OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright (C) 2013 Google Inc. All rights reserved. | |
3 * | |
4 * Redistribution and use in source and binary forms, with or without | |
5 * modification, are permitted provided that the following conditions are | |
6 * met: | |
7 * | |
8 * * Redistributions of source code must retain the above copyright | |
9 * notice, this list of conditions and the following disclaimer. | |
10 * * Redistributions in binary form must reproduce the above | |
11 * copyright notice, this list of conditions and the following disclaimer | |
12 * in the documentation and/or other materials provided with the | |
13 * distribution. | |
14 * * Neither the name of Google Inc. nor the names of its | |
15 * contributors may be used to endorse or promote products derived from | |
16 * this software without specific prior written permission. | |
17 * | |
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
29 */ | |
30 | |
31 #include "wtf/PartitionAlloc.h" | |
32 | |
33 #include "testing/gtest/include/gtest/gtest.h" | |
34 #include "wtf/BitwiseOperations.h" | |
35 #include "wtf/CPU.h" | |
36 #include "wtf/OwnPtr.h" | |
37 #include "wtf/PassOwnPtr.h" | |
38 #include "wtf/Vector.h" | |
39 #include <stdlib.h> | |
40 #include <string.h> | |
41 | |
42 #if OS(POSIX) | |
43 #include <sys/mman.h> | |
44 #include <sys/resource.h> | |
45 #include <sys/time.h> | |
46 | |
47 #ifndef MAP_ANONYMOUS | |
48 #define MAP_ANONYMOUS MAP_ANON | |
49 #endif | |
50 #endif // OS(POSIX) | |
51 | |
52 #if !defined(MEMORY_TOOL_REPLACES_ALLOCATOR) | |
53 | |
54 namespace WTF { | |
55 | |
56 namespace { | |
57 | |
58 const size_t kTestMaxAllocation = 4096; | |
59 SizeSpecificPartitionAllocator<kTestMaxAllocation> allocator; | |
60 PartitionAllocatorGeneric genericAllocator; | |
61 | |
62 const size_t kTestAllocSize = 16; | |
63 #if !ENABLE(ASSERT) | |
64 const size_t kPointerOffset = 0; | |
65 const size_t kExtraAllocSize = 0; | |
66 #else | |
67 const size_t kPointerOffset = WTF::kCookieSize; | |
68 const size_t kExtraAllocSize = WTF::kCookieSize * 2; | |
69 #endif | |
70 const size_t kRealAllocSize = kTestAllocSize + kExtraAllocSize; | |
71 const size_t kTestBucketIndex = kRealAllocSize >> WTF::kBucketShift; | |
72 | |
73 const char* typeName = nullptr; | |
74 | |
75 void TestSetup() | |
76 { | |
77 allocator.init(); | |
78 genericAllocator.init(); | |
79 } | |
80 | |
81 void TestShutdown() | |
82 { | |
83 // We expect no leaks in the general case. We have a test for leak | |
84 // detection. | |
85 EXPECT_TRUE(allocator.shutdown()); | |
86 EXPECT_TRUE(genericAllocator.shutdown()); | |
87 } | |
88 | |
89 #if !CPU(64BIT) || OS(POSIX) | |
90 bool SetAddressSpaceLimit() | |
91 { | |
92 #if !CPU(64BIT) | |
93 // 32 bits => address space is limited already. | |
94 return true; | |
95 #elif OS(POSIX) && !OS(MACOSX) | |
96 // Mac will accept RLIMIT_AS changes but it is not enforced. | |
97 // See https://crbug.com/435269 and rdar://17576114. | |
98 const size_t kAddressSpaceLimit = static_cast<size_t>(4096) * 1024 * 1024; | |
99 struct rlimit limit; | |
100 if (getrlimit(RLIMIT_AS, &limit) != 0) | |
101 return false; | |
102 if (limit.rlim_cur == RLIM_INFINITY || limit.rlim_cur > kAddressSpaceLimit)
{ | |
103 limit.rlim_cur = kAddressSpaceLimit; | |
104 if (setrlimit(RLIMIT_AS, &limit) != 0) | |
105 return false; | |
106 } | |
107 return true; | |
108 #else | |
109 return false; | |
110 #endif | |
111 } | |
112 | |
113 bool ClearAddressSpaceLimit() | |
114 { | |
115 #if !CPU(64BIT) | |
116 return true; | |
117 #elif OS(POSIX) | |
118 struct rlimit limit; | |
119 if (getrlimit(RLIMIT_AS, &limit) != 0) | |
120 return false; | |
121 limit.rlim_cur = limit.rlim_max; | |
122 if (setrlimit(RLIMIT_AS, &limit) != 0) | |
123 return false; | |
124 return true; | |
125 #else | |
126 return false; | |
127 #endif | |
128 } | |
129 #endif | |
130 | |
131 PartitionPage* GetFullPage(size_t size) | |
132 { | |
133 size_t realSize = size + kExtraAllocSize; | |
134 size_t bucketIdx = realSize >> kBucketShift; | |
135 PartitionBucket* bucket = &allocator.root()->buckets()[bucketIdx]; | |
136 size_t numSlots = (bucket->numSystemPagesPerSlotSpan * kSystemPageSize) / re
alSize; | |
137 void* first = 0; | |
138 void* last = 0; | |
139 size_t i; | |
140 for (i = 0; i < numSlots; ++i) { | |
141 void* ptr = partitionAlloc(allocator.root(), size, typeName); | |
142 EXPECT_TRUE(ptr); | |
143 if (!i) | |
144 first = partitionCookieFreePointerAdjust(ptr); | |
145 else if (i == numSlots - 1) | |
146 last = partitionCookieFreePointerAdjust(ptr); | |
147 } | |
148 EXPECT_EQ(partitionPointerToPage(first), partitionPointerToPage(last)); | |
149 if (bucket->numSystemPagesPerSlotSpan == kNumSystemPagesPerPartitionPage) | |
150 EXPECT_EQ(reinterpret_cast<size_t>(first) & kPartitionPageBaseMask, rein
terpret_cast<size_t>(last) & kPartitionPageBaseMask); | |
151 EXPECT_EQ(numSlots, static_cast<size_t>(bucket->activePagesHead->numAllocate
dSlots)); | |
152 EXPECT_EQ(0, bucket->activePagesHead->freelistHead); | |
153 EXPECT_TRUE(bucket->activePagesHead); | |
154 EXPECT_TRUE(bucket->activePagesHead != &PartitionRootGeneric::gSeedPage); | |
155 return bucket->activePagesHead; | |
156 } | |
157 | |
158 void FreeFullPage(PartitionPage* page) | |
159 { | |
160 size_t size = page->bucket->slotSize; | |
161 size_t numSlots = (page->bucket->numSystemPagesPerSlotSpan * kSystemPageSize
) / size; | |
162 EXPECT_EQ(numSlots, static_cast<size_t>(abs(page->numAllocatedSlots))); | |
163 char* ptr = reinterpret_cast<char*>(partitionPageToPointer(page)); | |
164 size_t i; | |
165 for (i = 0; i < numSlots; ++i) { | |
166 partitionFree(ptr + kPointerOffset); | |
167 ptr += size; | |
168 } | |
169 } | |
170 | |
171 void CycleFreeCache(size_t size) | |
172 { | |
173 size_t realSize = size + kExtraAllocSize; | |
174 size_t bucketIdx = realSize >> kBucketShift; | |
175 PartitionBucket* bucket = &allocator.root()->buckets()[bucketIdx]; | |
176 ASSERT(!bucket->activePagesHead->numAllocatedSlots); | |
177 | |
178 for (size_t i = 0; i < kMaxFreeableSpans; ++i) { | |
179 void* ptr = partitionAlloc(allocator.root(), size, typeName); | |
180 EXPECT_EQ(1, bucket->activePagesHead->numAllocatedSlots); | |
181 partitionFree(ptr); | |
182 EXPECT_EQ(0, bucket->activePagesHead->numAllocatedSlots); | |
183 EXPECT_NE(-1, bucket->activePagesHead->emptyCacheIndex); | |
184 } | |
185 } | |
186 | |
187 void CycleGenericFreeCache(size_t size) | |
188 { | |
189 for (size_t i = 0; i < kMaxFreeableSpans; ++i) { | |
190 void* ptr = partitionAllocGeneric(genericAllocator.root(), size, typeNam
e); | |
191 PartitionPage* page = partitionPointerToPage(partitionCookieFreePointerA
djust(ptr)); | |
192 PartitionBucket* bucket = page->bucket; | |
193 EXPECT_EQ(1, bucket->activePagesHead->numAllocatedSlots); | |
194 partitionFreeGeneric(genericAllocator.root(), ptr); | |
195 EXPECT_EQ(0, bucket->activePagesHead->numAllocatedSlots); | |
196 EXPECT_NE(-1, bucket->activePagesHead->emptyCacheIndex); | |
197 } | |
198 } | |
199 | |
200 void CheckPageInCore(void* ptr, bool inCore) | |
201 { | |
202 #if OS(LINUX) | |
203 unsigned char ret; | |
204 EXPECT_EQ(0, mincore(ptr, kSystemPageSize, &ret)); | |
205 EXPECT_EQ(inCore, ret); | |
206 #endif | |
207 } | |
208 | |
209 class MockPartitionStatsDumper : public PartitionStatsDumper { | |
210 public: | |
211 MockPartitionStatsDumper() | |
212 : m_totalResidentBytes(0) | |
213 , m_totalActiveBytes(0) | |
214 , m_totalDecommittableBytes(0) | |
215 , m_totalDiscardableBytes(0) { } | |
216 | |
217 void partitionDumpTotals(const char* partitionName, const PartitionMemorySta
ts* memoryStats) override | |
218 { | |
219 EXPECT_GE(memoryStats->totalMmappedBytes, memoryStats->totalResidentByte
s); | |
220 EXPECT_EQ(m_totalResidentBytes, memoryStats->totalResidentBytes); | |
221 EXPECT_EQ(m_totalActiveBytes, memoryStats->totalActiveBytes); | |
222 EXPECT_EQ(m_totalDecommittableBytes, memoryStats->totalDecommittableByte
s); | |
223 EXPECT_EQ(m_totalDiscardableBytes, memoryStats->totalDiscardableBytes); | |
224 } | |
225 | |
226 void partitionsDumpBucketStats(const char* partitionName, const PartitionBuc
ketMemoryStats* memoryStats) override | |
227 { | |
228 (void) partitionName; | |
229 EXPECT_TRUE(memoryStats->isValid); | |
230 EXPECT_EQ(0u, memoryStats->bucketSlotSize & kAllocationGranularityMask); | |
231 m_bucketStats.append(*memoryStats); | |
232 m_totalResidentBytes += memoryStats->residentBytes; | |
233 m_totalActiveBytes += memoryStats->activeBytes; | |
234 m_totalDecommittableBytes += memoryStats->decommittableBytes; | |
235 m_totalDiscardableBytes += memoryStats->discardableBytes; | |
236 } | |
237 | |
238 bool IsMemoryAllocationRecorded() | |
239 { | |
240 return m_totalResidentBytes != 0 && m_totalActiveBytes != 0; | |
241 } | |
242 | |
243 const PartitionBucketMemoryStats* GetBucketStats(size_t bucketSize) | |
244 { | |
245 for (size_t i = 0; i < m_bucketStats.size(); ++i) { | |
246 if (m_bucketStats[i].bucketSlotSize == bucketSize) | |
247 return &m_bucketStats[i]; | |
248 } | |
249 return 0; | |
250 } | |
251 | |
252 private: | |
253 size_t m_totalResidentBytes; | |
254 size_t m_totalActiveBytes; | |
255 size_t m_totalDecommittableBytes; | |
256 size_t m_totalDiscardableBytes; | |
257 | |
258 Vector<PartitionBucketMemoryStats> m_bucketStats; | |
259 }; | |
260 | |
261 } // anonymous namespace | |
262 | |
263 // Check that the most basic of allocate / free pairs work. | |
264 TEST(PartitionAllocTest, Basic) | |
265 { | |
266 TestSetup(); | |
267 PartitionBucket* bucket = &allocator.root()->buckets()[kTestBucketIndex]; | |
268 PartitionPage* seedPage = &PartitionRootGeneric::gSeedPage; | |
269 | |
270 EXPECT_FALSE(bucket->emptyPagesHead); | |
271 EXPECT_FALSE(bucket->decommittedPagesHead); | |
272 EXPECT_EQ(seedPage, bucket->activePagesHead); | |
273 EXPECT_EQ(0, bucket->activePagesHead->nextPage); | |
274 | |
275 void* ptr = partitionAlloc(allocator.root(), kTestAllocSize, typeName); | |
276 EXPECT_TRUE(ptr); | |
277 EXPECT_EQ(kPointerOffset, reinterpret_cast<size_t>(ptr) & kPartitionPageOffs
etMask); | |
278 // Check that the offset appears to include a guard page. | |
279 EXPECT_EQ(kPartitionPageSize + kPointerOffset, reinterpret_cast<size_t>(ptr)
& kSuperPageOffsetMask); | |
280 | |
281 partitionFree(ptr); | |
282 // Expect that the last active page gets noticed as empty but doesn't get | |
283 // decommitted. | |
284 EXPECT_TRUE(bucket->emptyPagesHead); | |
285 EXPECT_FALSE(bucket->decommittedPagesHead); | |
286 | |
287 TestShutdown(); | |
288 } | |
289 | |
290 // Check that we can detect a memory leak. | |
291 TEST(PartitionAllocTest, SimpleLeak) | |
292 { | |
293 TestSetup(); | |
294 void* leakedPtr = partitionAlloc(allocator.root(), kTestAllocSize, typeName)
; | |
295 (void)leakedPtr; | |
296 void* leakedPtr2 = partitionAllocGeneric(genericAllocator.root(), kTestAlloc
Size, typeName); | |
297 (void)leakedPtr2; | |
298 EXPECT_FALSE(allocator.shutdown()); | |
299 EXPECT_FALSE(genericAllocator.shutdown()); | |
300 } | |
301 | |
302 // Test multiple allocations, and freelist handling. | |
303 TEST(PartitionAllocTest, MultiAlloc) | |
304 { | |
305 TestSetup(); | |
306 | |
307 char* ptr1 = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestA
llocSize, typeName)); | |
308 char* ptr2 = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestA
llocSize, typeName)); | |
309 EXPECT_TRUE(ptr1); | |
310 EXPECT_TRUE(ptr2); | |
311 ptrdiff_t diff = ptr2 - ptr1; | |
312 EXPECT_EQ(static_cast<ptrdiff_t>(kRealAllocSize), diff); | |
313 | |
314 // Check that we re-use the just-freed slot. | |
315 partitionFree(ptr2); | |
316 ptr2 = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestAllocSi
ze, typeName)); | |
317 EXPECT_TRUE(ptr2); | |
318 diff = ptr2 - ptr1; | |
319 EXPECT_EQ(static_cast<ptrdiff_t>(kRealAllocSize), diff); | |
320 partitionFree(ptr1); | |
321 ptr1 = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestAllocSi
ze, typeName)); | |
322 EXPECT_TRUE(ptr1); | |
323 diff = ptr2 - ptr1; | |
324 EXPECT_EQ(static_cast<ptrdiff_t>(kRealAllocSize), diff); | |
325 | |
326 char* ptr3 = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestA
llocSize, typeName)); | |
327 EXPECT_TRUE(ptr3); | |
328 diff = ptr3 - ptr1; | |
329 EXPECT_EQ(static_cast<ptrdiff_t>(kRealAllocSize * 2), diff); | |
330 | |
331 partitionFree(ptr1); | |
332 partitionFree(ptr2); | |
333 partitionFree(ptr3); | |
334 | |
335 TestShutdown(); | |
336 } | |
337 | |
338 // Test a bucket with multiple pages. | |
339 TEST(PartitionAllocTest, MultiPages) | |
340 { | |
341 TestSetup(); | |
342 PartitionBucket* bucket = &allocator.root()->buckets()[kTestBucketIndex]; | |
343 | |
344 PartitionPage* page = GetFullPage(kTestAllocSize); | |
345 FreeFullPage(page); | |
346 EXPECT_TRUE(bucket->emptyPagesHead); | |
347 EXPECT_EQ(&PartitionRootGeneric::gSeedPage, bucket->activePagesHead); | |
348 EXPECT_EQ(0, page->nextPage); | |
349 EXPECT_EQ(0, page->numAllocatedSlots); | |
350 | |
351 page = GetFullPage(kTestAllocSize); | |
352 PartitionPage* page2 = GetFullPage(kTestAllocSize); | |
353 | |
354 EXPECT_EQ(page2, bucket->activePagesHead); | |
355 EXPECT_EQ(0, page2->nextPage); | |
356 EXPECT_EQ(reinterpret_cast<uintptr_t>(partitionPageToPointer(page)) & kSuper
PageBaseMask, reinterpret_cast<uintptr_t>(partitionPageToPointer(page2)) & kSupe
rPageBaseMask); | |
357 | |
358 // Fully free the non-current page. This will leave us with no current | |
359 // active page because one is empty and the other is full. | |
360 FreeFullPage(page); | |
361 EXPECT_EQ(0, page->numAllocatedSlots); | |
362 EXPECT_TRUE(bucket->emptyPagesHead); | |
363 EXPECT_EQ(&PartitionRootGeneric::gSeedPage, bucket->activePagesHead); | |
364 | |
365 // Allocate a new page, it should pull from the freelist. | |
366 page = GetFullPage(kTestAllocSize); | |
367 EXPECT_FALSE(bucket->emptyPagesHead); | |
368 EXPECT_EQ(page, bucket->activePagesHead); | |
369 | |
370 FreeFullPage(page); | |
371 FreeFullPage(page2); | |
372 EXPECT_EQ(0, page->numAllocatedSlots); | |
373 EXPECT_EQ(0, page2->numAllocatedSlots); | |
374 EXPECT_EQ(0, page2->numUnprovisionedSlots); | |
375 EXPECT_NE(-1, page2->emptyCacheIndex); | |
376 | |
377 TestShutdown(); | |
378 } | |
379 | |
380 // Test some finer aspects of internal page transitions. | |
381 TEST(PartitionAllocTest, PageTransitions) | |
382 { | |
383 TestSetup(); | |
384 PartitionBucket* bucket = &allocator.root()->buckets()[kTestBucketIndex]; | |
385 | |
386 PartitionPage* page1 = GetFullPage(kTestAllocSize); | |
387 EXPECT_EQ(page1, bucket->activePagesHead); | |
388 EXPECT_EQ(0, page1->nextPage); | |
389 PartitionPage* page2 = GetFullPage(kTestAllocSize); | |
390 EXPECT_EQ(page2, bucket->activePagesHead); | |
391 EXPECT_EQ(0, page2->nextPage); | |
392 | |
393 // Bounce page1 back into the non-full list then fill it up again. | |
394 char* ptr = reinterpret_cast<char*>(partitionPageToPointer(page1)) + kPointe
rOffset; | |
395 partitionFree(ptr); | |
396 EXPECT_EQ(page1, bucket->activePagesHead); | |
397 (void)partitionAlloc(allocator.root(), kTestAllocSize, typeName); | |
398 EXPECT_EQ(page1, bucket->activePagesHead); | |
399 EXPECT_EQ(page2, bucket->activePagesHead->nextPage); | |
400 | |
401 // Allocating another page at this point should cause us to scan over page1 | |
402 // (which is both full and NOT our current page), and evict it from the | |
403 // freelist. Older code had a O(n^2) condition due to failure to do this. | |
404 PartitionPage* page3 = GetFullPage(kTestAllocSize); | |
405 EXPECT_EQ(page3, bucket->activePagesHead); | |
406 EXPECT_EQ(0, page3->nextPage); | |
407 | |
408 // Work out a pointer into page2 and free it. | |
409 ptr = reinterpret_cast<char*>(partitionPageToPointer(page2)) + kPointerOffse
t; | |
410 partitionFree(ptr); | |
411 // Trying to allocate at this time should cause us to cycle around to page2 | |
412 // and find the recently freed slot. | |
413 char* newPtr = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTes
tAllocSize, typeName)); | |
414 EXPECT_EQ(ptr, newPtr); | |
415 EXPECT_EQ(page2, bucket->activePagesHead); | |
416 EXPECT_EQ(page3, page2->nextPage); | |
417 | |
418 // Work out a pointer into page1 and free it. This should pull the page | |
419 // back into the list of available pages. | |
420 ptr = reinterpret_cast<char*>(partitionPageToPointer(page1)) + kPointerOffse
t; | |
421 partitionFree(ptr); | |
422 // This allocation should be satisfied by page1. | |
423 newPtr = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestAlloc
Size, typeName)); | |
424 EXPECT_EQ(ptr, newPtr); | |
425 EXPECT_EQ(page1, bucket->activePagesHead); | |
426 EXPECT_EQ(page2, page1->nextPage); | |
427 | |
428 FreeFullPage(page3); | |
429 FreeFullPage(page2); | |
430 FreeFullPage(page1); | |
431 | |
432 // Allocating whilst in this state exposed a bug, so keep the test. | |
433 ptr = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestAllocSiz
e, typeName)); | |
434 partitionFree(ptr); | |
435 | |
436 TestShutdown(); | |
437 } | |
438 | |
439 // Test some corner cases relating to page transitions in the internal | |
440 // free page list metadata bucket. | |
441 TEST(PartitionAllocTest, FreePageListPageTransitions) | |
442 { | |
443 TestSetup(); | |
444 PartitionBucket* bucket = &allocator.root()->buckets()[kTestBucketIndex]; | |
445 | |
446 size_t numToFillFreeListPage = kPartitionPageSize / (sizeof(PartitionPage) +
kExtraAllocSize); | |
447 // The +1 is because we need to account for the fact that the current page | |
448 // never gets thrown on the freelist. | |
449 ++numToFillFreeListPage; | |
450 OwnPtr<PartitionPage*[]> pages = adoptArrayPtr(new PartitionPage*[numToFillF
reeListPage]); | |
451 | |
452 size_t i; | |
453 for (i = 0; i < numToFillFreeListPage; ++i) { | |
454 pages[i] = GetFullPage(kTestAllocSize); | |
455 } | |
456 EXPECT_EQ(pages[numToFillFreeListPage - 1], bucket->activePagesHead); | |
457 for (i = 0; i < numToFillFreeListPage; ++i) | |
458 FreeFullPage(pages[i]); | |
459 EXPECT_EQ(&PartitionRootGeneric::gSeedPage, bucket->activePagesHead); | |
460 EXPECT_TRUE(bucket->emptyPagesHead); | |
461 | |
462 // Allocate / free in a different bucket size so we get control of a | |
463 // different free page list. We need two pages because one will be the last | |
464 // active page and not get freed. | |
465 PartitionPage* page1 = GetFullPage(kTestAllocSize * 2); | |
466 PartitionPage* page2 = GetFullPage(kTestAllocSize * 2); | |
467 FreeFullPage(page1); | |
468 FreeFullPage(page2); | |
469 | |
470 for (i = 0; i < numToFillFreeListPage; ++i) { | |
471 pages[i] = GetFullPage(kTestAllocSize); | |
472 } | |
473 EXPECT_EQ(pages[numToFillFreeListPage - 1], bucket->activePagesHead); | |
474 | |
475 for (i = 0; i < numToFillFreeListPage; ++i) | |
476 FreeFullPage(pages[i]); | |
477 EXPECT_EQ(&PartitionRootGeneric::gSeedPage, bucket->activePagesHead); | |
478 EXPECT_TRUE(bucket->emptyPagesHead); | |
479 | |
480 TestShutdown(); | |
481 } | |
482 | |
483 // Test a large series of allocations that cross more than one underlying | |
484 // 64KB super page allocation. | |
485 TEST(PartitionAllocTest, MultiPageAllocs) | |
486 { | |
487 TestSetup(); | |
488 // This is guaranteed to cross a super page boundary because the first | |
489 // partition page "slot" will be taken up by a guard page. | |
490 size_t numPagesNeeded = kNumPartitionPagesPerSuperPage; | |
491 // The super page should begin and end in a guard so we one less page in | |
492 // order to allocate a single page in the new super page. | |
493 --numPagesNeeded; | |
494 | |
495 EXPECT_GT(numPagesNeeded, 1u); | |
496 OwnPtr<PartitionPage*[]> pages; | |
497 pages = adoptArrayPtr(new PartitionPage*[numPagesNeeded]); | |
498 uintptr_t firstSuperPageBase = 0; | |
499 size_t i; | |
500 for (i = 0; i < numPagesNeeded; ++i) { | |
501 pages[i] = GetFullPage(kTestAllocSize); | |
502 void* storagePtr = partitionPageToPointer(pages[i]); | |
503 if (!i) | |
504 firstSuperPageBase = reinterpret_cast<uintptr_t>(storagePtr) & kSupe
rPageBaseMask; | |
505 if (i == numPagesNeeded - 1) { | |
506 uintptr_t secondSuperPageBase = reinterpret_cast<uintptr_t>(storageP
tr) & kSuperPageBaseMask; | |
507 uintptr_t secondSuperPageOffset = reinterpret_cast<uintptr_t>(storag
ePtr) & kSuperPageOffsetMask; | |
508 EXPECT_FALSE(secondSuperPageBase == firstSuperPageBase); | |
509 // Check that we allocated a guard page for the second page. | |
510 EXPECT_EQ(kPartitionPageSize, secondSuperPageOffset); | |
511 } | |
512 } | |
513 for (i = 0; i < numPagesNeeded; ++i) | |
514 FreeFullPage(pages[i]); | |
515 | |
516 TestShutdown(); | |
517 } | |
518 | |
519 // Test the generic allocation functions that can handle arbitrary sizes and | |
520 // reallocing etc. | |
521 TEST(PartitionAllocTest, GenericAlloc) | |
522 { | |
523 TestSetup(); | |
524 | |
525 void* ptr = partitionAllocGeneric(genericAllocator.root(), 1, typeName); | |
526 EXPECT_TRUE(ptr); | |
527 partitionFreeGeneric(genericAllocator.root(), ptr); | |
528 ptr = partitionAllocGeneric(genericAllocator.root(), kGenericMaxBucketed + 1
, typeName); | |
529 EXPECT_TRUE(ptr); | |
530 partitionFreeGeneric(genericAllocator.root(), ptr); | |
531 | |
532 ptr = partitionAllocGeneric(genericAllocator.root(), 1, typeName); | |
533 EXPECT_TRUE(ptr); | |
534 void* origPtr = ptr; | |
535 char* charPtr = static_cast<char*>(ptr); | |
536 *charPtr = 'A'; | |
537 | |
538 // Change the size of the realloc, remaining inside the same bucket. | |
539 void* newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, 2, type
Name); | |
540 EXPECT_EQ(ptr, newPtr); | |
541 newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, 1, typeName); | |
542 EXPECT_EQ(ptr, newPtr); | |
543 newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, kGenericSmall
estBucket, typeName); | |
544 EXPECT_EQ(ptr, newPtr); | |
545 | |
546 // Change the size of the realloc, switching buckets. | |
547 newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, kGenericSmall
estBucket + 1, typeName); | |
548 EXPECT_NE(newPtr, ptr); | |
549 // Check that the realloc copied correctly. | |
550 char* newCharPtr = static_cast<char*>(newPtr); | |
551 EXPECT_EQ(*newCharPtr, 'A'); | |
552 #if ENABLE(ASSERT) | |
553 // Subtle: this checks for an old bug where we copied too much from the | |
554 // source of the realloc. The condition can be detected by a trashing of | |
555 // the uninitialized value in the space of the upsized allocation. | |
556 EXPECT_EQ(kUninitializedByte, static_cast<unsigned char>(*(newCharPtr + kGen
ericSmallestBucket))); | |
557 #endif | |
558 *newCharPtr = 'B'; | |
559 // The realloc moved. To check that the old allocation was freed, we can | |
560 // do an alloc of the old allocation size and check that the old allocation | |
561 // address is at the head of the freelist and reused. | |
562 void* reusedPtr = partitionAllocGeneric(genericAllocator.root(), 1, typeName
); | |
563 EXPECT_EQ(reusedPtr, origPtr); | |
564 partitionFreeGeneric(genericAllocator.root(), reusedPtr); | |
565 | |
566 // Downsize the realloc. | |
567 ptr = newPtr; | |
568 newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, 1, typeName); | |
569 EXPECT_EQ(newPtr, origPtr); | |
570 newCharPtr = static_cast<char*>(newPtr); | |
571 EXPECT_EQ(*newCharPtr, 'B'); | |
572 *newCharPtr = 'C'; | |
573 | |
574 // Upsize the realloc to outside the partition. | |
575 ptr = newPtr; | |
576 newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, kGenericMaxBu
cketed + 1, typeName); | |
577 EXPECT_NE(newPtr, ptr); | |
578 newCharPtr = static_cast<char*>(newPtr); | |
579 EXPECT_EQ(*newCharPtr, 'C'); | |
580 *newCharPtr = 'D'; | |
581 | |
582 // Upsize and downsize the realloc, remaining outside the partition. | |
583 ptr = newPtr; | |
584 newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, kGenericMaxBu
cketed * 10, typeName); | |
585 newCharPtr = static_cast<char*>(newPtr); | |
586 EXPECT_EQ(*newCharPtr, 'D'); | |
587 *newCharPtr = 'E'; | |
588 ptr = newPtr; | |
589 newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, kGenericMaxBu
cketed * 2, typeName); | |
590 newCharPtr = static_cast<char*>(newPtr); | |
591 EXPECT_EQ(*newCharPtr, 'E'); | |
592 *newCharPtr = 'F'; | |
593 | |
594 // Downsize the realloc to inside the partition. | |
595 ptr = newPtr; | |
596 newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, 1, typeName); | |
597 EXPECT_NE(newPtr, ptr); | |
598 EXPECT_EQ(newPtr, origPtr); | |
599 newCharPtr = static_cast<char*>(newPtr); | |
600 EXPECT_EQ(*newCharPtr, 'F'); | |
601 | |
602 partitionFreeGeneric(genericAllocator.root(), newPtr); | |
603 TestShutdown(); | |
604 } | |
605 | |
606 // Test the generic allocation functions can handle some specific sizes of | |
607 // interest. | |
608 TEST(PartitionAllocTest, GenericAllocSizes) | |
609 { | |
610 TestSetup(); | |
611 | |
612 void* ptr = partitionAllocGeneric(genericAllocator.root(), 0, typeName); | |
613 EXPECT_TRUE(ptr); | |
614 partitionFreeGeneric(genericAllocator.root(), ptr); | |
615 | |
616 // kPartitionPageSize is interesting because it results in just one | |
617 // allocation per page, which tripped up some corner cases. | |
618 size_t size = kPartitionPageSize - kExtraAllocSize; | |
619 ptr = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
620 EXPECT_TRUE(ptr); | |
621 void* ptr2 = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
622 EXPECT_TRUE(ptr2); | |
623 partitionFreeGeneric(genericAllocator.root(), ptr); | |
624 // Should be freeable at this point. | |
625 PartitionPage* page = partitionPointerToPage(partitionCookieFreePointerAdjus
t(ptr)); | |
626 EXPECT_NE(-1, page->emptyCacheIndex); | |
627 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
628 | |
629 size = (((kPartitionPageSize * kMaxPartitionPagesPerSlotSpan) - kSystemPageS
ize) / 2) - kExtraAllocSize; | |
630 ptr = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
631 EXPECT_TRUE(ptr); | |
632 memset(ptr, 'A', size); | |
633 ptr2 = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
634 EXPECT_TRUE(ptr2); | |
635 void* ptr3 = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
636 EXPECT_TRUE(ptr3); | |
637 void* ptr4 = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
638 EXPECT_TRUE(ptr4); | |
639 | |
640 page = partitionPointerToPage(partitionCookieFreePointerAdjust(ptr)); | |
641 PartitionPage* page2 = partitionPointerToPage(partitionCookieFreePointerAdju
st(ptr3)); | |
642 EXPECT_NE(page, page2); | |
643 | |
644 partitionFreeGeneric(genericAllocator.root(), ptr); | |
645 partitionFreeGeneric(genericAllocator.root(), ptr3); | |
646 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
647 // Should be freeable at this point. | |
648 EXPECT_NE(-1, page->emptyCacheIndex); | |
649 EXPECT_EQ(0, page->numAllocatedSlots); | |
650 EXPECT_EQ(0, page->numUnprovisionedSlots); | |
651 void* newPtr = partitionAllocGeneric(genericAllocator.root(), size, typeName
); | |
652 EXPECT_EQ(ptr3, newPtr); | |
653 newPtr = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
654 EXPECT_EQ(ptr2, newPtr); | |
655 #if OS(LINUX) && !ENABLE(ASSERT) | |
656 // On Linux, we have a guarantee that freelisting a page should cause its | |
657 // contents to be nulled out. We check for null here to detect an bug we | |
658 // had where a large slot size was causing us to not properly free all | |
659 // resources back to the system. | |
660 // We only run the check when asserts are disabled because when they are | |
661 // enabled, the allocated area is overwritten with an "uninitialized" | |
662 // byte pattern. | |
663 EXPECT_EQ(0, *(reinterpret_cast<char*>(newPtr) + (size - 1))); | |
664 #endif | |
665 partitionFreeGeneric(genericAllocator.root(), newPtr); | |
666 partitionFreeGeneric(genericAllocator.root(), ptr3); | |
667 partitionFreeGeneric(genericAllocator.root(), ptr4); | |
668 | |
669 // Can we allocate a massive (512MB) size? | |
670 // Allocate 512MB, but +1, to test for cookie writing alignment issues. | |
671 ptr = partitionAllocGeneric(genericAllocator.root(), 512 * 1024 * 1024 + 1,
typeName); | |
672 partitionFreeGeneric(genericAllocator.root(), ptr); | |
673 | |
674 // Check a more reasonable, but still direct mapped, size. | |
675 // Chop a system page and a byte off to test for rounding errors. | |
676 size = 20 * 1024 * 1024; | |
677 size -= kSystemPageSize; | |
678 size -= 1; | |
679 ptr = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
680 char* charPtr = reinterpret_cast<char*>(ptr); | |
681 *(charPtr + (size - 1)) = 'A'; | |
682 partitionFreeGeneric(genericAllocator.root(), ptr); | |
683 | |
684 // Can we free null? | |
685 partitionFreeGeneric(genericAllocator.root(), 0); | |
686 | |
687 // Do we correctly get a null for a failed allocation? | |
688 EXPECT_EQ(0, partitionAllocGenericFlags(genericAllocator.root(), PartitionAl
locReturnNull, 3u * 1024 * 1024 * 1024, typeName)); | |
689 | |
690 TestShutdown(); | |
691 } | |
692 | |
693 // Test that we can fetch the real allocated size after an allocation. | |
694 TEST(PartitionAllocTest, GenericAllocGetSize) | |
695 { | |
696 TestSetup(); | |
697 | |
698 void* ptr; | |
699 size_t requestedSize, actualSize, predictedSize; | |
700 | |
701 EXPECT_TRUE(partitionAllocSupportsGetSize()); | |
702 | |
703 // Allocate something small. | |
704 requestedSize = 511 - kExtraAllocSize; | |
705 predictedSize = partitionAllocActualSize(genericAllocator.root(), requestedS
ize); | |
706 ptr = partitionAllocGeneric(genericAllocator.root(), requestedSize, typeName
); | |
707 EXPECT_TRUE(ptr); | |
708 actualSize = partitionAllocGetSize(ptr); | |
709 EXPECT_EQ(predictedSize, actualSize); | |
710 EXPECT_LT(requestedSize, actualSize); | |
711 partitionFreeGeneric(genericAllocator.root(), ptr); | |
712 | |
713 // Allocate a size that should be a perfect match for a bucket, because it | |
714 // is an exact power of 2. | |
715 requestedSize = (256 * 1024) - kExtraAllocSize; | |
716 predictedSize = partitionAllocActualSize(genericAllocator.root(), requestedS
ize); | |
717 ptr = partitionAllocGeneric(genericAllocator.root(), requestedSize, typeName
); | |
718 EXPECT_TRUE(ptr); | |
719 actualSize = partitionAllocGetSize(ptr); | |
720 EXPECT_EQ(predictedSize, actualSize); | |
721 EXPECT_EQ(requestedSize, actualSize); | |
722 partitionFreeGeneric(genericAllocator.root(), ptr); | |
723 | |
724 // Allocate a size that is a system page smaller than a bucket. GetSize() | |
725 // should return a larger size than we asked for now. | |
726 requestedSize = (256 * 1024) - kSystemPageSize - kExtraAllocSize; | |
727 predictedSize = partitionAllocActualSize(genericAllocator.root(), requestedS
ize); | |
728 ptr = partitionAllocGeneric(genericAllocator.root(), requestedSize, typeName
); | |
729 EXPECT_TRUE(ptr); | |
730 actualSize = partitionAllocGetSize(ptr); | |
731 EXPECT_EQ(predictedSize, actualSize); | |
732 EXPECT_EQ(requestedSize + kSystemPageSize, actualSize); | |
733 // Check that we can write at the end of the reported size too. | |
734 char* charPtr = reinterpret_cast<char*>(ptr); | |
735 *(charPtr + (actualSize - 1)) = 'A'; | |
736 partitionFreeGeneric(genericAllocator.root(), ptr); | |
737 | |
738 // Allocate something very large, and uneven. | |
739 requestedSize = 512 * 1024 * 1024 - 1; | |
740 predictedSize = partitionAllocActualSize(genericAllocator.root(), requestedS
ize); | |
741 ptr = partitionAllocGeneric(genericAllocator.root(), requestedSize, typeName
); | |
742 EXPECT_TRUE(ptr); | |
743 actualSize = partitionAllocGetSize(ptr); | |
744 EXPECT_EQ(predictedSize, actualSize); | |
745 EXPECT_LT(requestedSize, actualSize); | |
746 partitionFreeGeneric(genericAllocator.root(), ptr); | |
747 | |
748 // Too large allocation. | |
749 requestedSize = INT_MAX; | |
750 predictedSize = partitionAllocActualSize(genericAllocator.root(), requestedS
ize); | |
751 EXPECT_EQ(requestedSize, predictedSize); | |
752 | |
753 TestShutdown(); | |
754 } | |
755 | |
756 // Test the realloc() contract. | |
757 TEST(PartitionAllocTest, Realloc) | |
758 { | |
759 TestSetup(); | |
760 | |
761 // realloc(0, size) should be equivalent to malloc(). | |
762 void* ptr = partitionReallocGeneric(genericAllocator.root(), 0, kTestAllocSi
ze, typeName); | |
763 memset(ptr, 'A', kTestAllocSize); | |
764 PartitionPage* page = partitionPointerToPage(partitionCookieFreePointerAdjus
t(ptr)); | |
765 // realloc(ptr, 0) should be equivalent to free(). | |
766 void* ptr2 = partitionReallocGeneric(genericAllocator.root(), ptr, 0, typeNa
me); | |
767 EXPECT_EQ(0, ptr2); | |
768 EXPECT_EQ(partitionCookieFreePointerAdjust(ptr), page->freelistHead); | |
769 | |
770 // Test that growing an allocation with realloc() copies everything from the | |
771 // old allocation. | |
772 size_t size = kSystemPageSize - kExtraAllocSize; | |
773 EXPECT_EQ(size, partitionAllocActualSize(genericAllocator.root(), size)); | |
774 ptr = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
775 memset(ptr, 'A', size); | |
776 ptr2 = partitionReallocGeneric(genericAllocator.root(), ptr, size + 1, typeN
ame); | |
777 EXPECT_NE(ptr, ptr2); | |
778 char* charPtr2 = static_cast<char*>(ptr2); | |
779 EXPECT_EQ('A', charPtr2[0]); | |
780 EXPECT_EQ('A', charPtr2[size - 1]); | |
781 #if ENABLE(ASSERT) | |
782 EXPECT_EQ(kUninitializedByte, static_cast<unsigned char>(charPtr2[size])); | |
783 #endif | |
784 | |
785 // Test that shrinking an allocation with realloc() also copies everything | |
786 // from the old allocation. | |
787 ptr = partitionReallocGeneric(genericAllocator.root(), ptr2, size - 1, typeN
ame); | |
788 EXPECT_NE(ptr2, ptr); | |
789 char* charPtr = static_cast<char*>(ptr); | |
790 EXPECT_EQ('A', charPtr[0]); | |
791 EXPECT_EQ('A', charPtr[size - 2]); | |
792 #if ENABLE(ASSERT) | |
793 EXPECT_EQ(kUninitializedByte, static_cast<unsigned char>(charPtr[size - 1]))
; | |
794 #endif | |
795 | |
796 partitionFreeGeneric(genericAllocator.root(), ptr); | |
797 | |
798 // Test that shrinking a direct mapped allocation happens in-place. | |
799 size = kGenericMaxBucketed + 16 * kSystemPageSize; | |
800 ptr = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
801 size_t actualSize = partitionAllocGetSize(ptr); | |
802 ptr2 = partitionReallocGeneric(genericAllocator.root(), ptr, kGenericMaxBuck
eted + 8 * kSystemPageSize, typeName); | |
803 EXPECT_EQ(ptr, ptr2); | |
804 EXPECT_EQ(actualSize - 8 * kSystemPageSize, partitionAllocGetSize(ptr2)); | |
805 | |
806 // Test that a previously in-place shrunk direct mapped allocation can be | |
807 // expanded up again within its original size. | |
808 ptr = partitionReallocGeneric(genericAllocator.root(), ptr2, size - kSystemP
ageSize, typeName); | |
809 EXPECT_EQ(ptr2, ptr); | |
810 EXPECT_EQ(actualSize - kSystemPageSize, partitionAllocGetSize(ptr)); | |
811 | |
812 // Test that a direct mapped allocation is performed not in-place when the | |
813 // new size is small enough. | |
814 ptr2 = partitionReallocGeneric(genericAllocator.root(), ptr, kSystemPageSize
, typeName); | |
815 EXPECT_NE(ptr, ptr2); | |
816 | |
817 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
818 | |
819 TestShutdown(); | |
820 } | |
821 | |
822 // Tests the handing out of freelists for partial pages. | |
823 TEST(PartitionAllocTest, PartialPageFreelists) | |
824 { | |
825 TestSetup(); | |
826 | |
827 size_t bigSize = allocator.root()->maxAllocation - kExtraAllocSize; | |
828 EXPECT_EQ(kSystemPageSize - kAllocationGranularity, bigSize + kExtraAllocSiz
e); | |
829 size_t bucketIdx = (bigSize + kExtraAllocSize) >> kBucketShift; | |
830 PartitionBucket* bucket = &allocator.root()->buckets()[bucketIdx]; | |
831 EXPECT_EQ(0, bucket->emptyPagesHead); | |
832 | |
833 void* ptr = partitionAlloc(allocator.root(), bigSize, typeName); | |
834 EXPECT_TRUE(ptr); | |
835 | |
836 PartitionPage* page = partitionPointerToPage(partitionCookieFreePointerAdjus
t(ptr)); | |
837 size_t totalSlots = (page->bucket->numSystemPagesPerSlotSpan * kSystemPageSi
ze) / (bigSize + kExtraAllocSize); | |
838 EXPECT_EQ(4u, totalSlots); | |
839 // The freelist should have one entry, because we were able to exactly fit | |
840 // one object slot and one freelist pointer (the null that the head points | |
841 // to) into a system page. | |
842 EXPECT_TRUE(page->freelistHead); | |
843 EXPECT_EQ(1, page->numAllocatedSlots); | |
844 EXPECT_EQ(2, page->numUnprovisionedSlots); | |
845 | |
846 void* ptr2 = partitionAlloc(allocator.root(), bigSize, typeName); | |
847 EXPECT_TRUE(ptr2); | |
848 EXPECT_FALSE(page->freelistHead); | |
849 EXPECT_EQ(2, page->numAllocatedSlots); | |
850 EXPECT_EQ(2, page->numUnprovisionedSlots); | |
851 | |
852 void* ptr3 = partitionAlloc(allocator.root(), bigSize, typeName); | |
853 EXPECT_TRUE(ptr3); | |
854 EXPECT_TRUE(page->freelistHead); | |
855 EXPECT_EQ(3, page->numAllocatedSlots); | |
856 EXPECT_EQ(0, page->numUnprovisionedSlots); | |
857 | |
858 void* ptr4 = partitionAlloc(allocator.root(), bigSize, typeName); | |
859 EXPECT_TRUE(ptr4); | |
860 EXPECT_FALSE(page->freelistHead); | |
861 EXPECT_EQ(4, page->numAllocatedSlots); | |
862 EXPECT_EQ(0, page->numUnprovisionedSlots); | |
863 | |
864 void* ptr5 = partitionAlloc(allocator.root(), bigSize, typeName); | |
865 EXPECT_TRUE(ptr5); | |
866 | |
867 PartitionPage* page2 = partitionPointerToPage(partitionCookieFreePointerAdju
st(ptr5)); | |
868 EXPECT_EQ(1, page2->numAllocatedSlots); | |
869 | |
870 // Churn things a little whilst there's a partial page freelist. | |
871 partitionFree(ptr); | |
872 ptr = partitionAlloc(allocator.root(), bigSize, typeName); | |
873 void* ptr6 = partitionAlloc(allocator.root(), bigSize, typeName); | |
874 | |
875 partitionFree(ptr); | |
876 partitionFree(ptr2); | |
877 partitionFree(ptr3); | |
878 partitionFree(ptr4); | |
879 partitionFree(ptr5); | |
880 partitionFree(ptr6); | |
881 EXPECT_NE(-1, page->emptyCacheIndex); | |
882 EXPECT_NE(-1, page2->emptyCacheIndex); | |
883 EXPECT_TRUE(page2->freelistHead); | |
884 EXPECT_EQ(0, page2->numAllocatedSlots); | |
885 | |
886 // And test a couple of sizes that do not cross kSystemPageSize with a singl
e allocation. | |
887 size_t mediumSize = (kSystemPageSize / 2) - kExtraAllocSize; | |
888 bucketIdx = (mediumSize + kExtraAllocSize) >> kBucketShift; | |
889 bucket = &allocator.root()->buckets()[bucketIdx]; | |
890 EXPECT_EQ(0, bucket->emptyPagesHead); | |
891 | |
892 ptr = partitionAlloc(allocator.root(), mediumSize, typeName); | |
893 EXPECT_TRUE(ptr); | |
894 page = partitionPointerToPage(partitionCookieFreePointerAdjust(ptr)); | |
895 EXPECT_EQ(1, page->numAllocatedSlots); | |
896 totalSlots = (page->bucket->numSystemPagesPerSlotSpan * kSystemPageSize) / (
mediumSize + kExtraAllocSize); | |
897 size_t firstPageSlots = kSystemPageSize / (mediumSize + kExtraAllocSize); | |
898 EXPECT_EQ(2u, firstPageSlots); | |
899 EXPECT_EQ(totalSlots - firstPageSlots, page->numUnprovisionedSlots); | |
900 | |
901 partitionFree(ptr); | |
902 | |
903 size_t smallSize = (kSystemPageSize / 4) - kExtraAllocSize; | |
904 bucketIdx = (smallSize + kExtraAllocSize) >> kBucketShift; | |
905 bucket = &allocator.root()->buckets()[bucketIdx]; | |
906 EXPECT_EQ(0, bucket->emptyPagesHead); | |
907 | |
908 ptr = partitionAlloc(allocator.root(), smallSize, typeName); | |
909 EXPECT_TRUE(ptr); | |
910 page = partitionPointerToPage(partitionCookieFreePointerAdjust(ptr)); | |
911 EXPECT_EQ(1, page->numAllocatedSlots); | |
912 totalSlots = (page->bucket->numSystemPagesPerSlotSpan * kSystemPageSize) / (
smallSize + kExtraAllocSize); | |
913 firstPageSlots = kSystemPageSize / (smallSize + kExtraAllocSize); | |
914 EXPECT_EQ(totalSlots - firstPageSlots, page->numUnprovisionedSlots); | |
915 | |
916 partitionFree(ptr); | |
917 EXPECT_TRUE(page->freelistHead); | |
918 EXPECT_EQ(0, page->numAllocatedSlots); | |
919 | |
920 size_t verySmallSize = 32 - kExtraAllocSize; | |
921 bucketIdx = (verySmallSize + kExtraAllocSize) >> kBucketShift; | |
922 bucket = &allocator.root()->buckets()[bucketIdx]; | |
923 EXPECT_EQ(0, bucket->emptyPagesHead); | |
924 | |
925 ptr = partitionAlloc(allocator.root(), verySmallSize, typeName); | |
926 EXPECT_TRUE(ptr); | |
927 page = partitionPointerToPage(partitionCookieFreePointerAdjust(ptr)); | |
928 EXPECT_EQ(1, page->numAllocatedSlots); | |
929 totalSlots = (page->bucket->numSystemPagesPerSlotSpan * kSystemPageSize) / (
verySmallSize + kExtraAllocSize); | |
930 firstPageSlots = kSystemPageSize / (verySmallSize + kExtraAllocSize); | |
931 EXPECT_EQ(totalSlots - firstPageSlots, page->numUnprovisionedSlots); | |
932 | |
933 partitionFree(ptr); | |
934 EXPECT_TRUE(page->freelistHead); | |
935 EXPECT_EQ(0, page->numAllocatedSlots); | |
936 | |
937 // And try an allocation size (against the generic allocator) that is | |
938 // larger than a system page. | |
939 size_t pageAndAHalfSize = (kSystemPageSize + (kSystemPageSize / 2)) - kExtra
AllocSize; | |
940 ptr = partitionAllocGeneric(genericAllocator.root(), pageAndAHalfSize, typeN
ame); | |
941 EXPECT_TRUE(ptr); | |
942 page = partitionPointerToPage(partitionCookieFreePointerAdjust(ptr)); | |
943 EXPECT_EQ(1, page->numAllocatedSlots); | |
944 EXPECT_TRUE(page->freelistHead); | |
945 totalSlots = (page->bucket->numSystemPagesPerSlotSpan * kSystemPageSize) / (
pageAndAHalfSize + kExtraAllocSize); | |
946 EXPECT_EQ(totalSlots - 2, page->numUnprovisionedSlots); | |
947 partitionFreeGeneric(genericAllocator.root(), ptr); | |
948 | |
949 // And then make sure than exactly the page size only faults one page. | |
950 size_t pageSize = kSystemPageSize - kExtraAllocSize; | |
951 ptr = partitionAllocGeneric(genericAllocator.root(), pageSize, typeName); | |
952 EXPECT_TRUE(ptr); | |
953 page = partitionPointerToPage(partitionCookieFreePointerAdjust(ptr)); | |
954 EXPECT_EQ(1, page->numAllocatedSlots); | |
955 EXPECT_FALSE(page->freelistHead); | |
956 totalSlots = (page->bucket->numSystemPagesPerSlotSpan * kSystemPageSize) / (
pageSize + kExtraAllocSize); | |
957 EXPECT_EQ(totalSlots - 1, page->numUnprovisionedSlots); | |
958 partitionFreeGeneric(genericAllocator.root(), ptr); | |
959 | |
960 TestShutdown(); | |
961 } | |
962 | |
963 // Test some of the fragmentation-resistant properties of the allocator. | |
964 TEST(PartitionAllocTest, PageRefilling) | |
965 { | |
966 TestSetup(); | |
967 PartitionBucket* bucket = &allocator.root()->buckets()[kTestBucketIndex]; | |
968 | |
969 // Grab two full pages and a non-full page. | |
970 PartitionPage* page1 = GetFullPage(kTestAllocSize); | |
971 PartitionPage* page2 = GetFullPage(kTestAllocSize); | |
972 void* ptr = partitionAlloc(allocator.root(), kTestAllocSize, typeName); | |
973 EXPECT_TRUE(ptr); | |
974 EXPECT_NE(page1, bucket->activePagesHead); | |
975 EXPECT_NE(page2, bucket->activePagesHead); | |
976 PartitionPage* page = partitionPointerToPage(partitionCookieFreePointerAdjus
t(ptr)); | |
977 EXPECT_EQ(1, page->numAllocatedSlots); | |
978 | |
979 // Work out a pointer into page2 and free it; and then page1 and free it. | |
980 char* ptr2 = reinterpret_cast<char*>(partitionPageToPointer(page1)) + kPoint
erOffset; | |
981 partitionFree(ptr2); | |
982 ptr2 = reinterpret_cast<char*>(partitionPageToPointer(page2)) + kPointerOffs
et; | |
983 partitionFree(ptr2); | |
984 | |
985 // If we perform two allocations from the same bucket now, we expect to | |
986 // refill both the nearly full pages. | |
987 (void)partitionAlloc(allocator.root(), kTestAllocSize, typeName); | |
988 (void)partitionAlloc(allocator.root(), kTestAllocSize, typeName); | |
989 EXPECT_EQ(1, page->numAllocatedSlots); | |
990 | |
991 FreeFullPage(page2); | |
992 FreeFullPage(page1); | |
993 partitionFree(ptr); | |
994 | |
995 TestShutdown(); | |
996 } | |
997 | |
998 // Basic tests to ensure that allocations work for partial page buckets. | |
999 TEST(PartitionAllocTest, PartialPages) | |
1000 { | |
1001 TestSetup(); | |
1002 | |
1003 // Find a size that is backed by a partial partition page. | |
1004 size_t size = sizeof(void*); | |
1005 PartitionBucket* bucket = 0; | |
1006 while (size < kTestMaxAllocation) { | |
1007 bucket = &allocator.root()->buckets()[size >> kBucketShift]; | |
1008 if (bucket->numSystemPagesPerSlotSpan % kNumSystemPagesPerPartitionPage) | |
1009 break; | |
1010 size += sizeof(void*); | |
1011 } | |
1012 EXPECT_LT(size, kTestMaxAllocation); | |
1013 | |
1014 PartitionPage* page1 = GetFullPage(size); | |
1015 PartitionPage* page2 = GetFullPage(size); | |
1016 FreeFullPage(page2); | |
1017 FreeFullPage(page1); | |
1018 | |
1019 TestShutdown(); | |
1020 } | |
1021 | |
1022 // Test correct handling if our mapping collides with another. | |
1023 TEST(PartitionAllocTest, MappingCollision) | |
1024 { | |
1025 TestSetup(); | |
1026 // The -2 is because the first and last partition pages in a super page are | |
1027 // guard pages. | |
1028 size_t numPartitionPagesNeeded = kNumPartitionPagesPerSuperPage - 2; | |
1029 OwnPtr<PartitionPage*[]> firstSuperPagePages = adoptArrayPtr(new PartitionPa
ge*[numPartitionPagesNeeded]); | |
1030 OwnPtr<PartitionPage*[]> secondSuperPagePages = adoptArrayPtr(new PartitionP
age*[numPartitionPagesNeeded]); | |
1031 | |
1032 size_t i; | |
1033 for (i = 0; i < numPartitionPagesNeeded; ++i) | |
1034 firstSuperPagePages[i] = GetFullPage(kTestAllocSize); | |
1035 | |
1036 char* pageBase = reinterpret_cast<char*>(partitionPageToPointer(firstSuperPa
gePages[0])); | |
1037 EXPECT_EQ(kPartitionPageSize, reinterpret_cast<uintptr_t>(pageBase) & kSuper
PageOffsetMask); | |
1038 pageBase -= kPartitionPageSize; | |
1039 // Map a single system page either side of the mapping for our allocations, | |
1040 // with the goal of tripping up alignment of the next mapping. | |
1041 void* map1 = allocPages(pageBase - kPageAllocationGranularity, kPageAllocati
onGranularity, kPageAllocationGranularity, PageInaccessible); | |
1042 EXPECT_TRUE(map1); | |
1043 void* map2 = allocPages(pageBase + kSuperPageSize, kPageAllocationGranularit
y, kPageAllocationGranularity, PageInaccessible); | |
1044 EXPECT_TRUE(map2); | |
1045 | |
1046 for (i = 0; i < numPartitionPagesNeeded; ++i) | |
1047 secondSuperPagePages[i] = GetFullPage(kTestAllocSize); | |
1048 | |
1049 freePages(map1, kPageAllocationGranularity); | |
1050 freePages(map2, kPageAllocationGranularity); | |
1051 | |
1052 pageBase = reinterpret_cast<char*>(partitionPageToPointer(secondSuperPagePag
es[0])); | |
1053 EXPECT_EQ(kPartitionPageSize, reinterpret_cast<uintptr_t>(pageBase) & kSuper
PageOffsetMask); | |
1054 pageBase -= kPartitionPageSize; | |
1055 // Map a single system page either side of the mapping for our allocations, | |
1056 // with the goal of tripping up alignment of the next mapping. | |
1057 map1 = allocPages(pageBase - kPageAllocationGranularity, kPageAllocationGran
ularity, kPageAllocationGranularity, PageAccessible); | |
1058 EXPECT_TRUE(map1); | |
1059 map2 = allocPages(pageBase + kSuperPageSize, kPageAllocationGranularity, kPa
geAllocationGranularity, PageAccessible); | |
1060 EXPECT_TRUE(map2); | |
1061 setSystemPagesInaccessible(map1, kPageAllocationGranularity); | |
1062 setSystemPagesInaccessible(map2, kPageAllocationGranularity); | |
1063 | |
1064 PartitionPage* pageInThirdSuperPage = GetFullPage(kTestAllocSize); | |
1065 freePages(map1, kPageAllocationGranularity); | |
1066 freePages(map2, kPageAllocationGranularity); | |
1067 | |
1068 EXPECT_EQ(0u, reinterpret_cast<uintptr_t>(partitionPageToPointer(pageInThird
SuperPage)) & kPartitionPageOffsetMask); | |
1069 | |
1070 // And make sure we really did get a page in a new superpage. | |
1071 EXPECT_NE(reinterpret_cast<uintptr_t>(partitionPageToPointer(firstSuperPageP
ages[0])) & kSuperPageBaseMask, reinterpret_cast<uintptr_t>(partitionPageToPoint
er(pageInThirdSuperPage)) & kSuperPageBaseMask); | |
1072 EXPECT_NE(reinterpret_cast<uintptr_t>(partitionPageToPointer(secondSuperPage
Pages[0])) & kSuperPageBaseMask, reinterpret_cast<uintptr_t>(partitionPageToPoin
ter(pageInThirdSuperPage)) & kSuperPageBaseMask); | |
1073 | |
1074 FreeFullPage(pageInThirdSuperPage); | |
1075 for (i = 0; i < numPartitionPagesNeeded; ++i) { | |
1076 FreeFullPage(firstSuperPagePages[i]); | |
1077 FreeFullPage(secondSuperPagePages[i]); | |
1078 } | |
1079 | |
1080 TestShutdown(); | |
1081 } | |
1082 | |
1083 // Tests that pages in the free page cache do get freed as appropriate. | |
1084 TEST(PartitionAllocTest, FreeCache) | |
1085 { | |
1086 TestSetup(); | |
1087 | |
1088 EXPECT_EQ(0U, allocator.root()->totalSizeOfCommittedPages); | |
1089 | |
1090 size_t bigSize = allocator.root()->maxAllocation - kExtraAllocSize; | |
1091 size_t bucketIdx = (bigSize + kExtraAllocSize) >> kBucketShift; | |
1092 PartitionBucket* bucket = &allocator.root()->buckets()[bucketIdx]; | |
1093 | |
1094 void* ptr = partitionAlloc(allocator.root(), bigSize, typeName); | |
1095 EXPECT_TRUE(ptr); | |
1096 PartitionPage* page = partitionPointerToPage(partitionCookieFreePointerAdjus
t(ptr)); | |
1097 EXPECT_EQ(0, bucket->emptyPagesHead); | |
1098 EXPECT_EQ(1, page->numAllocatedSlots); | |
1099 EXPECT_EQ(kPartitionPageSize, allocator.root()->totalSizeOfCommittedPages); | |
1100 partitionFree(ptr); | |
1101 EXPECT_EQ(0, page->numAllocatedSlots); | |
1102 EXPECT_NE(-1, page->emptyCacheIndex); | |
1103 EXPECT_TRUE(page->freelistHead); | |
1104 | |
1105 CycleFreeCache(kTestAllocSize); | |
1106 | |
1107 // Flushing the cache should have really freed the unused page. | |
1108 EXPECT_FALSE(page->freelistHead); | |
1109 EXPECT_EQ(-1, page->emptyCacheIndex); | |
1110 EXPECT_EQ(0, page->numAllocatedSlots); | |
1111 PartitionBucket* cycleFreeCacheBucket = &allocator.root()->buckets()[kTestBu
cketIndex]; | |
1112 EXPECT_EQ(cycleFreeCacheBucket->numSystemPagesPerSlotSpan * kSystemPageSize,
allocator.root()->totalSizeOfCommittedPages); | |
1113 | |
1114 // Check that an allocation works ok whilst in this state (a free'd page | |
1115 // as the active pages head). | |
1116 ptr = partitionAlloc(allocator.root(), bigSize, typeName); | |
1117 EXPECT_FALSE(bucket->emptyPagesHead); | |
1118 partitionFree(ptr); | |
1119 | |
1120 // Also check that a page that is bouncing immediately between empty and | |
1121 // used does not get freed. | |
1122 for (size_t i = 0; i < kMaxFreeableSpans * 2; ++i) { | |
1123 ptr = partitionAlloc(allocator.root(), bigSize, typeName); | |
1124 EXPECT_TRUE(page->freelistHead); | |
1125 partitionFree(ptr); | |
1126 EXPECT_TRUE(page->freelistHead); | |
1127 } | |
1128 EXPECT_EQ(kPartitionPageSize, allocator.root()->totalSizeOfCommittedPages); | |
1129 TestShutdown(); | |
1130 } | |
1131 | |
1132 // Tests for a bug we had with losing references to free pages. | |
1133 TEST(PartitionAllocTest, LostFreePagesBug) | |
1134 { | |
1135 TestSetup(); | |
1136 | |
1137 size_t size = kPartitionPageSize - kExtraAllocSize; | |
1138 | |
1139 void* ptr = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
1140 EXPECT_TRUE(ptr); | |
1141 void* ptr2 = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
1142 EXPECT_TRUE(ptr2); | |
1143 | |
1144 PartitionPage* page = partitionPointerToPage(partitionCookieFreePointerAdjus
t(ptr)); | |
1145 PartitionPage* page2 = partitionPointerToPage(partitionCookieFreePointerAdju
st(ptr2)); | |
1146 PartitionBucket* bucket = page->bucket; | |
1147 | |
1148 EXPECT_EQ(0, bucket->emptyPagesHead); | |
1149 EXPECT_EQ(-1, page->numAllocatedSlots); | |
1150 EXPECT_EQ(1, page2->numAllocatedSlots); | |
1151 | |
1152 partitionFreeGeneric(genericAllocator.root(), ptr); | |
1153 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
1154 | |
1155 EXPECT_TRUE(bucket->emptyPagesHead); | |
1156 EXPECT_TRUE(bucket->emptyPagesHead->nextPage); | |
1157 EXPECT_EQ(0, page->numAllocatedSlots); | |
1158 EXPECT_EQ(0, page2->numAllocatedSlots); | |
1159 EXPECT_TRUE(page->freelistHead); | |
1160 EXPECT_TRUE(page2->freelistHead); | |
1161 | |
1162 CycleGenericFreeCache(kTestAllocSize); | |
1163 | |
1164 EXPECT_FALSE(page->freelistHead); | |
1165 EXPECT_FALSE(page2->freelistHead); | |
1166 | |
1167 EXPECT_TRUE(bucket->emptyPagesHead); | |
1168 EXPECT_TRUE(bucket->emptyPagesHead->nextPage); | |
1169 EXPECT_EQ(&PartitionRootGeneric::gSeedPage, bucket->activePagesHead); | |
1170 | |
1171 // At this moment, we have two decommitted pages, on the empty list. | |
1172 ptr = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
1173 EXPECT_TRUE(ptr); | |
1174 partitionFreeGeneric(genericAllocator.root(), ptr); | |
1175 | |
1176 EXPECT_EQ(&PartitionRootGeneric::gSeedPage, bucket->activePagesHead); | |
1177 EXPECT_TRUE(bucket->emptyPagesHead); | |
1178 EXPECT_TRUE(bucket->decommittedPagesHead); | |
1179 | |
1180 CycleGenericFreeCache(kTestAllocSize); | |
1181 | |
1182 // We're now set up to trigger a historical bug by scanning over the active | |
1183 // pages list. The current code gets into a different state, but we'll keep | |
1184 // the test as being an interesting corner case. | |
1185 ptr = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
1186 EXPECT_TRUE(ptr); | |
1187 partitionFreeGeneric(genericAllocator.root(), ptr); | |
1188 | |
1189 EXPECT_TRUE(bucket->activePagesHead); | |
1190 EXPECT_TRUE(bucket->emptyPagesHead); | |
1191 EXPECT_TRUE(bucket->decommittedPagesHead); | |
1192 | |
1193 TestShutdown(); | |
1194 } | |
1195 | |
1196 #if !CPU(64BIT) || OS(POSIX) | |
1197 | |
1198 static void DoReturnNullTest(size_t allocSize) | |
1199 { | |
1200 TestSetup(); | |
1201 | |
1202 EXPECT_TRUE(SetAddressSpaceLimit()); | |
1203 | |
1204 // Work out the number of allocations for 6 GB of memory. | |
1205 const int numAllocations = (6 * 1024 * 1024) / (allocSize / 1024); | |
1206 | |
1207 void** ptrs = reinterpret_cast<void**>(partitionAllocGeneric(genericAllocato
r.root(), numAllocations * sizeof(void*), typeName)); | |
1208 int i; | |
1209 | |
1210 for (i = 0; i < numAllocations; ++i) { | |
1211 ptrs[i] = partitionAllocGenericFlags(genericAllocator.root(), PartitionA
llocReturnNull, allocSize, typeName); | |
1212 if (!i) | |
1213 EXPECT_TRUE(ptrs[0]); | |
1214 if (!ptrs[i]) { | |
1215 ptrs[i] = partitionAllocGenericFlags(genericAllocator.root(), Partit
ionAllocReturnNull, allocSize, typeName); | |
1216 EXPECT_FALSE(ptrs[i]); | |
1217 break; | |
1218 } | |
1219 } | |
1220 | |
1221 // We shouldn't succeed in allocating all 6 GB of memory. If we do, then | |
1222 // we're not actually testing anything here. | |
1223 EXPECT_LT(i, numAllocations); | |
1224 | |
1225 // Free, reallocate and free again each block we allocated. We do this to | |
1226 // check that freeing memory also works correctly after a failed allocation. | |
1227 for (--i; i >= 0; --i) { | |
1228 partitionFreeGeneric(genericAllocator.root(), ptrs[i]); | |
1229 ptrs[i] = partitionAllocGenericFlags(genericAllocator.root(), PartitionA
llocReturnNull, allocSize, typeName); | |
1230 EXPECT_TRUE(ptrs[i]); | |
1231 partitionFreeGeneric(genericAllocator.root(), ptrs[i]); | |
1232 } | |
1233 | |
1234 partitionFreeGeneric(genericAllocator.root(), ptrs); | |
1235 | |
1236 EXPECT_TRUE(ClearAddressSpaceLimit()); | |
1237 | |
1238 TestShutdown(); | |
1239 } | |
1240 | |
1241 // Tests that if an allocation fails in "return null" mode, repeating it doesn't | |
1242 // crash, and still returns null. The test tries to allocate 6 GB of memory in | |
1243 // 512 kB blocks. On 64-bit POSIX systems, the address space is limited to 4 GB | |
1244 // using setrlimit() first. | |
1245 #if OS(MACOSX) | |
1246 #define MAYBE_RepeatedReturnNull DISABLED_RepeatedReturnNull | |
1247 #else | |
1248 #define MAYBE_RepeatedReturnNull RepeatedReturnNull | |
1249 #endif | |
1250 TEST(PartitionAllocTest, MAYBE_RepeatedReturnNull) | |
1251 { | |
1252 // A single-slot but non-direct-mapped allocation size. | |
1253 DoReturnNullTest(512 * 1024); | |
1254 } | |
1255 | |
1256 // Another "return null" test but for larger, direct-mapped allocations. | |
1257 #if OS(MACOSX) | |
1258 #define MAYBE_RepeatedReturnNullDirect DISABLED_RepeatedReturnNullDirect | |
1259 #else | |
1260 #define MAYBE_RepeatedReturnNullDirect RepeatedReturnNullDirect | |
1261 #endif | |
1262 TEST(PartitionAllocTest, MAYBE_RepeatedReturnNullDirect) | |
1263 { | |
1264 // A direct-mapped allocation size. | |
1265 DoReturnNullTest(256 * 1024 * 1024); | |
1266 } | |
1267 | |
1268 #endif // !CPU(64BIT) || OS(POSIX) | |
1269 | |
1270 #if !OS(ANDROID) | |
1271 | |
1272 // Make sure that malloc(-1) dies. | |
1273 // In the past, we had an integer overflow that would alias malloc(-1) to | |
1274 // malloc(0), which is not good. | |
1275 TEST(PartitionAllocDeathTest, LargeAllocs) | |
1276 { | |
1277 TestSetup(); | |
1278 // Largest alloc. | |
1279 EXPECT_DEATH(partitionAllocGeneric(genericAllocator.root(), static_cast<size
_t>(-1), typeName), ""); | |
1280 // And the smallest allocation we expect to die. | |
1281 EXPECT_DEATH(partitionAllocGeneric(genericAllocator.root(), static_cast<size
_t>(INT_MAX) + 1, typeName), ""); | |
1282 | |
1283 TestShutdown(); | |
1284 } | |
1285 | |
1286 // Check that our immediate double-free detection works. | |
1287 TEST(PartitionAllocDeathTest, ImmediateDoubleFree) | |
1288 { | |
1289 TestSetup(); | |
1290 | |
1291 void* ptr = partitionAllocGeneric(genericAllocator.root(), kTestAllocSize, t
ypeName); | |
1292 EXPECT_TRUE(ptr); | |
1293 partitionFreeGeneric(genericAllocator.root(), ptr); | |
1294 | |
1295 EXPECT_DEATH(partitionFreeGeneric(genericAllocator.root(), ptr), ""); | |
1296 | |
1297 TestShutdown(); | |
1298 } | |
1299 | |
1300 // Check that our refcount-based double-free detection works. | |
1301 TEST(PartitionAllocDeathTest, RefcountDoubleFree) | |
1302 { | |
1303 TestSetup(); | |
1304 | |
1305 void* ptr = partitionAllocGeneric(genericAllocator.root(), kTestAllocSize, t
ypeName); | |
1306 EXPECT_TRUE(ptr); | |
1307 void* ptr2 = partitionAllocGeneric(genericAllocator.root(), kTestAllocSize,
typeName); | |
1308 EXPECT_TRUE(ptr2); | |
1309 partitionFreeGeneric(genericAllocator.root(), ptr); | |
1310 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
1311 // This is not an immediate double-free so our immediate detection won't | |
1312 // fire. However, it does take the "refcount" of the partition page to -1, | |
1313 // which is illegal and should be trapped. | |
1314 EXPECT_DEATH(partitionFreeGeneric(genericAllocator.root(), ptr), ""); | |
1315 | |
1316 TestShutdown(); | |
1317 } | |
1318 | |
1319 // Check that guard pages are present where expected. | |
1320 TEST(PartitionAllocDeathTest, GuardPages) | |
1321 { | |
1322 TestSetup(); | |
1323 | |
1324 // partitionAlloc adds kPartitionPageSize to the requested size | |
1325 // (for metadata), and then rounds that size to kPageAllocationGranularity. | |
1326 // To be able to reliably write one past a direct allocation, choose a size | |
1327 // that's | |
1328 // a) larger than kGenericMaxBucketed (to make the allocation direct) | |
1329 // b) aligned at kPageAllocationGranularity boundaries after | |
1330 // kPartitionPageSize has been added to it. | |
1331 // (On 32-bit, partitionAlloc adds another kSystemPageSize to the | |
1332 // allocation size before rounding, but there it marks the memory right | |
1333 // after size as inaccessible, so it's fine to write 1 past the size we | |
1334 // hand to partitionAlloc and we don't need to worry about allocation | |
1335 // granularities.) | |
1336 #define ALIGN(N, A) (((N) + (A) - 1) / (A) * (A)) | |
1337 const int kSize = ALIGN(kGenericMaxBucketed + 1 + kPartitionPageSize, kPageA
llocationGranularity) - kPartitionPageSize; | |
1338 #undef ALIGN | |
1339 static_assert(kSize > kGenericMaxBucketed, "allocation not large enough for
direct allocation"); | |
1340 size_t size = kSize - kExtraAllocSize; | |
1341 void* ptr = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
1342 | |
1343 EXPECT_TRUE(ptr); | |
1344 char* charPtr = reinterpret_cast<char*>(ptr) - kPointerOffset; | |
1345 | |
1346 EXPECT_DEATH(*(charPtr - 1) = 'A', ""); | |
1347 EXPECT_DEATH(*(charPtr + size + kExtraAllocSize) = 'A', ""); | |
1348 | |
1349 partitionFreeGeneric(genericAllocator.root(), ptr); | |
1350 | |
1351 TestShutdown(); | |
1352 } | |
1353 | |
1354 // Check that a bad free() is caught where the free() refers to an unused | |
1355 // partition page of a large allocation. | |
1356 TEST(PartitionAllocDeathTest, FreeWrongPartitionPage) | |
1357 { | |
1358 TestSetup(); | |
1359 | |
1360 // This large size will result in a direct mapped allocation with guard | |
1361 // pages at either end. | |
1362 void* ptr = partitionAllocGeneric(genericAllocator.root(), kPartitionPageSiz
e * 2, typeName); | |
1363 EXPECT_TRUE(ptr); | |
1364 char* badPtr = reinterpret_cast<char*>(ptr) + kPartitionPageSize; | |
1365 | |
1366 EXPECT_DEATH(partitionFreeGeneric(genericAllocator.root(), badPtr), ""); | |
1367 | |
1368 partitionFreeGeneric(genericAllocator.root(), ptr); | |
1369 | |
1370 TestShutdown(); | |
1371 } | |
1372 | |
1373 #endif // !OS(ANDROID) | |
1374 | |
1375 // Tests that partitionDumpStatsGeneric and partitionDumpStats runs without | |
1376 // crashing and returns non zero values when memory is allocated. | |
1377 TEST(PartitionAllocTest, DumpMemoryStats) | |
1378 { | |
1379 TestSetup(); | |
1380 { | |
1381 void* ptr = partitionAlloc(allocator.root(), kTestAllocSize, typeName); | |
1382 MockPartitionStatsDumper mockStatsDumper; | |
1383 partitionDumpStats(allocator.root(), "mock_allocator", false /* detailed
dump */, &mockStatsDumper); | |
1384 EXPECT_TRUE(mockStatsDumper.IsMemoryAllocationRecorded()); | |
1385 | |
1386 partitionFree(ptr); | |
1387 } | |
1388 | |
1389 // This series of tests checks the active -> empty -> decommitted states. | |
1390 { | |
1391 void* genericPtr = partitionAllocGeneric(genericAllocator.root(), 2048 -
kExtraAllocSize, typeName); | |
1392 { | |
1393 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1394 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1395 EXPECT_TRUE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1396 | |
1397 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(2048); | |
1398 EXPECT_TRUE(stats); | |
1399 EXPECT_TRUE(stats->isValid); | |
1400 EXPECT_EQ(2048u, stats->bucketSlotSize); | |
1401 EXPECT_EQ(2048u, stats->activeBytes); | |
1402 EXPECT_EQ(kSystemPageSize, stats->residentBytes); | |
1403 EXPECT_EQ(0u, stats->decommittableBytes); | |
1404 EXPECT_EQ(0u, stats->discardableBytes); | |
1405 EXPECT_EQ(0u, stats->numFullPages); | |
1406 EXPECT_EQ(1u, stats->numActivePages); | |
1407 EXPECT_EQ(0u, stats->numEmptyPages); | |
1408 EXPECT_EQ(0u, stats->numDecommittedPages); | |
1409 } | |
1410 | |
1411 partitionFreeGeneric(genericAllocator.root(), genericPtr); | |
1412 | |
1413 { | |
1414 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1415 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1416 EXPECT_FALSE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1417 | |
1418 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(2048); | |
1419 EXPECT_TRUE(stats); | |
1420 EXPECT_TRUE(stats->isValid); | |
1421 EXPECT_EQ(2048u, stats->bucketSlotSize); | |
1422 EXPECT_EQ(0u, stats->activeBytes); | |
1423 EXPECT_EQ(kSystemPageSize, stats->residentBytes); | |
1424 EXPECT_EQ(kSystemPageSize, stats->decommittableBytes); | |
1425 EXPECT_EQ(0u, stats->discardableBytes); | |
1426 EXPECT_EQ(0u, stats->numFullPages); | |
1427 EXPECT_EQ(0u, stats->numActivePages); | |
1428 EXPECT_EQ(1u, stats->numEmptyPages); | |
1429 EXPECT_EQ(0u, stats->numDecommittedPages); | |
1430 } | |
1431 | |
1432 CycleGenericFreeCache(kTestAllocSize); | |
1433 | |
1434 { | |
1435 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1436 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1437 EXPECT_FALSE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1438 | |
1439 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(2048); | |
1440 EXPECT_TRUE(stats); | |
1441 EXPECT_TRUE(stats->isValid); | |
1442 EXPECT_EQ(2048u, stats->bucketSlotSize); | |
1443 EXPECT_EQ(0u, stats->activeBytes); | |
1444 EXPECT_EQ(0u, stats->residentBytes); | |
1445 EXPECT_EQ(0u, stats->decommittableBytes); | |
1446 EXPECT_EQ(0u, stats->discardableBytes); | |
1447 EXPECT_EQ(0u, stats->numFullPages); | |
1448 EXPECT_EQ(0u, stats->numActivePages); | |
1449 EXPECT_EQ(0u, stats->numEmptyPages); | |
1450 EXPECT_EQ(1u, stats->numDecommittedPages); | |
1451 } | |
1452 } | |
1453 | |
1454 // This test checks for correct empty page list accounting. | |
1455 { | |
1456 size_t size = kPartitionPageSize - kExtraAllocSize; | |
1457 void* ptr1 = partitionAllocGeneric(genericAllocator.root(), size, typeNa
me); | |
1458 void* ptr2 = partitionAllocGeneric(genericAllocator.root(), size, typeNa
me); | |
1459 partitionFreeGeneric(genericAllocator.root(), ptr1); | |
1460 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
1461 | |
1462 CycleGenericFreeCache(kTestAllocSize); | |
1463 | |
1464 ptr1 = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
1465 | |
1466 { | |
1467 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1468 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1469 EXPECT_TRUE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1470 | |
1471 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(kPartitionPageSize); | |
1472 EXPECT_TRUE(stats); | |
1473 EXPECT_TRUE(stats->isValid); | |
1474 EXPECT_EQ(kPartitionPageSize, stats->bucketSlotSize); | |
1475 EXPECT_EQ(kPartitionPageSize, stats->activeBytes); | |
1476 EXPECT_EQ(kPartitionPageSize, stats->residentBytes); | |
1477 EXPECT_EQ(0u, stats->decommittableBytes); | |
1478 EXPECT_EQ(0u, stats->discardableBytes); | |
1479 EXPECT_EQ(1u, stats->numFullPages); | |
1480 EXPECT_EQ(0u, stats->numActivePages); | |
1481 EXPECT_EQ(0u, stats->numEmptyPages); | |
1482 EXPECT_EQ(1u, stats->numDecommittedPages); | |
1483 } | |
1484 partitionFreeGeneric(genericAllocator.root(), ptr1); | |
1485 } | |
1486 | |
1487 // This test checks for correct direct mapped accounting. | |
1488 { | |
1489 size_t sizeSmaller = kGenericMaxBucketed + 1; | |
1490 size_t sizeBigger = (kGenericMaxBucketed * 2) + 1; | |
1491 size_t realSizeSmaller = (sizeSmaller + kSystemPageOffsetMask) & kSystem
PageBaseMask; | |
1492 size_t realSizeBigger = (sizeBigger + kSystemPageOffsetMask) & kSystemPa
geBaseMask; | |
1493 void* ptr = partitionAllocGeneric(genericAllocator.root(), sizeSmaller,
typeName); | |
1494 void* ptr2 = partitionAllocGeneric(genericAllocator.root(), sizeBigger,
typeName); | |
1495 | |
1496 { | |
1497 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1498 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1499 EXPECT_TRUE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1500 | |
1501 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(realSizeSmaller); | |
1502 EXPECT_TRUE(stats); | |
1503 EXPECT_TRUE(stats->isValid); | |
1504 EXPECT_TRUE(stats->isDirectMap); | |
1505 EXPECT_EQ(realSizeSmaller, stats->bucketSlotSize); | |
1506 EXPECT_EQ(realSizeSmaller, stats->activeBytes); | |
1507 EXPECT_EQ(realSizeSmaller, stats->residentBytes); | |
1508 EXPECT_EQ(0u, stats->decommittableBytes); | |
1509 EXPECT_EQ(0u, stats->discardableBytes); | |
1510 EXPECT_EQ(1u, stats->numFullPages); | |
1511 EXPECT_EQ(0u, stats->numActivePages); | |
1512 EXPECT_EQ(0u, stats->numEmptyPages); | |
1513 EXPECT_EQ(0u, stats->numDecommittedPages); | |
1514 | |
1515 stats = mockStatsDumperGeneric.GetBucketStats(realSizeBigger); | |
1516 EXPECT_TRUE(stats); | |
1517 EXPECT_TRUE(stats->isValid); | |
1518 EXPECT_TRUE(stats->isDirectMap); | |
1519 EXPECT_EQ(realSizeBigger, stats->bucketSlotSize); | |
1520 EXPECT_EQ(realSizeBigger, stats->activeBytes); | |
1521 EXPECT_EQ(realSizeBigger, stats->residentBytes); | |
1522 EXPECT_EQ(0u, stats->decommittableBytes); | |
1523 EXPECT_EQ(0u, stats->discardableBytes); | |
1524 EXPECT_EQ(1u, stats->numFullPages); | |
1525 EXPECT_EQ(0u, stats->numActivePages); | |
1526 EXPECT_EQ(0u, stats->numEmptyPages); | |
1527 EXPECT_EQ(0u, stats->numDecommittedPages); | |
1528 } | |
1529 | |
1530 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
1531 partitionFreeGeneric(genericAllocator.root(), ptr); | |
1532 | |
1533 // Whilst we're here, allocate again and free with different ordering | |
1534 // to give a workout to our linked list code. | |
1535 ptr = partitionAllocGeneric(genericAllocator.root(), sizeSmaller, typeNa
me); | |
1536 ptr2 = partitionAllocGeneric(genericAllocator.root(), sizeBigger, typeNa
me); | |
1537 partitionFreeGeneric(genericAllocator.root(), ptr); | |
1538 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
1539 } | |
1540 | |
1541 // This test checks large-but-not-quite-direct allocations. | |
1542 { | |
1543 void* ptr = partitionAllocGeneric(genericAllocator.root(), 65536 + 1, ty
peName); | |
1544 | |
1545 { | |
1546 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1547 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1548 EXPECT_TRUE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1549 | |
1550 size_t slotSize = 65536 + (65536 / kGenericNumBucketsPerOrder); | |
1551 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(slotSize); | |
1552 EXPECT_TRUE(stats); | |
1553 EXPECT_TRUE(stats->isValid); | |
1554 EXPECT_FALSE(stats->isDirectMap); | |
1555 EXPECT_EQ(slotSize, stats->bucketSlotSize); | |
1556 EXPECT_EQ(65536u + 1 + kExtraAllocSize, stats->activeBytes); | |
1557 EXPECT_EQ(slotSize, stats->residentBytes); | |
1558 EXPECT_EQ(0u, stats->decommittableBytes); | |
1559 EXPECT_EQ(kSystemPageSize, stats->discardableBytes); | |
1560 EXPECT_EQ(1u, stats->numFullPages); | |
1561 EXPECT_EQ(0u, stats->numActivePages); | |
1562 EXPECT_EQ(0u, stats->numEmptyPages); | |
1563 EXPECT_EQ(0u, stats->numDecommittedPages); | |
1564 } | |
1565 | |
1566 partitionFreeGeneric(genericAllocator.root(), ptr); | |
1567 | |
1568 { | |
1569 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1570 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1571 EXPECT_FALSE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1572 | |
1573 size_t slotSize = 65536 + (65536 / kGenericNumBucketsPerOrder); | |
1574 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(slotSize); | |
1575 EXPECT_TRUE(stats); | |
1576 EXPECT_TRUE(stats->isValid); | |
1577 EXPECT_FALSE(stats->isDirectMap); | |
1578 EXPECT_EQ(slotSize, stats->bucketSlotSize); | |
1579 EXPECT_EQ(0u, stats->activeBytes); | |
1580 EXPECT_EQ(slotSize, stats->residentBytes); | |
1581 EXPECT_EQ(slotSize, stats->decommittableBytes); | |
1582 EXPECT_EQ(0u, stats->numFullPages); | |
1583 EXPECT_EQ(0u, stats->numActivePages); | |
1584 EXPECT_EQ(1u, stats->numEmptyPages); | |
1585 EXPECT_EQ(0u, stats->numDecommittedPages); | |
1586 } | |
1587 | |
1588 void* ptr2 = partitionAllocGeneric(genericAllocator.root(), 65536 + kSys
temPageSize + 1, typeName); | |
1589 EXPECT_EQ(ptr, ptr2); | |
1590 | |
1591 { | |
1592 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1593 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1594 EXPECT_TRUE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1595 | |
1596 size_t slotSize = 65536 + (65536 / kGenericNumBucketsPerOrder); | |
1597 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(slotSize); | |
1598 EXPECT_TRUE(stats); | |
1599 EXPECT_TRUE(stats->isValid); | |
1600 EXPECT_FALSE(stats->isDirectMap); | |
1601 EXPECT_EQ(slotSize, stats->bucketSlotSize); | |
1602 EXPECT_EQ(65536u + kSystemPageSize + 1 + kExtraAllocSize, stats->act
iveBytes); | |
1603 EXPECT_EQ(slotSize, stats->residentBytes); | |
1604 EXPECT_EQ(0u, stats->decommittableBytes); | |
1605 EXPECT_EQ(0u, stats->discardableBytes); | |
1606 EXPECT_EQ(1u, stats->numFullPages); | |
1607 EXPECT_EQ(0u, stats->numActivePages); | |
1608 EXPECT_EQ(0u, stats->numEmptyPages); | |
1609 EXPECT_EQ(0u, stats->numDecommittedPages); | |
1610 } | |
1611 | |
1612 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
1613 } | |
1614 | |
1615 TestShutdown(); | |
1616 } | |
1617 | |
1618 // Tests the API to purge freeable memory. | |
1619 TEST(PartitionAllocTest, Purge) | |
1620 { | |
1621 TestSetup(); | |
1622 | |
1623 char* ptr = reinterpret_cast<char*>(partitionAllocGeneric(genericAllocator.r
oot(), 2048 - kExtraAllocSize, typeName)); | |
1624 partitionFreeGeneric(genericAllocator.root(), ptr); | |
1625 { | |
1626 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1627 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_allocat
or", false /* detailed dump */, &mockStatsDumperGeneric); | |
1628 EXPECT_FALSE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1629 | |
1630 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.GetBuck
etStats(2048); | |
1631 EXPECT_TRUE(stats); | |
1632 EXPECT_TRUE(stats->isValid); | |
1633 EXPECT_EQ(kSystemPageSize, stats->decommittableBytes); | |
1634 EXPECT_EQ(kSystemPageSize, stats->residentBytes); | |
1635 } | |
1636 partitionPurgeMemoryGeneric(genericAllocator.root(), PartitionPurgeDecommitE
mptyPages); | |
1637 { | |
1638 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1639 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_allocat
or", false /* detailed dump */, &mockStatsDumperGeneric); | |
1640 EXPECT_FALSE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1641 | |
1642 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.GetBuck
etStats(2048); | |
1643 EXPECT_TRUE(stats); | |
1644 EXPECT_TRUE(stats->isValid); | |
1645 EXPECT_EQ(0u, stats->decommittableBytes); | |
1646 EXPECT_EQ(0u, stats->residentBytes); | |
1647 } | |
1648 // Calling purge again here is a good way of testing we didn't mess up the | |
1649 // state of the free cache ring. | |
1650 partitionPurgeMemoryGeneric(genericAllocator.root(), PartitionPurgeDecommitE
mptyPages); | |
1651 | |
1652 char* bigPtr = reinterpret_cast<char*>(partitionAllocGeneric(genericAllocato
r.root(), 256 * 1024, typeName)); | |
1653 partitionFreeGeneric(genericAllocator.root(), bigPtr); | |
1654 partitionPurgeMemoryGeneric(genericAllocator.root(), PartitionPurgeDecommitE
mptyPages); | |
1655 | |
1656 CheckPageInCore(ptr - kPointerOffset, false); | |
1657 CheckPageInCore(bigPtr - kPointerOffset, false); | |
1658 | |
1659 TestShutdown(); | |
1660 } | |
1661 | |
1662 // Tests that we prefer to allocate into a non-empty partition page over an | |
1663 // empty one. This is an important aspect of minimizing memory usage for some | |
1664 // allocation sizes, particularly larger ones. | |
1665 TEST(PartitionAllocTest, PreferActiveOverEmpty) | |
1666 { | |
1667 TestSetup(); | |
1668 | |
1669 size_t size = (kSystemPageSize * 2) - kExtraAllocSize; | |
1670 // Allocate 3 full slot spans worth of 8192-byte allocations. | |
1671 // Each slot span for this size is 16384 bytes, or 1 partition page and 2 | |
1672 // slots. | |
1673 void* ptr1 = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
1674 void* ptr2 = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
1675 void* ptr3 = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
1676 void* ptr4 = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
1677 void* ptr5 = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
1678 void* ptr6 = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
1679 | |
1680 PartitionPage* page1 = partitionPointerToPage(partitionCookieFreePointerAdju
st(ptr1)); | |
1681 PartitionPage* page2 = partitionPointerToPage(partitionCookieFreePointerAdju
st(ptr3)); | |
1682 PartitionPage* page3 = partitionPointerToPage(partitionCookieFreePointerAdju
st(ptr6)); | |
1683 EXPECT_NE(page1, page2); | |
1684 EXPECT_NE(page2, page3); | |
1685 PartitionBucket* bucket = page1->bucket; | |
1686 EXPECT_EQ(page3, bucket->activePagesHead); | |
1687 | |
1688 // Free up the 2nd slot in each slot span. | |
1689 // This leaves the active list containing 3 pages, each with 1 used and 1 | |
1690 // free slot. The active page will be the one containing ptr1. | |
1691 partitionFreeGeneric(genericAllocator.root(), ptr6); | |
1692 partitionFreeGeneric(genericAllocator.root(), ptr4); | |
1693 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
1694 EXPECT_EQ(page1, bucket->activePagesHead); | |
1695 | |
1696 // Empty the middle page in the active list. | |
1697 partitionFreeGeneric(genericAllocator.root(), ptr3); | |
1698 EXPECT_EQ(page1, bucket->activePagesHead); | |
1699 | |
1700 // Empty the the first page in the active list -- also the current page. | |
1701 partitionFreeGeneric(genericAllocator.root(), ptr1); | |
1702 | |
1703 // A good choice here is to re-fill the third page since the first two are | |
1704 // empty. We used to fail that. | |
1705 void* ptr7 = partitionAllocGeneric(genericAllocator.root(), size, typeName); | |
1706 EXPECT_EQ(ptr6, ptr7); | |
1707 EXPECT_EQ(page3, bucket->activePagesHead); | |
1708 | |
1709 partitionFreeGeneric(genericAllocator.root(), ptr5); | |
1710 partitionFreeGeneric(genericAllocator.root(), ptr7); | |
1711 | |
1712 TestShutdown(); | |
1713 } | |
1714 | |
1715 // Tests the API to purge discardable memory. | |
1716 TEST(PartitionAllocTest, PurgeDiscardable) | |
1717 { | |
1718 TestSetup(); | |
1719 | |
1720 // Free the second of two 4096 byte allocations and then purge. | |
1721 { | |
1722 void* ptr1 = partitionAllocGeneric(genericAllocator.root(), kSystemPageS
ize - kExtraAllocSize, typeName); | |
1723 char* ptr2 = reinterpret_cast<char*>(partitionAllocGeneric(genericAlloca
tor.root(), kSystemPageSize - kExtraAllocSize, typeName)); | |
1724 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
1725 PartitionPage* page = partitionPointerToPage(partitionCookieFreePointerA
djust(ptr1)); | |
1726 EXPECT_EQ(2u, page->numUnprovisionedSlots); | |
1727 { | |
1728 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1729 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1730 EXPECT_TRUE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1731 | |
1732 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(kSystemPageSize); | |
1733 EXPECT_TRUE(stats); | |
1734 EXPECT_TRUE(stats->isValid); | |
1735 EXPECT_EQ(0u, stats->decommittableBytes); | |
1736 EXPECT_EQ(kSystemPageSize, stats->discardableBytes); | |
1737 EXPECT_EQ(kSystemPageSize, stats->activeBytes); | |
1738 EXPECT_EQ(2 * kSystemPageSize, stats->residentBytes); | |
1739 } | |
1740 CheckPageInCore(ptr2 - kPointerOffset, true); | |
1741 partitionPurgeMemoryGeneric(genericAllocator.root(), PartitionPurgeDisca
rdUnusedSystemPages); | |
1742 CheckPageInCore(ptr2 - kPointerOffset, false); | |
1743 EXPECT_EQ(3u, page->numUnprovisionedSlots); | |
1744 | |
1745 partitionFreeGeneric(genericAllocator.root(), ptr1); | |
1746 } | |
1747 // Free the first of two 4096 byte allocations and then purge. | |
1748 { | |
1749 char* ptr1 = reinterpret_cast<char*>(partitionAllocGeneric(genericAlloca
tor.root(), kSystemPageSize - kExtraAllocSize, typeName)); | |
1750 void* ptr2 = partitionAllocGeneric(genericAllocator.root(), kSystemPageS
ize - kExtraAllocSize, typeName); | |
1751 partitionFreeGeneric(genericAllocator.root(), ptr1); | |
1752 { | |
1753 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1754 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1755 EXPECT_TRUE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1756 | |
1757 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(kSystemPageSize); | |
1758 EXPECT_TRUE(stats); | |
1759 EXPECT_TRUE(stats->isValid); | |
1760 EXPECT_EQ(0u, stats->decommittableBytes); | |
1761 EXPECT_EQ(kSystemPageSize, stats->discardableBytes); | |
1762 EXPECT_EQ(kSystemPageSize, stats->activeBytes); | |
1763 EXPECT_EQ(2 * kSystemPageSize, stats->residentBytes); | |
1764 } | |
1765 CheckPageInCore(ptr1 - kPointerOffset, true); | |
1766 partitionPurgeMemoryGeneric(genericAllocator.root(), PartitionPurgeDisca
rdUnusedSystemPages); | |
1767 CheckPageInCore(ptr1 - kPointerOffset, false); | |
1768 | |
1769 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
1770 } | |
1771 { | |
1772 char* ptr1 = reinterpret_cast<char*>(partitionAllocGeneric(genericAlloca
tor.root(), 9216 - kExtraAllocSize, typeName)); | |
1773 void* ptr2 = partitionAllocGeneric(genericAllocator.root(), 9216 - kExtr
aAllocSize, typeName); | |
1774 void* ptr3 = partitionAllocGeneric(genericAllocator.root(), 9216 - kExtr
aAllocSize, typeName); | |
1775 void* ptr4 = partitionAllocGeneric(genericAllocator.root(), 9216 - kExtr
aAllocSize, typeName); | |
1776 memset(ptr1, 'A', 9216 - kExtraAllocSize); | |
1777 memset(ptr2, 'A', 9216 - kExtraAllocSize); | |
1778 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
1779 partitionFreeGeneric(genericAllocator.root(), ptr1); | |
1780 { | |
1781 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1782 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1783 EXPECT_TRUE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1784 | |
1785 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(9216); | |
1786 EXPECT_TRUE(stats); | |
1787 EXPECT_TRUE(stats->isValid); | |
1788 EXPECT_EQ(0u, stats->decommittableBytes); | |
1789 EXPECT_EQ(2 * kSystemPageSize, stats->discardableBytes); | |
1790 EXPECT_EQ(9216u * 2, stats->activeBytes); | |
1791 EXPECT_EQ(9 * kSystemPageSize, stats->residentBytes); | |
1792 } | |
1793 CheckPageInCore(ptr1 - kPointerOffset, true); | |
1794 CheckPageInCore(ptr1 - kPointerOffset + kSystemPageSize, true); | |
1795 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 2), true); | |
1796 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 3), true); | |
1797 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 4), true); | |
1798 partitionPurgeMemoryGeneric(genericAllocator.root(), PartitionPurgeDisca
rdUnusedSystemPages); | |
1799 CheckPageInCore(ptr1 - kPointerOffset, true); | |
1800 CheckPageInCore(ptr1 - kPointerOffset + kSystemPageSize, false); | |
1801 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 2), true); | |
1802 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 3), false); | |
1803 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 4), true); | |
1804 | |
1805 partitionFreeGeneric(genericAllocator.root(), ptr3); | |
1806 partitionFreeGeneric(genericAllocator.root(), ptr4); | |
1807 } | |
1808 { | |
1809 char* ptr1 = reinterpret_cast<char*>(partitionAllocGeneric(genericAlloca
tor.root(), (64 * kSystemPageSize) - kExtraAllocSize, typeName)); | |
1810 memset(ptr1, 'A', (64 * kSystemPageSize) - kExtraAllocSize); | |
1811 partitionFreeGeneric(genericAllocator.root(), ptr1); | |
1812 ptr1 = reinterpret_cast<char*>(partitionAllocGeneric(genericAllocator.ro
ot(), (61 * kSystemPageSize) - kExtraAllocSize, typeName)); | |
1813 { | |
1814 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1815 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1816 EXPECT_TRUE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1817 | |
1818 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(64 * kSystemPageSize); | |
1819 EXPECT_TRUE(stats); | |
1820 EXPECT_TRUE(stats->isValid); | |
1821 EXPECT_EQ(0u, stats->decommittableBytes); | |
1822 EXPECT_EQ(3 * kSystemPageSize, stats->discardableBytes); | |
1823 EXPECT_EQ(61 * kSystemPageSize, stats->activeBytes); | |
1824 EXPECT_EQ(64 * kSystemPageSize, stats->residentBytes); | |
1825 } | |
1826 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 60), true); | |
1827 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 61), true); | |
1828 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 62), true); | |
1829 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 63), true); | |
1830 partitionPurgeMemoryGeneric(genericAllocator.root(), PartitionPurgeDisca
rdUnusedSystemPages); | |
1831 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 60), true); | |
1832 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 61), false); | |
1833 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 62), false); | |
1834 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 63), false); | |
1835 | |
1836 partitionFreeGeneric(genericAllocator.root(), ptr1); | |
1837 } | |
1838 // This sub-test tests truncation of the provisioned slots in a trickier | |
1839 // case where the freelist is rewritten. | |
1840 partitionPurgeMemoryGeneric(genericAllocator.root(), PartitionPurgeDecommitE
mptyPages); | |
1841 { | |
1842 char* ptr1 = reinterpret_cast<char*>(partitionAllocGeneric(genericAlloca
tor.root(), kSystemPageSize - kExtraAllocSize, typeName)); | |
1843 void* ptr2 = partitionAllocGeneric(genericAllocator.root(), kSystemPageS
ize - kExtraAllocSize, typeName); | |
1844 void* ptr3 = partitionAllocGeneric(genericAllocator.root(), kSystemPageS
ize - kExtraAllocSize, typeName); | |
1845 void* ptr4 = partitionAllocGeneric(genericAllocator.root(), kSystemPageS
ize - kExtraAllocSize, typeName); | |
1846 ptr1[0] = 'A'; | |
1847 ptr1[kSystemPageSize] = 'A'; | |
1848 ptr1[kSystemPageSize * 2] = 'A'; | |
1849 ptr1[kSystemPageSize * 3] = 'A'; | |
1850 PartitionPage* page = partitionPointerToPage(partitionCookieFreePointerA
djust(ptr1)); | |
1851 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
1852 partitionFreeGeneric(genericAllocator.root(), ptr4); | |
1853 partitionFreeGeneric(genericAllocator.root(), ptr1); | |
1854 EXPECT_EQ(0u, page->numUnprovisionedSlots); | |
1855 | |
1856 { | |
1857 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1858 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1859 EXPECT_TRUE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1860 | |
1861 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(kSystemPageSize); | |
1862 EXPECT_TRUE(stats); | |
1863 EXPECT_TRUE(stats->isValid); | |
1864 EXPECT_EQ(0u, stats->decommittableBytes); | |
1865 EXPECT_EQ(2 * kSystemPageSize, stats->discardableBytes); | |
1866 EXPECT_EQ(kSystemPageSize, stats->activeBytes); | |
1867 EXPECT_EQ(4 * kSystemPageSize, stats->residentBytes); | |
1868 } | |
1869 CheckPageInCore(ptr1 - kPointerOffset, true); | |
1870 CheckPageInCore(ptr1 - kPointerOffset + kSystemPageSize, true); | |
1871 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 2), true); | |
1872 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 3), true); | |
1873 partitionPurgeMemoryGeneric(genericAllocator.root(), PartitionPurgeDisca
rdUnusedSystemPages); | |
1874 EXPECT_EQ(1u, page->numUnprovisionedSlots); | |
1875 CheckPageInCore(ptr1 - kPointerOffset, true); | |
1876 CheckPageInCore(ptr1 - kPointerOffset + kSystemPageSize, false); | |
1877 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 2), true); | |
1878 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 3), false); | |
1879 | |
1880 // Let's check we didn't brick the freelist. | |
1881 void* ptr1b = partitionAllocGeneric(genericAllocator.root(), kSystemPage
Size - kExtraAllocSize, typeName); | |
1882 EXPECT_EQ(ptr1, ptr1b); | |
1883 void* ptr2b = partitionAllocGeneric(genericAllocator.root(), kSystemPage
Size - kExtraAllocSize, typeName); | |
1884 EXPECT_EQ(ptr2, ptr2b); | |
1885 EXPECT_FALSE(page->freelistHead); | |
1886 | |
1887 partitionFreeGeneric(genericAllocator.root(), ptr1); | |
1888 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
1889 partitionFreeGeneric(genericAllocator.root(), ptr3); | |
1890 } | |
1891 // This sub-test is similar, but tests a double-truncation. | |
1892 partitionPurgeMemoryGeneric(genericAllocator.root(), PartitionPurgeDecommitE
mptyPages); | |
1893 { | |
1894 char* ptr1 = reinterpret_cast<char*>(partitionAllocGeneric(genericAlloca
tor.root(), kSystemPageSize - kExtraAllocSize, typeName)); | |
1895 void* ptr2 = partitionAllocGeneric(genericAllocator.root(), kSystemPageS
ize - kExtraAllocSize, typeName); | |
1896 void* ptr3 = partitionAllocGeneric(genericAllocator.root(), kSystemPageS
ize - kExtraAllocSize, typeName); | |
1897 void* ptr4 = partitionAllocGeneric(genericAllocator.root(), kSystemPageS
ize - kExtraAllocSize, typeName); | |
1898 ptr1[0] = 'A'; | |
1899 ptr1[kSystemPageSize] = 'A'; | |
1900 ptr1[kSystemPageSize * 2] = 'A'; | |
1901 ptr1[kSystemPageSize * 3] = 'A'; | |
1902 PartitionPage* page = partitionPointerToPage(partitionCookieFreePointerA
djust(ptr1)); | |
1903 partitionFreeGeneric(genericAllocator.root(), ptr4); | |
1904 partitionFreeGeneric(genericAllocator.root(), ptr3); | |
1905 EXPECT_EQ(0u, page->numUnprovisionedSlots); | |
1906 | |
1907 { | |
1908 MockPartitionStatsDumper mockStatsDumperGeneric; | |
1909 partitionDumpStatsGeneric(genericAllocator.root(), "mock_generic_all
ocator", false /* detailed dump */, &mockStatsDumperGeneric); | |
1910 EXPECT_TRUE(mockStatsDumperGeneric.IsMemoryAllocationRecorded()); | |
1911 | |
1912 const PartitionBucketMemoryStats* stats = mockStatsDumperGeneric.Get
BucketStats(kSystemPageSize); | |
1913 EXPECT_TRUE(stats); | |
1914 EXPECT_TRUE(stats->isValid); | |
1915 EXPECT_EQ(0u, stats->decommittableBytes); | |
1916 EXPECT_EQ(2 * kSystemPageSize, stats->discardableBytes); | |
1917 EXPECT_EQ(2 * kSystemPageSize, stats->activeBytes); | |
1918 EXPECT_EQ(4 * kSystemPageSize, stats->residentBytes); | |
1919 } | |
1920 CheckPageInCore(ptr1 - kPointerOffset, true); | |
1921 CheckPageInCore(ptr1 - kPointerOffset + kSystemPageSize, true); | |
1922 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 2), true); | |
1923 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 3), true); | |
1924 partitionPurgeMemoryGeneric(genericAllocator.root(), PartitionPurgeDisca
rdUnusedSystemPages); | |
1925 EXPECT_EQ(2u, page->numUnprovisionedSlots); | |
1926 CheckPageInCore(ptr1 - kPointerOffset, true); | |
1927 CheckPageInCore(ptr1 - kPointerOffset + kSystemPageSize, true); | |
1928 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 2), false); | |
1929 CheckPageInCore(ptr1 - kPointerOffset + (kSystemPageSize * 3), false); | |
1930 | |
1931 EXPECT_FALSE(page->freelistHead); | |
1932 | |
1933 partitionFreeGeneric(genericAllocator.root(), ptr1); | |
1934 partitionFreeGeneric(genericAllocator.root(), ptr2); | |
1935 } | |
1936 | |
1937 TestShutdown(); | |
1938 } | |
1939 | |
1940 // Tests that the countLeadingZeros() functions work to our satisfaction. | |
1941 // It doesn't seem worth the overhead of a whole new file for these tests, so | |
1942 // we'll put them here since partitionAllocGeneric will depend heavily on these | |
1943 // functions working correctly. | |
1944 TEST(PartitionAllocTest, CLZWorks) | |
1945 { | |
1946 EXPECT_EQ(32u, countLeadingZeros32(0u)); | |
1947 EXPECT_EQ(31u, countLeadingZeros32(1u)); | |
1948 EXPECT_EQ(1u, countLeadingZeros32(1u << 30)); | |
1949 EXPECT_EQ(0u, countLeadingZeros32(1u << 31)); | |
1950 | |
1951 #if CPU(64BIT) | |
1952 EXPECT_EQ(64u, countLeadingZerosSizet(0ull)); | |
1953 EXPECT_EQ(63u, countLeadingZerosSizet(1ull)); | |
1954 EXPECT_EQ(32u, countLeadingZerosSizet(1ull << 31)); | |
1955 EXPECT_EQ(1u, countLeadingZerosSizet(1ull << 62)); | |
1956 EXPECT_EQ(0u, countLeadingZerosSizet(1ull << 63)); | |
1957 #else | |
1958 EXPECT_EQ(32u, countLeadingZerosSizet(0u)); | |
1959 EXPECT_EQ(31u, countLeadingZerosSizet(1u)); | |
1960 EXPECT_EQ(1u, countLeadingZerosSizet(1u << 30)); | |
1961 EXPECT_EQ(0u, countLeadingZerosSizet(1u << 31)); | |
1962 #endif | |
1963 } | |
1964 | |
1965 } // namespace WTF | |
1966 | |
1967 #endif // !defined(MEMORY_TOOL_REPLACES_ALLOCATOR) | |
OLD | NEW |