Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(938)

Unified Diff: crypto/curve25519-donna.c

Issue 1882433002: Removing NSS files and USE_OPENSSL flag (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Rebase. Created 4 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « crypto/crypto.gypi ('k') | crypto/curve25519_nss.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: crypto/curve25519-donna.c
diff --git a/crypto/curve25519-donna.c b/crypto/curve25519-donna.c
deleted file mode 100644
index f141ac028b0f7bba419c218aad66275b507eb8c3..0000000000000000000000000000000000000000
--- a/crypto/curve25519-donna.c
+++ /dev/null
@@ -1,592 +0,0 @@
-// Copyright (c) 2013 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-/*
- * curve25519-donna: Curve25519 elliptic curve, public key function
- *
- * http://code.google.com/p/curve25519-donna/
- *
- * Adam Langley <agl@imperialviolet.org>
- *
- * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
- *
- * More information about curve25519 can be found here
- * http://cr.yp.to/ecdh.html
- *
- * djb's sample implementation of curve25519 is written in a special assembly
- * language called qhasm and uses the floating point registers.
- *
- * This is, almost, a clean room reimplementation from the curve25519 paper. It
- * uses many of the tricks described therein. Only the crecip function is taken
- * from the sample implementation.
- */
-
-#include <string.h>
-#include <stdint.h>
-
-typedef uint8_t u8;
-typedef int32_t s32;
-typedef int64_t limb;
-
-/* Field element representation:
- *
- * Field elements are written as an array of signed, 64-bit limbs, least
- * significant first. The value of the field element is:
- * x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
- *
- * i.e. the limbs are 26, 25, 26, 25, ... bits wide.
- */
-
-/* Sum two numbers: output += in */
-static void fsum(limb *output, const limb *in) {
- unsigned i;
- for (i = 0; i < 10; i += 2) {
- output[0+i] = (output[0+i] + in[0+i]);
- output[1+i] = (output[1+i] + in[1+i]);
- }
-}
-
-/* Find the difference of two numbers: output = in - output
- * (note the order of the arguments!)
- */
-static void fdifference(limb *output, const limb *in) {
- unsigned i;
- for (i = 0; i < 10; ++i) {
- output[i] = (in[i] - output[i]);
- }
-}
-
-/* Multiply a number my a scalar: output = in * scalar */
-static void fscalar_product(limb *output, const limb *in, const limb scalar) {
- unsigned i;
- for (i = 0; i < 10; ++i) {
- output[i] = in[i] * scalar;
- }
-}
-
-/* Multiply two numbers: output = in2 * in
- *
- * output must be distinct to both inputs. The inputs are reduced coefficient
- * form, the output is not.
- */
-static void fproduct(limb *output, const limb *in2, const limb *in) {
- output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]);
- output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) +
- ((limb) ((s32) in2[1])) * ((s32) in[0]);
- output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) +
- ((limb) ((s32) in2[0])) * ((s32) in[2]) +
- ((limb) ((s32) in2[2])) * ((s32) in[0]);
- output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) +
- ((limb) ((s32) in2[2])) * ((s32) in[1]) +
- ((limb) ((s32) in2[0])) * ((s32) in[3]) +
- ((limb) ((s32) in2[3])) * ((s32) in[0]);
- output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) +
- 2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) +
- ((limb) ((s32) in2[3])) * ((s32) in[1])) +
- ((limb) ((s32) in2[0])) * ((s32) in[4]) +
- ((limb) ((s32) in2[4])) * ((s32) in[0]);
- output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) +
- ((limb) ((s32) in2[3])) * ((s32) in[2]) +
- ((limb) ((s32) in2[1])) * ((s32) in[4]) +
- ((limb) ((s32) in2[4])) * ((s32) in[1]) +
- ((limb) ((s32) in2[0])) * ((s32) in[5]) +
- ((limb) ((s32) in2[5])) * ((s32) in[0]);
- output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) +
- ((limb) ((s32) in2[1])) * ((s32) in[5]) +
- ((limb) ((s32) in2[5])) * ((s32) in[1])) +
- ((limb) ((s32) in2[2])) * ((s32) in[4]) +
- ((limb) ((s32) in2[4])) * ((s32) in[2]) +
- ((limb) ((s32) in2[0])) * ((s32) in[6]) +
- ((limb) ((s32) in2[6])) * ((s32) in[0]);
- output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) +
- ((limb) ((s32) in2[4])) * ((s32) in[3]) +
- ((limb) ((s32) in2[2])) * ((s32) in[5]) +
- ((limb) ((s32) in2[5])) * ((s32) in[2]) +
- ((limb) ((s32) in2[1])) * ((s32) in[6]) +
- ((limb) ((s32) in2[6])) * ((s32) in[1]) +
- ((limb) ((s32) in2[0])) * ((s32) in[7]) +
- ((limb) ((s32) in2[7])) * ((s32) in[0]);
- output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) +
- 2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) +
- ((limb) ((s32) in2[5])) * ((s32) in[3]) +
- ((limb) ((s32) in2[1])) * ((s32) in[7]) +
- ((limb) ((s32) in2[7])) * ((s32) in[1])) +
- ((limb) ((s32) in2[2])) * ((s32) in[6]) +
- ((limb) ((s32) in2[6])) * ((s32) in[2]) +
- ((limb) ((s32) in2[0])) * ((s32) in[8]) +
- ((limb) ((s32) in2[8])) * ((s32) in[0]);
- output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) +
- ((limb) ((s32) in2[5])) * ((s32) in[4]) +
- ((limb) ((s32) in2[3])) * ((s32) in[6]) +
- ((limb) ((s32) in2[6])) * ((s32) in[3]) +
- ((limb) ((s32) in2[2])) * ((s32) in[7]) +
- ((limb) ((s32) in2[7])) * ((s32) in[2]) +
- ((limb) ((s32) in2[1])) * ((s32) in[8]) +
- ((limb) ((s32) in2[8])) * ((s32) in[1]) +
- ((limb) ((s32) in2[0])) * ((s32) in[9]) +
- ((limb) ((s32) in2[9])) * ((s32) in[0]);
- output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) +
- ((limb) ((s32) in2[3])) * ((s32) in[7]) +
- ((limb) ((s32) in2[7])) * ((s32) in[3]) +
- ((limb) ((s32) in2[1])) * ((s32) in[9]) +
- ((limb) ((s32) in2[9])) * ((s32) in[1])) +
- ((limb) ((s32) in2[4])) * ((s32) in[6]) +
- ((limb) ((s32) in2[6])) * ((s32) in[4]) +
- ((limb) ((s32) in2[2])) * ((s32) in[8]) +
- ((limb) ((s32) in2[8])) * ((s32) in[2]);
- output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) +
- ((limb) ((s32) in2[6])) * ((s32) in[5]) +
- ((limb) ((s32) in2[4])) * ((s32) in[7]) +
- ((limb) ((s32) in2[7])) * ((s32) in[4]) +
- ((limb) ((s32) in2[3])) * ((s32) in[8]) +
- ((limb) ((s32) in2[8])) * ((s32) in[3]) +
- ((limb) ((s32) in2[2])) * ((s32) in[9]) +
- ((limb) ((s32) in2[9])) * ((s32) in[2]);
- output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) +
- 2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) +
- ((limb) ((s32) in2[7])) * ((s32) in[5]) +
- ((limb) ((s32) in2[3])) * ((s32) in[9]) +
- ((limb) ((s32) in2[9])) * ((s32) in[3])) +
- ((limb) ((s32) in2[4])) * ((s32) in[8]) +
- ((limb) ((s32) in2[8])) * ((s32) in[4]);
- output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) +
- ((limb) ((s32) in2[7])) * ((s32) in[6]) +
- ((limb) ((s32) in2[5])) * ((s32) in[8]) +
- ((limb) ((s32) in2[8])) * ((s32) in[5]) +
- ((limb) ((s32) in2[4])) * ((s32) in[9]) +
- ((limb) ((s32) in2[9])) * ((s32) in[4]);
- output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) +
- ((limb) ((s32) in2[5])) * ((s32) in[9]) +
- ((limb) ((s32) in2[9])) * ((s32) in[5])) +
- ((limb) ((s32) in2[6])) * ((s32) in[8]) +
- ((limb) ((s32) in2[8])) * ((s32) in[6]);
- output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) +
- ((limb) ((s32) in2[8])) * ((s32) in[7]) +
- ((limb) ((s32) in2[6])) * ((s32) in[9]) +
- ((limb) ((s32) in2[9])) * ((s32) in[6]);
- output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) +
- 2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) +
- ((limb) ((s32) in2[9])) * ((s32) in[7]));
- output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) +
- ((limb) ((s32) in2[9])) * ((s32) in[8]);
- output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]);
-}
-
-/* Reduce a long form to a short form by taking the input mod 2^255 - 19. */
-static void freduce_degree(limb *output) {
- /* Each of these shifts and adds ends up multiplying the value by 19. */
- output[8] += output[18] << 4;
- output[8] += output[18] << 1;
- output[8] += output[18];
- output[7] += output[17] << 4;
- output[7] += output[17] << 1;
- output[7] += output[17];
- output[6] += output[16] << 4;
- output[6] += output[16] << 1;
- output[6] += output[16];
- output[5] += output[15] << 4;
- output[5] += output[15] << 1;
- output[5] += output[15];
- output[4] += output[14] << 4;
- output[4] += output[14] << 1;
- output[4] += output[14];
- output[3] += output[13] << 4;
- output[3] += output[13] << 1;
- output[3] += output[13];
- output[2] += output[12] << 4;
- output[2] += output[12] << 1;
- output[2] += output[12];
- output[1] += output[11] << 4;
- output[1] += output[11] << 1;
- output[1] += output[11];
- output[0] += output[10] << 4;
- output[0] += output[10] << 1;
- output[0] += output[10];
-}
-
-/* Reduce all coefficients of the short form input so that |x| < 2^26.
- *
- * On entry: |output[i]| < 2^62
- */
-static void freduce_coefficients(limb *output) {
- unsigned i;
- do {
- output[10] = 0;
-
- for (i = 0; i < 10; i += 2) {
- limb over = output[i] / 0x4000000l;
- output[i+1] += over;
- output[i] -= over * 0x4000000l;
-
- over = output[i+1] / 0x2000000;
- output[i+2] += over;
- output[i+1] -= over * 0x2000000;
- }
- output[0] += 19 * output[10];
- } while (output[10]);
-}
-
-/* A helpful wrapper around fproduct: output = in * in2.
- *
- * output must be distinct to both inputs. The output is reduced degree and
- * reduced coefficient.
- */
-static void
-fmul(limb *output, const limb *in, const limb *in2) {
- limb t[19];
- fproduct(t, in, in2);
- freduce_degree(t);
- freduce_coefficients(t);
- memcpy(output, t, sizeof(limb) * 10);
-}
-
-static void fsquare_inner(limb *output, const limb *in) {
- output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]);
- output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]);
- output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) +
- ((limb) ((s32) in[0])) * ((s32) in[2]));
- output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) +
- ((limb) ((s32) in[0])) * ((s32) in[3]));
- output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) +
- 4 * ((limb) ((s32) in[1])) * ((s32) in[3]) +
- 2 * ((limb) ((s32) in[0])) * ((s32) in[4]);
- output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) +
- ((limb) ((s32) in[1])) * ((s32) in[4]) +
- ((limb) ((s32) in[0])) * ((s32) in[5]));
- output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) +
- ((limb) ((s32) in[2])) * ((s32) in[4]) +
- ((limb) ((s32) in[0])) * ((s32) in[6]) +
- 2 * ((limb) ((s32) in[1])) * ((s32) in[5]));
- output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) +
- ((limb) ((s32) in[2])) * ((s32) in[5]) +
- ((limb) ((s32) in[1])) * ((s32) in[6]) +
- ((limb) ((s32) in[0])) * ((s32) in[7]));
- output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) +
- 2 * (((limb) ((s32) in[2])) * ((s32) in[6]) +
- ((limb) ((s32) in[0])) * ((s32) in[8]) +
- 2 * (((limb) ((s32) in[1])) * ((s32) in[7]) +
- ((limb) ((s32) in[3])) * ((s32) in[5])));
- output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) +
- ((limb) ((s32) in[3])) * ((s32) in[6]) +
- ((limb) ((s32) in[2])) * ((s32) in[7]) +
- ((limb) ((s32) in[1])) * ((s32) in[8]) +
- ((limb) ((s32) in[0])) * ((s32) in[9]));
- output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) +
- ((limb) ((s32) in[4])) * ((s32) in[6]) +
- ((limb) ((s32) in[2])) * ((s32) in[8]) +
- 2 * (((limb) ((s32) in[3])) * ((s32) in[7]) +
- ((limb) ((s32) in[1])) * ((s32) in[9])));
- output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) +
- ((limb) ((s32) in[4])) * ((s32) in[7]) +
- ((limb) ((s32) in[3])) * ((s32) in[8]) +
- ((limb) ((s32) in[2])) * ((s32) in[9]));
- output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) +
- 2 * (((limb) ((s32) in[4])) * ((s32) in[8]) +
- 2 * (((limb) ((s32) in[5])) * ((s32) in[7]) +
- ((limb) ((s32) in[3])) * ((s32) in[9])));
- output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) +
- ((limb) ((s32) in[5])) * ((s32) in[8]) +
- ((limb) ((s32) in[4])) * ((s32) in[9]));
- output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) +
- ((limb) ((s32) in[6])) * ((s32) in[8]) +
- 2 * ((limb) ((s32) in[5])) * ((s32) in[9]));
- output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) +
- ((limb) ((s32) in[6])) * ((s32) in[9]));
- output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) +
- 4 * ((limb) ((s32) in[7])) * ((s32) in[9]);
- output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]);
- output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]);
-}
-
-static void
-fsquare(limb *output, const limb *in) {
- limb t[19];
- fsquare_inner(t, in);
- freduce_degree(t);
- freduce_coefficients(t);
- memcpy(output, t, sizeof(limb) * 10);
-}
-
-/* Take a little-endian, 32-byte number and expand it into polynomial form */
-static void
-fexpand(limb *output, const u8 *input) {
-#define F(n,start,shift,mask) \
- output[n] = ((((limb) input[start + 0]) | \
- ((limb) input[start + 1]) << 8 | \
- ((limb) input[start + 2]) << 16 | \
- ((limb) input[start + 3]) << 24) >> shift) & mask;
- F(0, 0, 0, 0x3ffffff);
- F(1, 3, 2, 0x1ffffff);
- F(2, 6, 3, 0x3ffffff);
- F(3, 9, 5, 0x1ffffff);
- F(4, 12, 6, 0x3ffffff);
- F(5, 16, 0, 0x1ffffff);
- F(6, 19, 1, 0x3ffffff);
- F(7, 22, 3, 0x1ffffff);
- F(8, 25, 4, 0x3ffffff);
- F(9, 28, 6, 0x1ffffff);
-#undef F
-}
-
-/* Take a fully reduced polynomial form number and contract it into a
- * little-endian, 32-byte array
- */
-static void
-fcontract(u8 *output, limb *input) {
- int i;
-
- do {
- for (i = 0; i < 9; ++i) {
- if ((i & 1) == 1) {
- while (input[i] < 0) {
- input[i] += 0x2000000;
- input[i + 1]--;
- }
- } else {
- while (input[i] < 0) {
- input[i] += 0x4000000;
- input[i + 1]--;
- }
- }
- }
- while (input[9] < 0) {
- input[9] += 0x2000000;
- input[0] -= 19;
- }
- } while (input[0] < 0);
-
- input[1] <<= 2;
- input[2] <<= 3;
- input[3] <<= 5;
- input[4] <<= 6;
- input[6] <<= 1;
- input[7] <<= 3;
- input[8] <<= 4;
- input[9] <<= 6;
-#define F(i, s) \
- output[s+0] |= input[i] & 0xff; \
- output[s+1] = (input[i] >> 8) & 0xff; \
- output[s+2] = (input[i] >> 16) & 0xff; \
- output[s+3] = (input[i] >> 24) & 0xff;
- output[0] = 0;
- output[16] = 0;
- F(0,0);
- F(1,3);
- F(2,6);
- F(3,9);
- F(4,12);
- F(5,16);
- F(6,19);
- F(7,22);
- F(8,25);
- F(9,28);
-#undef F
-}
-
-/* Input: Q, Q', Q-Q'
- * Output: 2Q, Q+Q'
- *
- * x2 z3: long form
- * x3 z3: long form
- * x z: short form, destroyed
- * xprime zprime: short form, destroyed
- * qmqp: short form, preserved
- */
-static void fmonty(limb *x2, limb *z2, /* output 2Q */
- limb *x3, limb *z3, /* output Q + Q' */
- limb *x, limb *z, /* input Q */
- limb *xprime, limb *zprime, /* input Q' */
- const limb *qmqp /* input Q - Q' */) {
- limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
- zzprime[19], zzzprime[19], xxxprime[19];
-
- memcpy(origx, x, 10 * sizeof(limb));
- fsum(x, z);
- fdifference(z, origx); // does x - z
-
- memcpy(origxprime, xprime, sizeof(limb) * 10);
- fsum(xprime, zprime);
- fdifference(zprime, origxprime);
- fproduct(xxprime, xprime, z);
- fproduct(zzprime, x, zprime);
- freduce_degree(xxprime);
- freduce_coefficients(xxprime);
- freduce_degree(zzprime);
- freduce_coefficients(zzprime);
- memcpy(origxprime, xxprime, sizeof(limb) * 10);
- fsum(xxprime, zzprime);
- fdifference(zzprime, origxprime);
- fsquare(xxxprime, xxprime);
- fsquare(zzzprime, zzprime);
- fproduct(zzprime, zzzprime, qmqp);
- freduce_degree(zzprime);
- freduce_coefficients(zzprime);
- memcpy(x3, xxxprime, sizeof(limb) * 10);
- memcpy(z3, zzprime, sizeof(limb) * 10);
-
- fsquare(xx, x);
- fsquare(zz, z);
- fproduct(x2, xx, zz);
- freduce_degree(x2);
- freduce_coefficients(x2);
- fdifference(zz, xx); // does zz = xx - zz
- memset(zzz + 10, 0, sizeof(limb) * 9);
- fscalar_product(zzz, zz, 121665);
- freduce_degree(zzz);
- freduce_coefficients(zzz);
- fsum(zzz, xx);
- fproduct(z2, zz, zzz);
- freduce_degree(z2);
- freduce_coefficients(z2);
-}
-
-/* Calculates nQ where Q is the x-coordinate of a point on the curve
- *
- * resultx/resultz: the x coordinate of the resulting curve point (short form)
- * n: a little endian, 32-byte number
- * q: a point of the curve (short form)
- */
-static void
-cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
- limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
- limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
- limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
- limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
-
- unsigned i, j;
-
- memcpy(nqpqx, q, sizeof(limb) * 10);
-
- for (i = 0; i < 32; ++i) {
- u8 byte = n[31 - i];
- for (j = 0; j < 8; ++j) {
- if (byte & 0x80) {
- fmonty(nqpqx2, nqpqz2,
- nqx2, nqz2,
- nqpqx, nqpqz,
- nqx, nqz,
- q);
- } else {
- fmonty(nqx2, nqz2,
- nqpqx2, nqpqz2,
- nqx, nqz,
- nqpqx, nqpqz,
- q);
- }
-
- t = nqx;
- nqx = nqx2;
- nqx2 = t;
- t = nqz;
- nqz = nqz2;
- nqz2 = t;
- t = nqpqx;
- nqpqx = nqpqx2;
- nqpqx2 = t;
- t = nqpqz;
- nqpqz = nqpqz2;
- nqpqz2 = t;
-
- byte <<= 1;
- }
- }
-
- memcpy(resultx, nqx, sizeof(limb) * 10);
- memcpy(resultz, nqz, sizeof(limb) * 10);
-}
-
-// -----------------------------------------------------------------------------
-// Shamelessly copied from djb's code
-// -----------------------------------------------------------------------------
-static void
-crecip(limb *out, const limb *z) {
- limb z2[10];
- limb z9[10];
- limb z11[10];
- limb z2_5_0[10];
- limb z2_10_0[10];
- limb z2_20_0[10];
- limb z2_50_0[10];
- limb z2_100_0[10];
- limb t0[10];
- limb t1[10];
- int i;
-
- /* 2 */ fsquare(z2,z);
- /* 4 */ fsquare(t1,z2);
- /* 8 */ fsquare(t0,t1);
- /* 9 */ fmul(z9,t0,z);
- /* 11 */ fmul(z11,z9,z2);
- /* 22 */ fsquare(t0,z11);
- /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9);
-
- /* 2^6 - 2^1 */ fsquare(t0,z2_5_0);
- /* 2^7 - 2^2 */ fsquare(t1,t0);
- /* 2^8 - 2^3 */ fsquare(t0,t1);
- /* 2^9 - 2^4 */ fsquare(t1,t0);
- /* 2^10 - 2^5 */ fsquare(t0,t1);
- /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0);
-
- /* 2^11 - 2^1 */ fsquare(t0,z2_10_0);
- /* 2^12 - 2^2 */ fsquare(t1,t0);
- /* 2^20 - 2^10 */
- for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
- /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0);
-
- /* 2^21 - 2^1 */ fsquare(t0,z2_20_0);
- /* 2^22 - 2^2 */ fsquare(t1,t0);
- /* 2^40 - 2^20 */
- for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
- /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0);
-
- /* 2^41 - 2^1 */ fsquare(t1,t0);
- /* 2^42 - 2^2 */ fsquare(t0,t1);
- /* 2^50 - 2^10 */
- for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
- /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0);
-
- /* 2^51 - 2^1 */ fsquare(t0,z2_50_0);
- /* 2^52 - 2^2 */ fsquare(t1,t0);
- /* 2^100 - 2^50 */
- for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
- /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0);
-
- /* 2^101 - 2^1 */ fsquare(t1,z2_100_0);
- /* 2^102 - 2^2 */ fsquare(t0,t1);
- /* 2^200 - 2^100 */
- for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
- /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0);
-
- /* 2^201 - 2^1 */ fsquare(t0,t1);
- /* 2^202 - 2^2 */ fsquare(t1,t0);
- /* 2^250 - 2^50 */
- for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
- /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0);
-
- /* 2^251 - 2^1 */ fsquare(t1,t0);
- /* 2^252 - 2^2 */ fsquare(t0,t1);
- /* 2^253 - 2^3 */ fsquare(t1,t0);
- /* 2^254 - 2^4 */ fsquare(t0,t1);
- /* 2^255 - 2^5 */ fsquare(t1,t0);
- /* 2^255 - 21 */ fmul(out,t1,z11);
-}
-
-int
-curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
- limb bp[10], x[10], z[10], zmone[10];
- uint8_t e[32];
- int i;
-
- for (i = 0; i < 32; ++i) e[i] = secret[i];
- e[0] &= 248;
- e[31] &= 127;
- e[31] |= 64;
-
- fexpand(bp, basepoint);
- cmult(x, z, e, bp);
- crecip(zmone, z);
- fmul(z, x, zmone);
- fcontract(mypublic, z);
- return 0;
-}
« no previous file with comments | « crypto/crypto.gypi ('k') | crypto/curve25519_nss.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698