| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "crypto/rsa_private_key.h" | |
| 6 | |
| 7 #include <cryptohi.h> | |
| 8 #include <keyhi.h> | |
| 9 #include <pk11pub.h> | |
| 10 #include <stdint.h> | |
| 11 | |
| 12 #include <list> | |
| 13 #include <memory> | |
| 14 | |
| 15 #include "base/debug/leak_annotations.h" | |
| 16 #include "base/logging.h" | |
| 17 #include "base/strings/string_util.h" | |
| 18 #include "crypto/nss_key_util.h" | |
| 19 #include "crypto/nss_util.h" | |
| 20 #include "crypto/scoped_nss_types.h" | |
| 21 | |
| 22 // Helper for error handling during key import. | |
| 23 #define READ_ASSERT(truth) \ | |
| 24 if (!(truth)) { \ | |
| 25 NOTREACHED(); \ | |
| 26 return false; \ | |
| 27 } | |
| 28 | |
| 29 // TODO(rafaelw): Consider using NSS's ASN.1 encoder. | |
| 30 namespace { | |
| 31 | |
| 32 static bool ReadAttribute(SECKEYPrivateKey* key, | |
| 33 CK_ATTRIBUTE_TYPE type, | |
| 34 std::vector<uint8_t>* output) { | |
| 35 SECItem item; | |
| 36 SECStatus rv; | |
| 37 rv = PK11_ReadRawAttribute(PK11_TypePrivKey, key, type, &item); | |
| 38 if (rv != SECSuccess) { | |
| 39 NOTREACHED(); | |
| 40 return false; | |
| 41 } | |
| 42 | |
| 43 output->assign(item.data, item.data + item.len); | |
| 44 SECITEM_FreeItem(&item, PR_FALSE); | |
| 45 return true; | |
| 46 } | |
| 47 | |
| 48 // Used internally by RSAPrivateKey for serializing and deserializing | |
| 49 // PKCS #8 PrivateKeyInfo and PublicKeyInfo. | |
| 50 class PrivateKeyInfoCodec { | |
| 51 public: | |
| 52 // ASN.1 encoding of the AlgorithmIdentifier from PKCS #8. | |
| 53 static const uint8_t kRsaAlgorithmIdentifier[]; | |
| 54 | |
| 55 // ASN.1 tags for some types we use. | |
| 56 static const uint8_t kBitStringTag = 0x03; | |
| 57 static const uint8_t kIntegerTag = 0x02; | |
| 58 static const uint8_t kOctetStringTag = 0x04; | |
| 59 static const uint8_t kSequenceTag = 0x30; | |
| 60 | |
| 61 // |big_endian| here specifies the byte-significance of the integer components | |
| 62 // that will be parsed & serialized (modulus(), etc...) during Import(), | |
| 63 // Export() and ExportPublicKeyInfo() -- not the ASN.1 DER encoding of the | |
| 64 // PrivateKeyInfo/PublicKeyInfo (which is always big-endian). | |
| 65 explicit PrivateKeyInfoCodec(bool big_endian); | |
| 66 | |
| 67 ~PrivateKeyInfoCodec(); | |
| 68 | |
| 69 // Exports the contents of the integer components to the ASN.1 DER encoding | |
| 70 // of the PrivateKeyInfo structure to |output|. | |
| 71 bool Export(std::vector<uint8_t>* output); | |
| 72 | |
| 73 // Exports the contents of the integer components to the ASN.1 DER encoding | |
| 74 // of the PublicKeyInfo structure to |output|. | |
| 75 bool ExportPublicKeyInfo(std::vector<uint8_t>* output); | |
| 76 | |
| 77 // Exports the contents of the integer components to the ASN.1 DER encoding | |
| 78 // of the RSAPublicKey structure to |output|. | |
| 79 bool ExportPublicKey(std::vector<uint8_t>* output); | |
| 80 | |
| 81 // Parses the ASN.1 DER encoding of the PrivateKeyInfo structure in |input| | |
| 82 // and populates the integer components with |big_endian_| byte-significance. | |
| 83 // IMPORTANT NOTE: This is currently *not* security-approved for importing | |
| 84 // keys from unstrusted sources. | |
| 85 bool Import(const std::vector<uint8_t>& input); | |
| 86 | |
| 87 // Accessors to the contents of the integer components of the PrivateKeyInfo | |
| 88 // structure. | |
| 89 std::vector<uint8_t>* modulus() { return &modulus_; } | |
| 90 std::vector<uint8_t>* public_exponent() { return &public_exponent_; } | |
| 91 std::vector<uint8_t>* private_exponent() { return &private_exponent_; } | |
| 92 std::vector<uint8_t>* prime1() { return &prime1_; } | |
| 93 std::vector<uint8_t>* prime2() { return &prime2_; } | |
| 94 std::vector<uint8_t>* exponent1() { return &exponent1_; } | |
| 95 std::vector<uint8_t>* exponent2() { return &exponent2_; } | |
| 96 std::vector<uint8_t>* coefficient() { return &coefficient_; } | |
| 97 | |
| 98 private: | |
| 99 // Utility wrappers for PrependIntegerImpl that use the class's |big_endian_| | |
| 100 // value. | |
| 101 void PrependInteger(const std::vector<uint8_t>& in, std::list<uint8_t>* out); | |
| 102 void PrependInteger(uint8_t* val, int num_bytes, std::list<uint8_t>* data); | |
| 103 | |
| 104 // Prepends the integer stored in |val| - |val + num_bytes| with |big_endian| | |
| 105 // byte-significance into |data| as an ASN.1 integer. | |
| 106 void PrependIntegerImpl(uint8_t* val, | |
| 107 int num_bytes, | |
| 108 std::list<uint8_t>* data, | |
| 109 bool big_endian); | |
| 110 | |
| 111 // Utility wrappers for ReadIntegerImpl that use the class's |big_endian_| | |
| 112 // value. | |
| 113 bool ReadInteger(uint8_t** pos, uint8_t* end, std::vector<uint8_t>* out); | |
| 114 bool ReadIntegerWithExpectedSize(uint8_t** pos, | |
| 115 uint8_t* end, | |
| 116 size_t expected_size, | |
| 117 std::vector<uint8_t>* out); | |
| 118 | |
| 119 // Reads an ASN.1 integer from |pos|, and stores the result into |out| with | |
| 120 // |big_endian| byte-significance. | |
| 121 bool ReadIntegerImpl(uint8_t** pos, | |
| 122 uint8_t* end, | |
| 123 std::vector<uint8_t>* out, | |
| 124 bool big_endian); | |
| 125 | |
| 126 // Prepends the integer stored in |val|, starting a index |start|, for | |
| 127 // |num_bytes| bytes onto |data|. | |
| 128 void PrependBytes(uint8_t* val, | |
| 129 int start, | |
| 130 int num_bytes, | |
| 131 std::list<uint8_t>* data); | |
| 132 | |
| 133 // Helper to prepend an ASN.1 length field. | |
| 134 void PrependLength(size_t size, std::list<uint8_t>* data); | |
| 135 | |
| 136 // Helper to prepend an ASN.1 type header. | |
| 137 void PrependTypeHeaderAndLength(uint8_t type, | |
| 138 uint32_t length, | |
| 139 std::list<uint8_t>* output); | |
| 140 | |
| 141 // Helper to prepend an ASN.1 bit string | |
| 142 void PrependBitString(uint8_t* val, | |
| 143 int num_bytes, | |
| 144 std::list<uint8_t>* output); | |
| 145 | |
| 146 // Read an ASN.1 length field. This also checks that the length does not | |
| 147 // extend beyond |end|. | |
| 148 bool ReadLength(uint8_t** pos, uint8_t* end, uint32_t* result); | |
| 149 | |
| 150 // Read an ASN.1 type header and its length. | |
| 151 bool ReadTypeHeaderAndLength(uint8_t** pos, | |
| 152 uint8_t* end, | |
| 153 uint8_t expected_tag, | |
| 154 uint32_t* length); | |
| 155 | |
| 156 // Read an ASN.1 sequence declaration. This consumes the type header and | |
| 157 // length field, but not the contents of the sequence. | |
| 158 bool ReadSequence(uint8_t** pos, uint8_t* end); | |
| 159 | |
| 160 // Read the RSA AlgorithmIdentifier. | |
| 161 bool ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end); | |
| 162 | |
| 163 // Read one of the two version fields in PrivateKeyInfo. | |
| 164 bool ReadVersion(uint8_t** pos, uint8_t* end); | |
| 165 | |
| 166 // The byte-significance of the stored components (modulus, etc..). | |
| 167 bool big_endian_; | |
| 168 | |
| 169 // Component integers of the PrivateKeyInfo | |
| 170 std::vector<uint8_t> modulus_; | |
| 171 std::vector<uint8_t> public_exponent_; | |
| 172 std::vector<uint8_t> private_exponent_; | |
| 173 std::vector<uint8_t> prime1_; | |
| 174 std::vector<uint8_t> prime2_; | |
| 175 std::vector<uint8_t> exponent1_; | |
| 176 std::vector<uint8_t> exponent2_; | |
| 177 std::vector<uint8_t> coefficient_; | |
| 178 | |
| 179 DISALLOW_COPY_AND_ASSIGN(PrivateKeyInfoCodec); | |
| 180 }; | |
| 181 | |
| 182 const uint8_t PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = { | |
| 183 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, | |
| 184 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00}; | |
| 185 | |
| 186 PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian) | |
| 187 : big_endian_(big_endian) {} | |
| 188 | |
| 189 PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {} | |
| 190 | |
| 191 bool PrivateKeyInfoCodec::Export(std::vector<uint8_t>* output) { | |
| 192 std::list<uint8_t> content; | |
| 193 | |
| 194 // Version (always zero) | |
| 195 uint8_t version = 0; | |
| 196 | |
| 197 PrependInteger(coefficient_, &content); | |
| 198 PrependInteger(exponent2_, &content); | |
| 199 PrependInteger(exponent1_, &content); | |
| 200 PrependInteger(prime2_, &content); | |
| 201 PrependInteger(prime1_, &content); | |
| 202 PrependInteger(private_exponent_, &content); | |
| 203 PrependInteger(public_exponent_, &content); | |
| 204 PrependInteger(modulus_, &content); | |
| 205 PrependInteger(&version, 1, &content); | |
| 206 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); | |
| 207 PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content); | |
| 208 | |
| 209 // RSA algorithm OID | |
| 210 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) | |
| 211 content.push_front(kRsaAlgorithmIdentifier[i - 1]); | |
| 212 | |
| 213 PrependInteger(&version, 1, &content); | |
| 214 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); | |
| 215 | |
| 216 // Copy everying into the output. | |
| 217 output->reserve(content.size()); | |
| 218 output->assign(content.begin(), content.end()); | |
| 219 | |
| 220 return true; | |
| 221 } | |
| 222 | |
| 223 bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8_t>* output) { | |
| 224 // Create a sequence with the modulus (n) and public exponent (e). | |
| 225 std::vector<uint8_t> bit_string; | |
| 226 if (!ExportPublicKey(&bit_string)) | |
| 227 return false; | |
| 228 | |
| 229 // Add the sequence as the contents of a bit string. | |
| 230 std::list<uint8_t> content; | |
| 231 PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()), | |
| 232 &content); | |
| 233 | |
| 234 // Add the RSA algorithm OID. | |
| 235 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) | |
| 236 content.push_front(kRsaAlgorithmIdentifier[i - 1]); | |
| 237 | |
| 238 // Finally, wrap everything in a sequence. | |
| 239 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); | |
| 240 | |
| 241 // Copy everything into the output. | |
| 242 output->reserve(content.size()); | |
| 243 output->assign(content.begin(), content.end()); | |
| 244 | |
| 245 return true; | |
| 246 } | |
| 247 | |
| 248 bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8_t>* output) { | |
| 249 // Create a sequence with the modulus (n) and public exponent (e). | |
| 250 std::list<uint8_t> content; | |
| 251 PrependInteger(&public_exponent_[0], | |
| 252 static_cast<int>(public_exponent_.size()), | |
| 253 &content); | |
| 254 PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content); | |
| 255 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); | |
| 256 | |
| 257 // Copy everything into the output. | |
| 258 output->reserve(content.size()); | |
| 259 output->assign(content.begin(), content.end()); | |
| 260 | |
| 261 return true; | |
| 262 } | |
| 263 | |
| 264 bool PrivateKeyInfoCodec::Import(const std::vector<uint8_t>& input) { | |
| 265 if (input.empty()) { | |
| 266 return false; | |
| 267 } | |
| 268 | |
| 269 // Parse the private key info up to the public key values, ignoring | |
| 270 // the subsequent private key values. | |
| 271 uint8_t* src = const_cast<uint8_t*>(&input.front()); | |
| 272 uint8_t* end = src + input.size(); | |
| 273 if (!ReadSequence(&src, end) || | |
| 274 !ReadVersion(&src, end) || | |
| 275 !ReadAlgorithmIdentifier(&src, end) || | |
| 276 !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) || | |
| 277 !ReadSequence(&src, end) || | |
| 278 !ReadVersion(&src, end) || | |
| 279 !ReadInteger(&src, end, &modulus_)) | |
| 280 return false; | |
| 281 | |
| 282 int mod_size = modulus_.size(); | |
| 283 READ_ASSERT(mod_size % 2 == 0); | |
| 284 int primes_size = mod_size / 2; | |
| 285 | |
| 286 if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) || | |
| 287 !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) || | |
| 288 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) || | |
| 289 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) || | |
| 290 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) || | |
| 291 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) || | |
| 292 !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_)) | |
| 293 return false; | |
| 294 | |
| 295 READ_ASSERT(src == end); | |
| 296 | |
| 297 | |
| 298 return true; | |
| 299 } | |
| 300 | |
| 301 void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8_t>& in, | |
| 302 std::list<uint8_t>* out) { | |
| 303 uint8_t* ptr = const_cast<uint8_t*>(&in.front()); | |
| 304 PrependIntegerImpl(ptr, in.size(), out, big_endian_); | |
| 305 } | |
| 306 | |
| 307 // Helper to prepend an ASN.1 integer. | |
| 308 void PrivateKeyInfoCodec::PrependInteger(uint8_t* val, | |
| 309 int num_bytes, | |
| 310 std::list<uint8_t>* data) { | |
| 311 PrependIntegerImpl(val, num_bytes, data, big_endian_); | |
| 312 } | |
| 313 | |
| 314 void PrivateKeyInfoCodec::PrependIntegerImpl(uint8_t* val, | |
| 315 int num_bytes, | |
| 316 std::list<uint8_t>* data, | |
| 317 bool big_endian) { | |
| 318 // Reverse input if little-endian. | |
| 319 std::vector<uint8_t> tmp; | |
| 320 if (!big_endian) { | |
| 321 tmp.assign(val, val + num_bytes); | |
| 322 std::reverse(tmp.begin(), tmp.end()); | |
| 323 val = &tmp.front(); | |
| 324 } | |
| 325 | |
| 326 // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes | |
| 327 // from the most-significant end of the integer. | |
| 328 int start = 0; | |
| 329 while (start < (num_bytes - 1) && val[start] == 0x00) { | |
| 330 start++; | |
| 331 num_bytes--; | |
| 332 } | |
| 333 PrependBytes(val, start, num_bytes, data); | |
| 334 | |
| 335 // ASN.1 integers are signed. To encode a positive integer whose sign bit | |
| 336 // (the most significant bit) would otherwise be set and make the number | |
| 337 // negative, ASN.1 requires a leading null byte to force the integer to be | |
| 338 // positive. | |
| 339 uint8_t front = data->front(); | |
| 340 if ((front & 0x80) != 0) { | |
| 341 data->push_front(0x00); | |
| 342 num_bytes++; | |
| 343 } | |
| 344 | |
| 345 PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data); | |
| 346 } | |
| 347 | |
| 348 bool PrivateKeyInfoCodec::ReadInteger(uint8_t** pos, | |
| 349 uint8_t* end, | |
| 350 std::vector<uint8_t>* out) { | |
| 351 return ReadIntegerImpl(pos, end, out, big_endian_); | |
| 352 } | |
| 353 | |
| 354 bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize( | |
| 355 uint8_t** pos, | |
| 356 uint8_t* end, | |
| 357 size_t expected_size, | |
| 358 std::vector<uint8_t>* out) { | |
| 359 std::vector<uint8_t> temp; | |
| 360 if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian | |
| 361 return false; | |
| 362 | |
| 363 int pad = expected_size - temp.size(); | |
| 364 int index = 0; | |
| 365 if (out->size() == expected_size + 1) { | |
| 366 READ_ASSERT(out->front() == 0x00); | |
| 367 pad++; | |
| 368 index++; | |
| 369 } else { | |
| 370 READ_ASSERT(out->size() <= expected_size); | |
| 371 } | |
| 372 | |
| 373 out->insert(out->end(), pad, 0x00); | |
| 374 out->insert(out->end(), temp.begin(), temp.end()); | |
| 375 | |
| 376 // Reverse output if little-endian. | |
| 377 if (!big_endian_) | |
| 378 std::reverse(out->begin(), out->end()); | |
| 379 return true; | |
| 380 } | |
| 381 | |
| 382 bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8_t** pos, | |
| 383 uint8_t* end, | |
| 384 std::vector<uint8_t>* out, | |
| 385 bool big_endian) { | |
| 386 uint32_t length = 0; | |
| 387 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length) | |
| 388 return false; | |
| 389 | |
| 390 // The first byte can be zero to force positiveness. We can ignore this. | |
| 391 if (**pos == 0x00) { | |
| 392 ++(*pos); | |
| 393 --length; | |
| 394 } | |
| 395 | |
| 396 if (length) | |
| 397 out->insert(out->end(), *pos, (*pos) + length); | |
| 398 | |
| 399 (*pos) += length; | |
| 400 | |
| 401 // Reverse output if little-endian. | |
| 402 if (!big_endian) | |
| 403 std::reverse(out->begin(), out->end()); | |
| 404 return true; | |
| 405 } | |
| 406 | |
| 407 void PrivateKeyInfoCodec::PrependBytes(uint8_t* val, | |
| 408 int start, | |
| 409 int num_bytes, | |
| 410 std::list<uint8_t>* data) { | |
| 411 while (num_bytes > 0) { | |
| 412 --num_bytes; | |
| 413 data->push_front(val[start + num_bytes]); | |
| 414 } | |
| 415 } | |
| 416 | |
| 417 void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8_t>* data) { | |
| 418 // The high bit is used to indicate whether additional octets are needed to | |
| 419 // represent the length. | |
| 420 if (size < 0x80) { | |
| 421 data->push_front(static_cast<uint8_t>(size)); | |
| 422 } else { | |
| 423 uint8_t num_bytes = 0; | |
| 424 while (size > 0) { | |
| 425 data->push_front(static_cast<uint8_t>(size & 0xFF)); | |
| 426 size >>= 8; | |
| 427 num_bytes++; | |
| 428 } | |
| 429 CHECK_LE(num_bytes, 4); | |
| 430 data->push_front(0x80 | num_bytes); | |
| 431 } | |
| 432 } | |
| 433 | |
| 434 void PrivateKeyInfoCodec::PrependTypeHeaderAndLength( | |
| 435 uint8_t type, | |
| 436 uint32_t length, | |
| 437 std::list<uint8_t>* output) { | |
| 438 PrependLength(length, output); | |
| 439 output->push_front(type); | |
| 440 } | |
| 441 | |
| 442 void PrivateKeyInfoCodec::PrependBitString(uint8_t* val, | |
| 443 int num_bytes, | |
| 444 std::list<uint8_t>* output) { | |
| 445 // Start with the data. | |
| 446 PrependBytes(val, 0, num_bytes, output); | |
| 447 // Zero unused bits. | |
| 448 output->push_front(0); | |
| 449 // Add the length. | |
| 450 PrependLength(num_bytes + 1, output); | |
| 451 // Finally, add the bit string tag. | |
| 452 output->push_front((uint8_t)kBitStringTag); | |
| 453 } | |
| 454 | |
| 455 bool PrivateKeyInfoCodec::ReadLength(uint8_t** pos, | |
| 456 uint8_t* end, | |
| 457 uint32_t* result) { | |
| 458 READ_ASSERT(*pos < end); | |
| 459 int length = 0; | |
| 460 | |
| 461 // If the MSB is not set, the length is just the byte itself. | |
| 462 if (!(**pos & 0x80)) { | |
| 463 length = **pos; | |
| 464 (*pos)++; | |
| 465 } else { | |
| 466 // Otherwise, the lower 7 indicate the length of the length. | |
| 467 int length_of_length = **pos & 0x7F; | |
| 468 READ_ASSERT(length_of_length <= 4); | |
| 469 (*pos)++; | |
| 470 READ_ASSERT(*pos + length_of_length < end); | |
| 471 | |
| 472 length = 0; | |
| 473 for (int i = 0; i < length_of_length; ++i) { | |
| 474 length <<= 8; | |
| 475 length |= **pos; | |
| 476 (*pos)++; | |
| 477 } | |
| 478 } | |
| 479 | |
| 480 READ_ASSERT(*pos + length <= end); | |
| 481 if (result) *result = length; | |
| 482 return true; | |
| 483 } | |
| 484 | |
| 485 bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8_t** pos, | |
| 486 uint8_t* end, | |
| 487 uint8_t expected_tag, | |
| 488 uint32_t* length) { | |
| 489 READ_ASSERT(*pos < end); | |
| 490 READ_ASSERT(**pos == expected_tag); | |
| 491 (*pos)++; | |
| 492 | |
| 493 return ReadLength(pos, end, length); | |
| 494 } | |
| 495 | |
| 496 bool PrivateKeyInfoCodec::ReadSequence(uint8_t** pos, uint8_t* end) { | |
| 497 return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL); | |
| 498 } | |
| 499 | |
| 500 bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end) { | |
| 501 READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end); | |
| 502 READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier, | |
| 503 sizeof(kRsaAlgorithmIdentifier)) == 0); | |
| 504 (*pos) += sizeof(kRsaAlgorithmIdentifier); | |
| 505 return true; | |
| 506 } | |
| 507 | |
| 508 bool PrivateKeyInfoCodec::ReadVersion(uint8_t** pos, uint8_t* end) { | |
| 509 uint32_t length = 0; | |
| 510 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length)) | |
| 511 return false; | |
| 512 | |
| 513 // The version should be zero. | |
| 514 for (uint32_t i = 0; i < length; ++i) { | |
| 515 READ_ASSERT(**pos == 0x00); | |
| 516 (*pos)++; | |
| 517 } | |
| 518 | |
| 519 return true; | |
| 520 } | |
| 521 | |
| 522 } // namespace | |
| 523 | |
| 524 namespace crypto { | |
| 525 | |
| 526 RSAPrivateKey::~RSAPrivateKey() { | |
| 527 if (key_) | |
| 528 SECKEY_DestroyPrivateKey(key_); | |
| 529 if (public_key_) | |
| 530 SECKEY_DestroyPublicKey(public_key_); | |
| 531 } | |
| 532 | |
| 533 // static | |
| 534 RSAPrivateKey* RSAPrivateKey::Create(uint16_t num_bits) { | |
| 535 EnsureNSSInit(); | |
| 536 | |
| 537 ScopedPK11Slot slot(PK11_GetInternalSlot()); | |
| 538 if (!slot) { | |
| 539 NOTREACHED(); | |
| 540 return nullptr; | |
| 541 } | |
| 542 | |
| 543 ScopedSECKEYPublicKey public_key; | |
| 544 ScopedSECKEYPrivateKey private_key; | |
| 545 if (!GenerateRSAKeyPairNSS(slot.get(), num_bits, false /* not permanent */, | |
| 546 &public_key, &private_key)) { | |
| 547 return nullptr; | |
| 548 } | |
| 549 | |
| 550 RSAPrivateKey* rsa_key = new RSAPrivateKey; | |
| 551 rsa_key->public_key_ = public_key.release(); | |
| 552 rsa_key->key_ = private_key.release(); | |
| 553 return rsa_key; | |
| 554 } | |
| 555 | |
| 556 // static | |
| 557 RSAPrivateKey* RSAPrivateKey::CreateFromPrivateKeyInfo( | |
| 558 const std::vector<uint8_t>& input) { | |
| 559 EnsureNSSInit(); | |
| 560 | |
| 561 ScopedPK11Slot slot(PK11_GetInternalSlot()); | |
| 562 if (!slot) { | |
| 563 NOTREACHED(); | |
| 564 return nullptr; | |
| 565 } | |
| 566 ScopedSECKEYPrivateKey key(ImportNSSKeyFromPrivateKeyInfo( | |
| 567 slot.get(), input, false /* not permanent */)); | |
| 568 if (!key || SECKEY_GetPrivateKeyType(key.get()) != rsaKey) | |
| 569 return nullptr; | |
| 570 return RSAPrivateKey::CreateFromKey(key.get()); | |
| 571 } | |
| 572 | |
| 573 // static | |
| 574 RSAPrivateKey* RSAPrivateKey::CreateFromKey(SECKEYPrivateKey* key) { | |
| 575 DCHECK(key); | |
| 576 if (SECKEY_GetPrivateKeyType(key) != rsaKey) | |
| 577 return NULL; | |
| 578 RSAPrivateKey* copy = new RSAPrivateKey(); | |
| 579 copy->key_ = SECKEY_CopyPrivateKey(key); | |
| 580 copy->public_key_ = SECKEY_ConvertToPublicKey(key); | |
| 581 if (!copy->key_ || !copy->public_key_) { | |
| 582 NOTREACHED(); | |
| 583 delete copy; | |
| 584 return NULL; | |
| 585 } | |
| 586 return copy; | |
| 587 } | |
| 588 | |
| 589 RSAPrivateKey* RSAPrivateKey::Copy() const { | |
| 590 RSAPrivateKey* copy = new RSAPrivateKey(); | |
| 591 copy->key_ = SECKEY_CopyPrivateKey(key_); | |
| 592 copy->public_key_ = SECKEY_CopyPublicKey(public_key_); | |
| 593 return copy; | |
| 594 } | |
| 595 | |
| 596 bool RSAPrivateKey::ExportPrivateKey(std::vector<uint8_t>* output) const { | |
| 597 PrivateKeyInfoCodec private_key_info(true); | |
| 598 | |
| 599 // Manually read the component attributes of the private key and build up | |
| 600 // the PrivateKeyInfo. | |
| 601 if (!ReadAttribute(key_, CKA_MODULUS, private_key_info.modulus()) || | |
| 602 !ReadAttribute(key_, CKA_PUBLIC_EXPONENT, | |
| 603 private_key_info.public_exponent()) || | |
| 604 !ReadAttribute(key_, CKA_PRIVATE_EXPONENT, | |
| 605 private_key_info.private_exponent()) || | |
| 606 !ReadAttribute(key_, CKA_PRIME_1, private_key_info.prime1()) || | |
| 607 !ReadAttribute(key_, CKA_PRIME_2, private_key_info.prime2()) || | |
| 608 !ReadAttribute(key_, CKA_EXPONENT_1, private_key_info.exponent1()) || | |
| 609 !ReadAttribute(key_, CKA_EXPONENT_2, private_key_info.exponent2()) || | |
| 610 !ReadAttribute(key_, CKA_COEFFICIENT, private_key_info.coefficient())) { | |
| 611 NOTREACHED(); | |
| 612 return false; | |
| 613 } | |
| 614 | |
| 615 return private_key_info.Export(output); | |
| 616 } | |
| 617 | |
| 618 bool RSAPrivateKey::ExportPublicKey(std::vector<uint8_t>* output) const { | |
| 619 ScopedSECItem der_pubkey(SECKEY_EncodeDERSubjectPublicKeyInfo(public_key_)); | |
| 620 if (!der_pubkey.get()) { | |
| 621 NOTREACHED(); | |
| 622 return false; | |
| 623 } | |
| 624 | |
| 625 output->assign(der_pubkey->data, der_pubkey->data + der_pubkey->len); | |
| 626 return true; | |
| 627 } | |
| 628 | |
| 629 RSAPrivateKey::RSAPrivateKey() : key_(NULL), public_key_(NULL) { | |
| 630 EnsureNSSInit(); | |
| 631 } | |
| 632 | |
| 633 } // namespace crypto | |
| OLD | NEW |