
| - return SECFailure;
|
| -}
|
| -
|
| -/* Initialize the DTLS anti-replay window
|
| - *
|
| - * Called from:
|
| - * ssl3_SetupPendingCipherSpec()
|
| - * ssl3_InitCipherSpec()
|
| - */
|
| -void
|
| -dtls_InitRecvdRecords(DTLSRecvdRecords *records)
|
| -{
|
| - PORT_Memset(records->data, 0, sizeof(records->data));
|
| - records->left = 0;
|
| - records->right = DTLS_RECVD_RECORDS_WINDOW - 1;
|
| -}
|
| -
|
| -/*
|
| - * Has this DTLS record been received? Return values are:
|
| - * -1 -- out of range to the left
|
| - * 0 -- not received yet
|
| - * 1 -- replay
|
| - *
|
| - * Called from: ssl3_HandleRecord()
|
| - */
|
| -int
|
| -dtls_RecordGetRecvd(const DTLSRecvdRecords *records, PRUint64 seq)
|
| -{
|
| - PRUint64 offset;
|
| -
|
| - /* Out of range to the left */
|
| - if (seq < records->left) {
|
| - return -1;
|
| - }
|
| -
|
| - /* Out of range to the right; since we advance the window on
|
| - * receipt, that means that this packet has not been received
|
| - * yet */
|
| - if (seq > records->right)
|
| - return 0;
|
| -
|
| - offset = seq % DTLS_RECVD_RECORDS_WINDOW;
|
| -
|
| - return !!(records->data[offset / 8] & (1 << (offset % 8)));
|
| -}
|
| -
|
| -/* Update the DTLS anti-replay window
|
| - *
|
| - * Called from ssl3_HandleRecord()
|
| - */
|
| -void
|
| -dtls_RecordSetRecvd(DTLSRecvdRecords *records, PRUint64 seq)
|
| -{
|
| - PRUint64 offset;
|
| -
|
| - if (seq < records->left)
|
| - return;
|
| -
|
| - if (seq > records->right) {
|
| - PRUint64 new_left;
|
| - PRUint64 new_right;
|
| - PRUint64 right;
|
| -
|
| - /* Slide to the right; this is the tricky part
|
| - *
|
| - * 1. new_top is set to have room for seq, on the
|
| - * next byte boundary by setting the right 8
|
| - * bits of seq
|
| - * 2. new_left is set to compensate.
|
| - * 3. Zero all bits between top and new_top. Since
|
| - * this is a ring, this zeroes everything as-yet
|
| - * unseen. Because we always operate on byte
|
| - * boundaries, we can zero one byte at a time
|
| - */
|
| - new_right = seq | 0x07;
|
| - new_left = (new_right - DTLS_RECVD_RECORDS_WINDOW) + 1;
|
| -
|
| - for (right = records->right + 8; right <= new_right; right += 8) {
|
| - offset = right % DTLS_RECVD_RECORDS_WINDOW;
|
| - records->data[offset / 8] = 0;
|
| - }
|
| -
|
| - records->right = new_right;
|
| - records->left = new_left;
|
| - }
|
| -
|
| - offset = seq % DTLS_RECVD_RECORDS_WINDOW;
|
| -
|
| - records->data[offset / 8] |= (1 << (offset % 8));
|
| -}
|
| -
|
| -SECStatus
|
| -DTLS_GetHandshakeTimeout(PRFileDesc *socket, PRIntervalTime *timeout)
|
| -{
|
| - sslSocket *ss = NULL;
|
| - PRIntervalTime elapsed;
|
| - PRIntervalTime desired;
|
| -
|
| - ss = ssl_FindSocket(socket);
|
| -
|
| - if (!ss)
|
| - return SECFailure;
|
| -
|
| - if (!IS_DTLS(ss))
|
| - return SECFailure;
|
| -
|
| - if (!ss->ssl3.hs.rtTimerCb)
|
| - return SECFailure;
|
| -
|
| - elapsed = PR_IntervalNow() - ss->ssl3.hs.rtTimerStarted;
|
| - desired = PR_MillisecondsToInterval(ss->ssl3.hs.rtTimeoutMs);
|
| - if (elapsed > desired) {
|
| - /* Timer expired */
|
| - *timeout = PR_INTERVAL_NO_WAIT;
|
| - } else {
|
| - *timeout = desired - elapsed;
|
| - }
|
| -
|
| - return SECSuccess;
|
| -}
|
| -
|
| -/*
|
| - * DTLS relevance checks:
|
| - * Note that this code currently ignores all out-of-epoch packets,
|
| - * which means we lose some in the case of rehandshake +
|
| - * loss/reordering. Since DTLS is explicitly unreliable, this
|
| - * seems like a good tradeoff for implementation effort and is
|
| - * consistent with the guidance of RFC 6347 Sections 4.1 and 4.2.4.1.
|
| - *
|
| - * If the packet is not relevant, this function returns PR_FALSE.
|
| - * If the packet is relevant, this function returns PR_TRUE
|
| - * and sets |*seqNum| to the packet sequence number.
|
| - */
|
| -PRBool
|
| -dtls_IsRelevant(sslSocket *ss, const ssl3CipherSpec *crSpec,
|
| - const SSL3Ciphertext *cText, PRUint64 *seqNum)
|
| -{
|
| - DTLSEpoch epoch = cText->seq_num.high >> 16;
|
| - PRUint64 dtls_seq_num;
|
| -
|
| - if (crSpec->epoch != epoch) {
|
| - SSL_DBG(("%d: SSL3[%d]: dtls_IsRelevant, received packet "
|
| - "from irrelevant epoch %d",
|
| - SSL_GETPID(), ss->fd, epoch));
|
| - return PR_FALSE;
|
| - }
|
| -
|
| - dtls_seq_num = (((PRUint64)(cText->seq_num.high & 0xffff)) << 32) |
|
| - ((PRUint64)cText->seq_num.low);
|
| -
|
| - if (dtls_RecordGetRecvd(&crSpec->recvdRecords, dtls_seq_num) != 0) {
|
| - SSL_DBG(("%d: SSL3[%d]: dtls_IsRelevant, rejecting "
|
| - "potentially replayed packet",
|
| - SSL_GETPID(), ss->fd));
|
| - return PR_FALSE;
|
| - }
|
| -
|
| - *seqNum = dtls_seq_num;
|
| - return PR_TRUE;
|
| -}
|
|
|