Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(260)

Side by Side Diff: src/compiler/code-stub-assembler.cc

Issue 1875583003: Separate CodeAssembler and CodeStubAssembler (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Fix gn build. Again. Created 4 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/compiler/code-stub-assembler.h ('k') | src/fast-accessor-assembler.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/compiler/code-stub-assembler.h"
6
7 #include <ostream>
8
9 #include "src/code-factory.h"
10 #include "src/compiler/graph.h"
11 #include "src/compiler/instruction-selector.h"
12 #include "src/compiler/linkage.h"
13 #include "src/compiler/pipeline.h"
14 #include "src/compiler/raw-machine-assembler.h"
15 #include "src/compiler/schedule.h"
16 #include "src/frames.h"
17 #include "src/interface-descriptors.h"
18 #include "src/interpreter/bytecodes.h"
19 #include "src/machine-type.h"
20 #include "src/macro-assembler.h"
21 #include "src/zone.h"
22
23 namespace v8 {
24 namespace internal {
25 namespace compiler {
26
27 CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
28 const CallInterfaceDescriptor& descriptor,
29 Code::Flags flags, const char* name,
30 size_t result_size)
31 : CodeStubAssembler(
32 isolate, zone,
33 Linkage::GetStubCallDescriptor(
34 isolate, zone, descriptor, descriptor.GetStackParameterCount(),
35 CallDescriptor::kNoFlags, Operator::kNoProperties,
36 MachineType::AnyTagged(), result_size),
37 flags, name) {}
38
39 CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
40 int parameter_count, Code::Flags flags,
41 const char* name)
42 : CodeStubAssembler(isolate, zone, Linkage::GetJSCallDescriptor(
43 zone, false, parameter_count,
44 CallDescriptor::kNoFlags),
45 flags, name) {}
46
47 CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
48 CallDescriptor* call_descriptor,
49 Code::Flags flags, const char* name)
50 : raw_assembler_(new RawMachineAssembler(
51 isolate, new (zone) Graph(zone), call_descriptor,
52 MachineType::PointerRepresentation(),
53 InstructionSelector::SupportedMachineOperatorFlags())),
54 flags_(flags),
55 name_(name),
56 code_generated_(false),
57 variables_(zone) {}
58
59 CodeStubAssembler::~CodeStubAssembler() {}
60
61 void CodeStubAssembler::CallPrologue() {}
62
63 void CodeStubAssembler::CallEpilogue() {}
64
65 Handle<Code> CodeStubAssembler::GenerateCode() {
66 DCHECK(!code_generated_);
67
68 Schedule* schedule = raw_assembler_->Export();
69 Handle<Code> code = Pipeline::GenerateCodeForCodeStub(
70 isolate(), raw_assembler_->call_descriptor(), graph(), schedule, flags_,
71 name_);
72
73 code_generated_ = true;
74 return code;
75 }
76
77
78 Node* CodeStubAssembler::Int32Constant(int value) {
79 return raw_assembler_->Int32Constant(value);
80 }
81
82
83 Node* CodeStubAssembler::IntPtrConstant(intptr_t value) {
84 return raw_assembler_->IntPtrConstant(value);
85 }
86
87
88 Node* CodeStubAssembler::NumberConstant(double value) {
89 return raw_assembler_->NumberConstant(value);
90 }
91
92 Node* CodeStubAssembler::SmiConstant(Smi* value) {
93 return IntPtrConstant(bit_cast<intptr_t>(value));
94 }
95
96 Node* CodeStubAssembler::HeapConstant(Handle<HeapObject> object) {
97 return raw_assembler_->HeapConstant(object);
98 }
99
100
101 Node* CodeStubAssembler::BooleanConstant(bool value) {
102 return raw_assembler_->BooleanConstant(value);
103 }
104
105 Node* CodeStubAssembler::ExternalConstant(ExternalReference address) {
106 return raw_assembler_->ExternalConstant(address);
107 }
108
109 Node* CodeStubAssembler::Float64Constant(double value) {
110 return raw_assembler_->Float64Constant(value);
111 }
112
113 Node* CodeStubAssembler::BooleanMapConstant() {
114 return HeapConstant(isolate()->factory()->boolean_map());
115 }
116
117 Node* CodeStubAssembler::EmptyStringConstant() {
118 return LoadRoot(Heap::kempty_stringRootIndex);
119 }
120
121 Node* CodeStubAssembler::HeapNumberMapConstant() {
122 return HeapConstant(isolate()->factory()->heap_number_map());
123 }
124
125 Node* CodeStubAssembler::NaNConstant() {
126 return LoadRoot(Heap::kNanValueRootIndex);
127 }
128
129 Node* CodeStubAssembler::NoContextConstant() {
130 return SmiConstant(Smi::FromInt(0));
131 }
132
133 Node* CodeStubAssembler::NullConstant() {
134 return LoadRoot(Heap::kNullValueRootIndex);
135 }
136
137 Node* CodeStubAssembler::UndefinedConstant() {
138 return LoadRoot(Heap::kUndefinedValueRootIndex);
139 }
140
141 Node* CodeStubAssembler::Parameter(int value) {
142 return raw_assembler_->Parameter(value);
143 }
144
145 void CodeStubAssembler::Return(Node* value) {
146 return raw_assembler_->Return(value);
147 }
148
149 void CodeStubAssembler::Bind(CodeStubAssembler::Label* label) {
150 return label->Bind();
151 }
152
153 Node* CodeStubAssembler::LoadFramePointer() {
154 return raw_assembler_->LoadFramePointer();
155 }
156
157 Node* CodeStubAssembler::LoadParentFramePointer() {
158 return raw_assembler_->LoadParentFramePointer();
159 }
160
161 Node* CodeStubAssembler::LoadStackPointer() {
162 return raw_assembler_->LoadStackPointer();
163 }
164
165 Node* CodeStubAssembler::SmiShiftBitsConstant() {
166 return IntPtrConstant(kSmiShiftSize + kSmiTagSize);
167 }
168
169 Node* CodeStubAssembler::Float64Round(Node* x) {
170 Node* one = Float64Constant(1.0);
171 Node* one_half = Float64Constant(0.5);
172
173 Variable var_x(this, MachineRepresentation::kFloat64);
174 Label return_x(this);
175
176 // Round up {x} towards Infinity.
177 var_x.Bind(Float64Ceil(x));
178
179 GotoIf(Float64LessThanOrEqual(Float64Sub(var_x.value(), one_half), x),
180 &return_x);
181 var_x.Bind(Float64Sub(var_x.value(), one));
182 Goto(&return_x);
183
184 Bind(&return_x);
185 return var_x.value();
186 }
187
188 Node* CodeStubAssembler::Float64Ceil(Node* x) {
189 if (raw_assembler_->machine()->Float64RoundUp().IsSupported()) {
190 return raw_assembler_->Float64RoundUp(x);
191 }
192
193 Node* one = Float64Constant(1.0);
194 Node* zero = Float64Constant(0.0);
195 Node* two_52 = Float64Constant(4503599627370496.0E0);
196 Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
197
198 Variable var_x(this, MachineRepresentation::kFloat64);
199 Label return_x(this), return_minus_x(this);
200 var_x.Bind(x);
201
202 // Check if {x} is greater than zero.
203 Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
204 Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
205 &if_xnotgreaterthanzero);
206
207 Bind(&if_xgreaterthanzero);
208 {
209 // Just return {x} unless it's in the range ]0,2^52[.
210 GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
211
212 // Round positive {x} towards Infinity.
213 var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
214 GotoUnless(Float64LessThan(var_x.value(), x), &return_x);
215 var_x.Bind(Float64Add(var_x.value(), one));
216 Goto(&return_x);
217 }
218
219 Bind(&if_xnotgreaterthanzero);
220 {
221 // Just return {x} unless it's in the range ]-2^52,0[
222 GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
223 GotoUnless(Float64LessThan(x, zero), &return_x);
224
225 // Round negated {x} towards Infinity and return the result negated.
226 Node* minus_x = Float64Neg(x);
227 var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
228 GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
229 var_x.Bind(Float64Sub(var_x.value(), one));
230 Goto(&return_minus_x);
231 }
232
233 Bind(&return_minus_x);
234 var_x.Bind(Float64Neg(var_x.value()));
235 Goto(&return_x);
236
237 Bind(&return_x);
238 return var_x.value();
239 }
240
241 Node* CodeStubAssembler::Float64Floor(Node* x) {
242 if (raw_assembler_->machine()->Float64RoundDown().IsSupported()) {
243 return raw_assembler_->Float64RoundDown(x);
244 }
245
246 Node* one = Float64Constant(1.0);
247 Node* zero = Float64Constant(0.0);
248 Node* two_52 = Float64Constant(4503599627370496.0E0);
249 Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
250
251 Variable var_x(this, MachineRepresentation::kFloat64);
252 Label return_x(this), return_minus_x(this);
253 var_x.Bind(x);
254
255 // Check if {x} is greater than zero.
256 Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
257 Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
258 &if_xnotgreaterthanzero);
259
260 Bind(&if_xgreaterthanzero);
261 {
262 // Just return {x} unless it's in the range ]0,2^52[.
263 GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
264
265 // Round positive {x} towards -Infinity.
266 var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
267 GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x);
268 var_x.Bind(Float64Sub(var_x.value(), one));
269 Goto(&return_x);
270 }
271
272 Bind(&if_xnotgreaterthanzero);
273 {
274 // Just return {x} unless it's in the range ]-2^52,0[
275 GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
276 GotoUnless(Float64LessThan(x, zero), &return_x);
277
278 // Round negated {x} towards -Infinity and return the result negated.
279 Node* minus_x = Float64Neg(x);
280 var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
281 GotoUnless(Float64LessThan(var_x.value(), minus_x), &return_minus_x);
282 var_x.Bind(Float64Add(var_x.value(), one));
283 Goto(&return_minus_x);
284 }
285
286 Bind(&return_minus_x);
287 var_x.Bind(Float64Neg(var_x.value()));
288 Goto(&return_x);
289
290 Bind(&return_x);
291 return var_x.value();
292 }
293
294 Node* CodeStubAssembler::Float64Trunc(Node* x) {
295 if (raw_assembler_->machine()->Float64RoundTruncate().IsSupported()) {
296 return raw_assembler_->Float64RoundTruncate(x);
297 }
298
299 Node* one = Float64Constant(1.0);
300 Node* zero = Float64Constant(0.0);
301 Node* two_52 = Float64Constant(4503599627370496.0E0);
302 Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
303
304 Variable var_x(this, MachineRepresentation::kFloat64);
305 Label return_x(this), return_minus_x(this);
306 var_x.Bind(x);
307
308 // Check if {x} is greater than 0.
309 Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
310 Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
311 &if_xnotgreaterthanzero);
312
313 Bind(&if_xgreaterthanzero);
314 {
315 if (raw_assembler_->machine()->Float64RoundDown().IsSupported()) {
316 var_x.Bind(raw_assembler_->Float64RoundDown(x));
317 } else {
318 // Just return {x} unless it's in the range ]0,2^52[.
319 GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
320
321 // Round positive {x} towards -Infinity.
322 var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
323 GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x);
324 var_x.Bind(Float64Sub(var_x.value(), one));
325 }
326 Goto(&return_x);
327 }
328
329 Bind(&if_xnotgreaterthanzero);
330 {
331 if (raw_assembler_->machine()->Float64RoundUp().IsSupported()) {
332 var_x.Bind(raw_assembler_->Float64RoundUp(x));
333 Goto(&return_x);
334 } else {
335 // Just return {x} unless its in the range ]-2^52,0[.
336 GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
337 GotoUnless(Float64LessThan(x, zero), &return_x);
338
339 // Round negated {x} towards -Infinity and return result negated.
340 Node* minus_x = Float64Neg(x);
341 var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
342 GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
343 var_x.Bind(Float64Sub(var_x.value(), one));
344 Goto(&return_minus_x);
345 }
346 }
347
348 Bind(&return_minus_x);
349 var_x.Bind(Float64Neg(var_x.value()));
350 Goto(&return_x);
351
352 Bind(&return_x);
353 return var_x.value();
354 }
355
356 Node* CodeStubAssembler::SmiTag(Node* value) {
357 return raw_assembler_->WordShl(value, SmiShiftBitsConstant());
358 }
359
360 Node* CodeStubAssembler::SmiUntag(Node* value) {
361 return raw_assembler_->WordSar(value, SmiShiftBitsConstant());
362 }
363
364 Node* CodeStubAssembler::SmiFromWord32(Node* value) {
365 if (raw_assembler_->machine()->Is64()) {
366 value = raw_assembler_->ChangeInt32ToInt64(value);
367 }
368 return raw_assembler_->WordShl(value, SmiShiftBitsConstant());
369 }
370
371 Node* CodeStubAssembler::SmiToWord32(Node* value) {
372 Node* result = raw_assembler_->WordSar(value, SmiShiftBitsConstant());
373 if (raw_assembler_->machine()->Is64()) {
374 result = raw_assembler_->TruncateInt64ToInt32(result);
375 }
376 return result;
377 }
378
379 Node* CodeStubAssembler::SmiToFloat64(Node* value) {
380 return ChangeInt32ToFloat64(SmiUntag(value));
381 }
382
383 Node* CodeStubAssembler::SmiAdd(Node* a, Node* b) { return IntPtrAdd(a, b); }
384
385 Node* CodeStubAssembler::SmiAddWithOverflow(Node* a, Node* b) {
386 return IntPtrAddWithOverflow(a, b);
387 }
388
389 Node* CodeStubAssembler::SmiSub(Node* a, Node* b) { return IntPtrSub(a, b); }
390
391 Node* CodeStubAssembler::SmiSubWithOverflow(Node* a, Node* b) {
392 return IntPtrSubWithOverflow(a, b);
393 }
394
395 Node* CodeStubAssembler::SmiEqual(Node* a, Node* b) { return WordEqual(a, b); }
396
397 Node* CodeStubAssembler::SmiAboveOrEqual(Node* a, Node* b) {
398 return UintPtrGreaterThanOrEqual(a, b);
399 }
400
401 Node* CodeStubAssembler::SmiLessThan(Node* a, Node* b) {
402 return IntPtrLessThan(a, b);
403 }
404
405 Node* CodeStubAssembler::SmiLessThanOrEqual(Node* a, Node* b) {
406 return IntPtrLessThanOrEqual(a, b);
407 }
408
409 Node* CodeStubAssembler::SmiMin(Node* a, Node* b) {
410 // TODO(bmeurer): Consider using Select once available.
411 Variable min(this, MachineRepresentation::kTagged);
412 Label if_a(this), if_b(this), join(this);
413 BranchIfSmiLessThan(a, b, &if_a, &if_b);
414 Bind(&if_a);
415 min.Bind(a);
416 Goto(&join);
417 Bind(&if_b);
418 min.Bind(b);
419 Goto(&join);
420 Bind(&join);
421 return min.value();
422 }
423
424 #define DEFINE_CODE_STUB_ASSEMBER_BINARY_OP(name) \
425 Node* CodeStubAssembler::name(Node* a, Node* b) { \
426 return raw_assembler_->name(a, b); \
427 }
428 CODE_STUB_ASSEMBLER_BINARY_OP_LIST(DEFINE_CODE_STUB_ASSEMBER_BINARY_OP)
429 #undef DEFINE_CODE_STUB_ASSEMBER_BINARY_OP
430
431 Node* CodeStubAssembler::WordShl(Node* value, int shift) {
432 return raw_assembler_->WordShl(value, IntPtrConstant(shift));
433 }
434
435 #define DEFINE_CODE_STUB_ASSEMBER_UNARY_OP(name) \
436 Node* CodeStubAssembler::name(Node* a) { return raw_assembler_->name(a); }
437 CODE_STUB_ASSEMBLER_UNARY_OP_LIST(DEFINE_CODE_STUB_ASSEMBER_UNARY_OP)
438 #undef DEFINE_CODE_STUB_ASSEMBER_UNARY_OP
439
440 Node* CodeStubAssembler::WordIsSmi(Node* a) {
441 return WordEqual(raw_assembler_->WordAnd(a, IntPtrConstant(kSmiTagMask)),
442 IntPtrConstant(0));
443 }
444
445 Node* CodeStubAssembler::WordIsPositiveSmi(Node* a) {
446 return WordEqual(
447 raw_assembler_->WordAnd(a, IntPtrConstant(kSmiTagMask | kSmiSignMask)),
448 IntPtrConstant(0));
449 }
450
451 Node* CodeStubAssembler::LoadBufferObject(Node* buffer, int offset,
452 MachineType rep) {
453 return raw_assembler_->Load(rep, buffer, IntPtrConstant(offset));
454 }
455
456 Node* CodeStubAssembler::LoadObjectField(Node* object, int offset,
457 MachineType rep) {
458 return raw_assembler_->Load(rep, object,
459 IntPtrConstant(offset - kHeapObjectTag));
460 }
461
462 Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier(
463 Node* object, int offset, Node* value, MachineRepresentation rep) {
464 return StoreNoWriteBarrier(rep, object,
465 IntPtrConstant(offset - kHeapObjectTag), value);
466 }
467
468 Node* CodeStubAssembler::LoadHeapNumberValue(Node* object) {
469 return Load(MachineType::Float64(), object,
470 IntPtrConstant(HeapNumber::kValueOffset - kHeapObjectTag));
471 }
472
473 Node* CodeStubAssembler::StoreHeapNumberValue(Node* object, Node* value) {
474 return StoreNoWriteBarrier(
475 MachineRepresentation::kFloat64, object,
476 IntPtrConstant(HeapNumber::kValueOffset - kHeapObjectTag), value);
477 }
478
479 Node* CodeStubAssembler::TruncateHeapNumberValueToWord32(Node* object) {
480 Node* value = LoadHeapNumberValue(object);
481 return raw_assembler_->TruncateFloat64ToInt32(TruncationMode::kJavaScript,
482 value);
483 }
484
485 Node* CodeStubAssembler::LoadMapBitField(Node* map) {
486 return Load(MachineType::Uint8(), map,
487 IntPtrConstant(Map::kBitFieldOffset - kHeapObjectTag));
488 }
489
490 Node* CodeStubAssembler::LoadMapBitField2(Node* map) {
491 return Load(MachineType::Uint8(), map,
492 IntPtrConstant(Map::kBitField2Offset - kHeapObjectTag));
493 }
494
495 Node* CodeStubAssembler::LoadMapBitField3(Node* map) {
496 return Load(MachineType::Uint32(), map,
497 IntPtrConstant(Map::kBitField3Offset - kHeapObjectTag));
498 }
499
500 Node* CodeStubAssembler::LoadMapInstanceType(Node* map) {
501 return Load(MachineType::Uint8(), map,
502 IntPtrConstant(Map::kInstanceTypeOffset - kHeapObjectTag));
503 }
504
505 Node* CodeStubAssembler::LoadMapDescriptors(Node* map) {
506 return LoadObjectField(map, Map::kDescriptorsOffset);
507 }
508
509 Node* CodeStubAssembler::LoadNameHash(Node* name) {
510 return Load(MachineType::Uint32(), name,
511 IntPtrConstant(Name::kHashFieldOffset - kHeapObjectTag));
512 }
513
514 Node* CodeStubAssembler::LoadFixedArrayElementInt32Index(
515 Node* object, Node* index, int additional_offset) {
516 Node* header_size = IntPtrConstant(additional_offset +
517 FixedArray::kHeaderSize - kHeapObjectTag);
518 if (raw_assembler_->machine()->Is64()) {
519 index = ChangeInt32ToInt64(index);
520 }
521 Node* scaled_index = WordShl(index, IntPtrConstant(kPointerSizeLog2));
522 Node* offset = IntPtrAdd(scaled_index, header_size);
523 return Load(MachineType::AnyTagged(), object, offset);
524 }
525
526 Node* CodeStubAssembler::LoadMapInstanceSize(Node* map) {
527 return Load(MachineType::Uint8(), map,
528 IntPtrConstant(Map::kInstanceSizeOffset - kHeapObjectTag));
529 }
530
531 Node* CodeStubAssembler::LoadFixedArrayElementSmiIndex(Node* object,
532 Node* smi_index,
533 int additional_offset) {
534 int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize;
535 Node* header_size = IntPtrConstant(additional_offset +
536 FixedArray::kHeaderSize - kHeapObjectTag);
537 Node* scaled_index =
538 (kSmiShiftBits > kPointerSizeLog2)
539 ? WordSar(smi_index, IntPtrConstant(kSmiShiftBits - kPointerSizeLog2))
540 : WordShl(smi_index,
541 IntPtrConstant(kPointerSizeLog2 - kSmiShiftBits));
542 Node* offset = IntPtrAdd(scaled_index, header_size);
543 return Load(MachineType::AnyTagged(), object, offset);
544 }
545
546 Node* CodeStubAssembler::LoadFixedArrayElementConstantIndex(Node* object,
547 int index) {
548 Node* offset = IntPtrConstant(FixedArray::kHeaderSize - kHeapObjectTag +
549 index * kPointerSize);
550 return raw_assembler_->Load(MachineType::AnyTagged(), object, offset);
551 }
552
553 Node* CodeStubAssembler::StoreFixedArrayElementNoWriteBarrier(Node* object,
554 Node* index,
555 Node* value) {
556 Node* offset =
557 IntPtrAdd(WordShl(index, IntPtrConstant(kPointerSizeLog2)),
558 IntPtrConstant(FixedArray::kHeaderSize - kHeapObjectTag));
559 return StoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset,
560 value);
561 }
562
563 Node* CodeStubAssembler::StoreFixedArrayElementInt32Index(Node* object,
564 Node* index,
565 Node* value) {
566 if (raw_assembler_->machine()->Is64()) {
567 index = ChangeInt32ToInt64(index);
568 }
569 Node* offset =
570 IntPtrAdd(WordShl(index, IntPtrConstant(kPointerSizeLog2)),
571 IntPtrConstant(FixedArray::kHeaderSize - kHeapObjectTag));
572 return Store(MachineRepresentation::kTagged, object, offset, value);
573 }
574
575 Node* CodeStubAssembler::LoadRoot(Heap::RootListIndex root_index) {
576 if (isolate()->heap()->RootCanBeTreatedAsConstant(root_index)) {
577 Handle<Object> root = isolate()->heap()->root_handle(root_index);
578 if (root->IsSmi()) {
579 return SmiConstant(Smi::cast(*root));
580 } else {
581 return HeapConstant(Handle<HeapObject>::cast(root));
582 }
583 }
584
585 compiler::Node* roots_array_start =
586 ExternalConstant(ExternalReference::roots_array_start(isolate()));
587 USE(roots_array_start);
588
589 // TODO(danno): Implement thee root-access case where the root is not constant
590 // and must be loaded from the root array.
591 UNIMPLEMENTED();
592 return nullptr;
593 }
594
595 Node* CodeStubAssembler::AllocateRawUnaligned(Node* size_in_bytes,
596 AllocationFlags flags,
597 Node* top_address,
598 Node* limit_address) {
599 Node* top = Load(MachineType::Pointer(), top_address);
600 Node* limit = Load(MachineType::Pointer(), limit_address);
601
602 // If there's not enough space, call the runtime.
603 RawMachineLabel runtime_call(RawMachineLabel::kDeferred), no_runtime_call,
604 merge_runtime;
605 raw_assembler_->Branch(
606 raw_assembler_->IntPtrLessThan(IntPtrSub(limit, top), size_in_bytes),
607 &runtime_call, &no_runtime_call);
608
609 raw_assembler_->Bind(&runtime_call);
610 // AllocateInTargetSpace does not use the context.
611 Node* context = IntPtrConstant(0);
612 Node* runtime_flags = SmiTag(Int32Constant(
613 AllocateDoubleAlignFlag::encode(false) |
614 AllocateTargetSpace::encode(flags & kPretenured
615 ? AllocationSpace::OLD_SPACE
616 : AllocationSpace::NEW_SPACE)));
617 Node* runtime_result = CallRuntime(Runtime::kAllocateInTargetSpace, context,
618 SmiTag(size_in_bytes), runtime_flags);
619 raw_assembler_->Goto(&merge_runtime);
620
621 // When there is enough space, return `top' and bump it up.
622 raw_assembler_->Bind(&no_runtime_call);
623 Node* no_runtime_result = top;
624 StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
625 IntPtrAdd(top, size_in_bytes));
626 no_runtime_result =
627 IntPtrAdd(no_runtime_result, IntPtrConstant(kHeapObjectTag));
628 raw_assembler_->Goto(&merge_runtime);
629
630 raw_assembler_->Bind(&merge_runtime);
631 return raw_assembler_->Phi(MachineType::PointerRepresentation(),
632 runtime_result, no_runtime_result);
633 }
634
635 Node* CodeStubAssembler::AllocateRawAligned(Node* size_in_bytes,
636 AllocationFlags flags,
637 Node* top_address,
638 Node* limit_address) {
639 Node* top = Load(MachineType::Pointer(), top_address);
640 Node* limit = Load(MachineType::Pointer(), limit_address);
641 Node* adjusted_size = size_in_bytes;
642 if (flags & kDoubleAlignment) {
643 // TODO(epertoso): Simd128 alignment.
644 RawMachineLabel aligned, not_aligned, merge;
645 raw_assembler_->Branch(WordAnd(top, IntPtrConstant(kDoubleAlignmentMask)),
646 &not_aligned, &aligned);
647
648 raw_assembler_->Bind(&not_aligned);
649 Node* not_aligned_size =
650 IntPtrAdd(size_in_bytes, IntPtrConstant(kPointerSize));
651 raw_assembler_->Goto(&merge);
652
653 raw_assembler_->Bind(&aligned);
654 raw_assembler_->Goto(&merge);
655
656 raw_assembler_->Bind(&merge);
657 adjusted_size = raw_assembler_->Phi(MachineType::PointerRepresentation(),
658 not_aligned_size, adjusted_size);
659 }
660
661 Node* address = AllocateRawUnaligned(adjusted_size, kNone, top, limit);
662
663 RawMachineLabel needs_filler, doesnt_need_filler, merge_address;
664 raw_assembler_->Branch(
665 raw_assembler_->IntPtrEqual(adjusted_size, size_in_bytes),
666 &doesnt_need_filler, &needs_filler);
667
668 raw_assembler_->Bind(&needs_filler);
669 // Store a filler and increase the address by kPointerSize.
670 // TODO(epertoso): this code assumes that we only align to kDoubleSize. Change
671 // it when Simd128 alignment is supported.
672 StoreNoWriteBarrier(MachineType::PointerRepresentation(), top,
673 LoadRoot(Heap::kOnePointerFillerMapRootIndex));
674 Node* address_with_filler = IntPtrAdd(address, IntPtrConstant(kPointerSize));
675 raw_assembler_->Goto(&merge_address);
676
677 raw_assembler_->Bind(&doesnt_need_filler);
678 Node* address_without_filler = address;
679 raw_assembler_->Goto(&merge_address);
680
681 raw_assembler_->Bind(&merge_address);
682 address = raw_assembler_->Phi(MachineType::PointerRepresentation(),
683 address_with_filler, address_without_filler);
684 // Update the top.
685 StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
686 IntPtrAdd(top, adjusted_size));
687 return address;
688 }
689
690 Node* CodeStubAssembler::Allocate(int size_in_bytes, AllocationFlags flags) {
691 bool const new_space = !(flags & kPretenured);
692 Node* top_address = ExternalConstant(
693 new_space
694 ? ExternalReference::new_space_allocation_top_address(isolate())
695 : ExternalReference::old_space_allocation_top_address(isolate()));
696 Node* limit_address = ExternalConstant(
697 new_space
698 ? ExternalReference::new_space_allocation_limit_address(isolate())
699 : ExternalReference::old_space_allocation_limit_address(isolate()));
700
701 #ifdef V8_HOST_ARCH_32_BIT
702 if (flags & kDoubleAlignment) {
703 return AllocateRawAligned(IntPtrConstant(size_in_bytes), flags, top_address,
704 limit_address);
705 }
706 #endif
707
708 return AllocateRawUnaligned(IntPtrConstant(size_in_bytes), flags, top_address,
709 limit_address);
710 }
711
712 Node* CodeStubAssembler::InnerAllocate(Node* previous, int offset) {
713 return IntPtrAdd(previous, IntPtrConstant(offset));
714 }
715
716 Node* CodeStubAssembler::AllocateHeapNumber() {
717 Node* result = Allocate(HeapNumber::kSize, kNone);
718 StoreMapNoWriteBarrier(result, HeapNumberMapConstant());
719 return result;
720 }
721
722 Node* CodeStubAssembler::AllocateHeapNumberWithValue(Node* value) {
723 Node* result = AllocateHeapNumber();
724 StoreHeapNumberValue(result, value);
725 return result;
726 }
727
728 Node* CodeStubAssembler::AllocateSeqOneByteString(int length) {
729 Node* result = Allocate(SeqOneByteString::SizeFor(length));
730 StoreMapNoWriteBarrier(result, LoadRoot(Heap::kOneByteStringMapRootIndex));
731 StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset,
732 SmiConstant(Smi::FromInt(length)));
733 StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset,
734 IntPtrConstant(String::kEmptyHashField));
735 return result;
736 }
737
738 Node* CodeStubAssembler::AllocateSeqTwoByteString(int length) {
739 Node* result = Allocate(SeqTwoByteString::SizeFor(length));
740 StoreMapNoWriteBarrier(result, LoadRoot(Heap::kStringMapRootIndex));
741 StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset,
742 SmiConstant(Smi::FromInt(length)));
743 StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset,
744 IntPtrConstant(String::kEmptyHashField));
745 return result;
746 }
747
748 Node* CodeStubAssembler::Load(MachineType rep, Node* base) {
749 return raw_assembler_->Load(rep, base);
750 }
751
752 Node* CodeStubAssembler::Load(MachineType rep, Node* base, Node* index) {
753 return raw_assembler_->Load(rep, base, index);
754 }
755
756 Node* CodeStubAssembler::Store(MachineRepresentation rep, Node* base,
757 Node* value) {
758 return raw_assembler_->Store(rep, base, value, kFullWriteBarrier);
759 }
760
761 Node* CodeStubAssembler::Store(MachineRepresentation rep, Node* base,
762 Node* index, Node* value) {
763 return raw_assembler_->Store(rep, base, index, value, kFullWriteBarrier);
764 }
765
766 Node* CodeStubAssembler::StoreNoWriteBarrier(MachineRepresentation rep,
767 Node* base, Node* value) {
768 return raw_assembler_->Store(rep, base, value, kNoWriteBarrier);
769 }
770
771 Node* CodeStubAssembler::StoreNoWriteBarrier(MachineRepresentation rep,
772 Node* base, Node* index,
773 Node* value) {
774 return raw_assembler_->Store(rep, base, index, value, kNoWriteBarrier);
775 }
776
777 Node* CodeStubAssembler::Projection(int index, Node* value) {
778 return raw_assembler_->Projection(index, value);
779 }
780
781 Node* CodeStubAssembler::LoadMap(Node* object) {
782 return LoadObjectField(object, HeapObject::kMapOffset);
783 }
784
785 Node* CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, Node* map) {
786 return StoreNoWriteBarrier(
787 MachineRepresentation::kTagged, object,
788 IntPtrConstant(HeapNumber::kMapOffset - kHeapObjectTag), map);
789 }
790
791 Node* CodeStubAssembler::LoadInstanceType(Node* object) {
792 return LoadMapInstanceType(LoadMap(object));
793 }
794
795 Node* CodeStubAssembler::LoadElements(Node* object) {
796 return LoadObjectField(object, JSObject::kElementsOffset);
797 }
798
799 Node* CodeStubAssembler::LoadFixedArrayBaseLength(Node* array) {
800 return LoadObjectField(array, FixedArrayBase::kLengthOffset);
801 }
802
803 Node* CodeStubAssembler::BitFieldDecode(Node* word32, uint32_t shift,
804 uint32_t mask) {
805 return raw_assembler_->Word32Shr(
806 raw_assembler_->Word32And(word32, raw_assembler_->Int32Constant(mask)),
807 raw_assembler_->Int32Constant(shift));
808 }
809
810 Node* CodeStubAssembler::ChangeFloat64ToTagged(Node* value) {
811 Node* value32 = raw_assembler_->TruncateFloat64ToInt32(
812 TruncationMode::kRoundToZero, value);
813 Node* value64 = ChangeInt32ToFloat64(value32);
814
815 Label if_valueisint32(this), if_valueisheapnumber(this), if_join(this);
816
817 Label if_valueisequal(this), if_valueisnotequal(this);
818 Branch(Float64Equal(value, value64), &if_valueisequal, &if_valueisnotequal);
819 Bind(&if_valueisequal);
820 {
821 Label if_valueiszero(this), if_valueisnotzero(this);
822 Branch(Float64Equal(value, Float64Constant(0.0)), &if_valueiszero,
823 &if_valueisnotzero);
824
825 Bind(&if_valueiszero);
826 BranchIfInt32LessThan(raw_assembler_->Float64ExtractHighWord32(value),
827 Int32Constant(0), &if_valueisheapnumber,
828 &if_valueisint32);
829
830 Bind(&if_valueisnotzero);
831 Goto(&if_valueisint32);
832 }
833 Bind(&if_valueisnotequal);
834 Goto(&if_valueisheapnumber);
835
836 Variable var_result(this, MachineRepresentation::kTagged);
837 Bind(&if_valueisint32);
838 {
839 if (raw_assembler_->machine()->Is64()) {
840 Node* result = SmiTag(ChangeInt32ToInt64(value32));
841 var_result.Bind(result);
842 Goto(&if_join);
843 } else {
844 Node* pair = Int32AddWithOverflow(value32, value32);
845 Node* overflow = Projection(1, pair);
846 Label if_overflow(this, Label::kDeferred), if_notoverflow(this);
847 Branch(overflow, &if_overflow, &if_notoverflow);
848 Bind(&if_overflow);
849 Goto(&if_valueisheapnumber);
850 Bind(&if_notoverflow);
851 {
852 Node* result = Projection(0, pair);
853 var_result.Bind(result);
854 Goto(&if_join);
855 }
856 }
857 }
858 Bind(&if_valueisheapnumber);
859 {
860 Node* result = AllocateHeapNumberWithValue(value);
861 var_result.Bind(result);
862 Goto(&if_join);
863 }
864 Bind(&if_join);
865 return var_result.value();
866 }
867
868 Node* CodeStubAssembler::ChangeInt32ToTagged(Node* value) {
869 if (raw_assembler_->machine()->Is64()) {
870 return SmiTag(ChangeInt32ToInt64(value));
871 }
872 Variable var_result(this, MachineRepresentation::kTagged);
873 Node* pair = Int32AddWithOverflow(value, value);
874 Node* overflow = Projection(1, pair);
875 Label if_overflow(this, Label::kDeferred), if_notoverflow(this),
876 if_join(this);
877 Branch(overflow, &if_overflow, &if_notoverflow);
878 Bind(&if_overflow);
879 {
880 Node* value64 = ChangeInt32ToFloat64(value);
881 Node* result = AllocateHeapNumberWithValue(value64);
882 var_result.Bind(result);
883 }
884 Goto(&if_join);
885 Bind(&if_notoverflow);
886 {
887 Node* result = Projection(0, pair);
888 var_result.Bind(result);
889 }
890 Goto(&if_join);
891 Bind(&if_join);
892 return var_result.value();
893 }
894
895 Node* CodeStubAssembler::ChangeUint32ToTagged(Node* value) {
896 Label if_overflow(this, Label::kDeferred), if_not_overflow(this),
897 if_join(this);
898 Variable var_result(this, MachineRepresentation::kTagged);
899 // If {value} > 2^31 - 1, we need to store it in a HeapNumber.
900 Branch(Int32LessThan(value, Int32Constant(0)), &if_overflow,
901 &if_not_overflow);
902 Bind(&if_not_overflow);
903 {
904 if (raw_assembler_->machine()->Is64()) {
905 var_result.Bind(SmiTag(ChangeUint32ToUint64(value)));
906 } else {
907 // If tagging {value} results in an overflow, we need to use a HeapNumber
908 // to represent it.
909 Node* pair = Int32AddWithOverflow(value, value);
910 Node* overflow = Projection(1, pair);
911 GotoIf(overflow, &if_overflow);
912
913 Node* result = Projection(0, pair);
914 var_result.Bind(result);
915 }
916 }
917 Goto(&if_join);
918
919 Bind(&if_overflow);
920 {
921 Node* float64_value = ChangeUint32ToFloat64(value);
922 var_result.Bind(AllocateHeapNumberWithValue(float64_value));
923 }
924 Goto(&if_join);
925
926 Bind(&if_join);
927 return var_result.value();
928 }
929
930 Node* CodeStubAssembler::TruncateTaggedToFloat64(Node* context, Node* value) {
931 // We might need to loop once due to ToNumber conversion.
932 Variable var_value(this, MachineRepresentation::kTagged),
933 var_result(this, MachineRepresentation::kFloat64);
934 Label loop(this, &var_value), done_loop(this, &var_result);
935 var_value.Bind(value);
936 Goto(&loop);
937 Bind(&loop);
938 {
939 // Load the current {value}.
940 value = var_value.value();
941
942 // Check if the {value} is a Smi or a HeapObject.
943 Label if_valueissmi(this), if_valueisnotsmi(this);
944 Branch(WordIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
945
946 Bind(&if_valueissmi);
947 {
948 // Convert the Smi {value}.
949 var_result.Bind(SmiToFloat64(value));
950 Goto(&done_loop);
951 }
952
953 Bind(&if_valueisnotsmi);
954 {
955 // Check if {value} is a HeapNumber.
956 Label if_valueisheapnumber(this),
957 if_valueisnotheapnumber(this, Label::kDeferred);
958 Branch(WordEqual(LoadMap(value), HeapNumberMapConstant()),
959 &if_valueisheapnumber, &if_valueisnotheapnumber);
960
961 Bind(&if_valueisheapnumber);
962 {
963 // Load the floating point value.
964 var_result.Bind(LoadHeapNumberValue(value));
965 Goto(&done_loop);
966 }
967
968 Bind(&if_valueisnotheapnumber);
969 {
970 // Convert the {value} to a Number first.
971 Callable callable = CodeFactory::NonNumberToNumber(isolate());
972 var_value.Bind(CallStub(callable, context, value));
973 Goto(&loop);
974 }
975 }
976 }
977 Bind(&done_loop);
978 return var_result.value();
979 }
980
981 Node* CodeStubAssembler::TruncateTaggedToWord32(Node* context, Node* value) {
982 // We might need to loop once due to ToNumber conversion.
983 Variable var_value(this, MachineRepresentation::kTagged),
984 var_result(this, MachineRepresentation::kWord32);
985 Label loop(this, &var_value), done_loop(this, &var_result);
986 var_value.Bind(value);
987 Goto(&loop);
988 Bind(&loop);
989 {
990 // Load the current {value}.
991 value = var_value.value();
992
993 // Check if the {value} is a Smi or a HeapObject.
994 Label if_valueissmi(this), if_valueisnotsmi(this);
995 Branch(WordIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
996
997 Bind(&if_valueissmi);
998 {
999 // Convert the Smi {value}.
1000 var_result.Bind(SmiToWord32(value));
1001 Goto(&done_loop);
1002 }
1003
1004 Bind(&if_valueisnotsmi);
1005 {
1006 // Check if {value} is a HeapNumber.
1007 Label if_valueisheapnumber(this),
1008 if_valueisnotheapnumber(this, Label::kDeferred);
1009 Branch(WordEqual(LoadMap(value), HeapNumberMapConstant()),
1010 &if_valueisheapnumber, &if_valueisnotheapnumber);
1011
1012 Bind(&if_valueisheapnumber);
1013 {
1014 // Truncate the floating point value.
1015 var_result.Bind(TruncateHeapNumberValueToWord32(value));
1016 Goto(&done_loop);
1017 }
1018
1019 Bind(&if_valueisnotheapnumber);
1020 {
1021 // Convert the {value} to a Number first.
1022 Callable callable = CodeFactory::NonNumberToNumber(isolate());
1023 var_value.Bind(CallStub(callable, context, value));
1024 Goto(&loop);
1025 }
1026 }
1027 }
1028 Bind(&done_loop);
1029 return var_result.value();
1030 }
1031
1032 Node* CodeStubAssembler::ToThisString(Node* context, Node* value,
1033 char const* method_name) {
1034 Variable var_value(this, MachineRepresentation::kTagged);
1035 var_value.Bind(value);
1036
1037 // Check if the {value} is a Smi or a HeapObject.
1038 Label if_valueissmi(this, Label::kDeferred), if_valueisnotsmi(this),
1039 if_valueisstring(this);
1040 Branch(WordIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
1041 Bind(&if_valueisnotsmi);
1042 {
1043 // Load the instance type of the {value}.
1044 Node* value_instance_type = LoadInstanceType(value);
1045
1046 // Check if the {value} is already String.
1047 Label if_valueisnotstring(this, Label::kDeferred);
1048 Branch(
1049 Int32LessThan(value_instance_type, Int32Constant(FIRST_NONSTRING_TYPE)),
1050 &if_valueisstring, &if_valueisnotstring);
1051 Bind(&if_valueisnotstring);
1052 {
1053 // Check if the {value} is null.
1054 Label if_valueisnullorundefined(this, Label::kDeferred),
1055 if_valueisnotnullorundefined(this, Label::kDeferred),
1056 if_valueisnotnull(this, Label::kDeferred);
1057 Branch(WordEqual(value, NullConstant()), &if_valueisnullorundefined,
1058 &if_valueisnotnull);
1059 Bind(&if_valueisnotnull);
1060 {
1061 // Check if the {value} is undefined.
1062 Branch(WordEqual(value, UndefinedConstant()),
1063 &if_valueisnullorundefined, &if_valueisnotnullorundefined);
1064 Bind(&if_valueisnotnullorundefined);
1065 {
1066 // Convert the {value} to a String.
1067 Callable callable = CodeFactory::ToString(isolate());
1068 var_value.Bind(CallStub(callable, context, value));
1069 Goto(&if_valueisstring);
1070 }
1071 }
1072
1073 Bind(&if_valueisnullorundefined);
1074 {
1075 // The {value} is either null or undefined.
1076 CallRuntime(Runtime::kThrowCalledOnNullOrUndefined, context,
1077 HeapConstant(factory()->NewStringFromAsciiChecked(
1078 method_name, TENURED)));
1079 Goto(&if_valueisstring); // Never reached.
1080 }
1081 }
1082 }
1083 Bind(&if_valueissmi);
1084 {
1085 // The {value} is a Smi, convert it to a String.
1086 Callable callable = CodeFactory::NumberToString(isolate());
1087 var_value.Bind(CallStub(callable, context, value));
1088 Goto(&if_valueisstring);
1089 }
1090 Bind(&if_valueisstring);
1091 return var_value.value();
1092 }
1093
1094 Node* CodeStubAssembler::StringCharCodeAt(Node* string, Node* index) {
1095 // Translate the {index} into a Word.
1096 index = SmiToWord(index);
1097
1098 // We may need to loop in case of cons or sliced strings.
1099 Variable var_index(this, MachineType::PointerRepresentation());
1100 Variable var_result(this, MachineRepresentation::kWord32);
1101 Variable var_string(this, MachineRepresentation::kTagged);
1102 Variable* loop_vars[] = {&var_index, &var_string};
1103 Label done_loop(this, &var_result), loop(this, 2, loop_vars);
1104 var_string.Bind(string);
1105 var_index.Bind(index);
1106 Goto(&loop);
1107 Bind(&loop);
1108 {
1109 // Load the current {index}.
1110 index = var_index.value();
1111
1112 // Load the current {string}.
1113 string = var_string.value();
1114
1115 // Load the instance type of the {string}.
1116 Node* string_instance_type = LoadInstanceType(string);
1117
1118 // Check if the {string} is a SeqString.
1119 Label if_stringissequential(this), if_stringisnotsequential(this);
1120 Branch(Word32Equal(Word32And(string_instance_type,
1121 Int32Constant(kStringRepresentationMask)),
1122 Int32Constant(kSeqStringTag)),
1123 &if_stringissequential, &if_stringisnotsequential);
1124
1125 Bind(&if_stringissequential);
1126 {
1127 // Check if the {string} is a TwoByteSeqString or a OneByteSeqString.
1128 Label if_stringistwobyte(this), if_stringisonebyte(this);
1129 Branch(Word32Equal(Word32And(string_instance_type,
1130 Int32Constant(kStringEncodingMask)),
1131 Int32Constant(kTwoByteStringTag)),
1132 &if_stringistwobyte, &if_stringisonebyte);
1133
1134 Bind(&if_stringisonebyte);
1135 {
1136 var_result.Bind(
1137 Load(MachineType::Uint8(), string,
1138 IntPtrAdd(index, IntPtrConstant(SeqOneByteString::kHeaderSize -
1139 kHeapObjectTag))));
1140 Goto(&done_loop);
1141 }
1142
1143 Bind(&if_stringistwobyte);
1144 {
1145 var_result.Bind(
1146 Load(MachineType::Uint16(), string,
1147 IntPtrAdd(WordShl(index, IntPtrConstant(1)),
1148 IntPtrConstant(SeqTwoByteString::kHeaderSize -
1149 kHeapObjectTag))));
1150 Goto(&done_loop);
1151 }
1152 }
1153
1154 Bind(&if_stringisnotsequential);
1155 {
1156 // Check if the {string} is a ConsString.
1157 Label if_stringiscons(this), if_stringisnotcons(this);
1158 Branch(Word32Equal(Word32And(string_instance_type,
1159 Int32Constant(kStringRepresentationMask)),
1160 Int32Constant(kConsStringTag)),
1161 &if_stringiscons, &if_stringisnotcons);
1162
1163 Bind(&if_stringiscons);
1164 {
1165 // Check whether the right hand side is the empty string (i.e. if
1166 // this is really a flat string in a cons string). If that is not
1167 // the case we flatten the string first.
1168 Label if_rhsisempty(this), if_rhsisnotempty(this, Label::kDeferred);
1169 Node* rhs = LoadObjectField(string, ConsString::kSecondOffset);
1170 Branch(WordEqual(rhs, EmptyStringConstant()), &if_rhsisempty,
1171 &if_rhsisnotempty);
1172
1173 Bind(&if_rhsisempty);
1174 {
1175 // Just operate on the left hand side of the {string}.
1176 var_string.Bind(LoadObjectField(string, ConsString::kFirstOffset));
1177 Goto(&loop);
1178 }
1179
1180 Bind(&if_rhsisnotempty);
1181 {
1182 // Flatten the {string} and lookup in the resulting string.
1183 var_string.Bind(CallRuntime(Runtime::kFlattenString,
1184 NoContextConstant(), string));
1185 Goto(&loop);
1186 }
1187 }
1188
1189 Bind(&if_stringisnotcons);
1190 {
1191 // Check if the {string} is an ExternalString.
1192 Label if_stringisexternal(this), if_stringisnotexternal(this);
1193 Branch(Word32Equal(Word32And(string_instance_type,
1194 Int32Constant(kStringRepresentationMask)),
1195 Int32Constant(kExternalStringTag)),
1196 &if_stringisexternal, &if_stringisnotexternal);
1197
1198 Bind(&if_stringisexternal);
1199 {
1200 // Check if the {string} is a short external string.
1201 Label if_stringisshort(this),
1202 if_stringisnotshort(this, Label::kDeferred);
1203 Branch(Word32Equal(Word32And(string_instance_type,
1204 Int32Constant(kShortExternalStringMask)),
1205 Int32Constant(0)),
1206 &if_stringisshort, &if_stringisnotshort);
1207
1208 Bind(&if_stringisshort);
1209 {
1210 // Load the actual resource data from the {string}.
1211 Node* string_resource_data =
1212 LoadObjectField(string, ExternalString::kResourceDataOffset,
1213 MachineType::Pointer());
1214
1215 // Check if the {string} is a TwoByteExternalString or a
1216 // OneByteExternalString.
1217 Label if_stringistwobyte(this), if_stringisonebyte(this);
1218 Branch(Word32Equal(Word32And(string_instance_type,
1219 Int32Constant(kStringEncodingMask)),
1220 Int32Constant(kTwoByteStringTag)),
1221 &if_stringistwobyte, &if_stringisonebyte);
1222
1223 Bind(&if_stringisonebyte);
1224 {
1225 var_result.Bind(
1226 Load(MachineType::Uint8(), string_resource_data, index));
1227 Goto(&done_loop);
1228 }
1229
1230 Bind(&if_stringistwobyte);
1231 {
1232 var_result.Bind(Load(MachineType::Uint16(), string_resource_data,
1233 WordShl(index, IntPtrConstant(1))));
1234 Goto(&done_loop);
1235 }
1236 }
1237
1238 Bind(&if_stringisnotshort);
1239 {
1240 // The {string} might be compressed, call the runtime.
1241 var_result.Bind(SmiToWord32(
1242 CallRuntime(Runtime::kExternalStringGetChar,
1243 NoContextConstant(), string, SmiTag(index))));
1244 Goto(&done_loop);
1245 }
1246 }
1247
1248 Bind(&if_stringisnotexternal);
1249 {
1250 // The {string} is a SlicedString, continue with its parent.
1251 Node* string_offset =
1252 SmiToWord(LoadObjectField(string, SlicedString::kOffsetOffset));
1253 Node* string_parent =
1254 LoadObjectField(string, SlicedString::kParentOffset);
1255 var_index.Bind(IntPtrAdd(index, string_offset));
1256 var_string.Bind(string_parent);
1257 Goto(&loop);
1258 }
1259 }
1260 }
1261 }
1262
1263 Bind(&done_loop);
1264 return var_result.value();
1265 }
1266
1267 Node* CodeStubAssembler::StringFromCharCode(Node* code) {
1268 Variable var_result(this, MachineRepresentation::kTagged);
1269
1270 // Check if the {code} is a one-byte char code.
1271 Label if_codeisonebyte(this), if_codeistwobyte(this, Label::kDeferred),
1272 if_done(this);
1273 Branch(Int32LessThanOrEqual(code, Int32Constant(String::kMaxOneByteCharCode)),
1274 &if_codeisonebyte, &if_codeistwobyte);
1275 Bind(&if_codeisonebyte);
1276 {
1277 // Load the isolate wide single character string cache.
1278 Node* cache = LoadRoot(Heap::kSingleCharacterStringCacheRootIndex);
1279
1280 // Check if we have an entry for the {code} in the single character string
1281 // cache already.
1282 Label if_entryisundefined(this, Label::kDeferred),
1283 if_entryisnotundefined(this);
1284 Node* entry = LoadFixedArrayElementInt32Index(cache, code);
1285 Branch(WordEqual(entry, UndefinedConstant()), &if_entryisundefined,
1286 &if_entryisnotundefined);
1287
1288 Bind(&if_entryisundefined);
1289 {
1290 // Allocate a new SeqOneByteString for {code} and store it in the {cache}.
1291 Node* result = AllocateSeqOneByteString(1);
1292 StoreNoWriteBarrier(
1293 MachineRepresentation::kWord8, result,
1294 IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag), code);
1295 StoreFixedArrayElementInt32Index(cache, code, result);
1296 var_result.Bind(result);
1297 Goto(&if_done);
1298 }
1299
1300 Bind(&if_entryisnotundefined);
1301 {
1302 // Return the entry from the {cache}.
1303 var_result.Bind(entry);
1304 Goto(&if_done);
1305 }
1306 }
1307
1308 Bind(&if_codeistwobyte);
1309 {
1310 // Allocate a new SeqTwoByteString for {code}.
1311 Node* result = AllocateSeqTwoByteString(1);
1312 StoreNoWriteBarrier(
1313 MachineRepresentation::kWord16, result,
1314 IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), code);
1315 var_result.Bind(result);
1316 Goto(&if_done);
1317 }
1318
1319 Bind(&if_done);
1320 return var_result.value();
1321 }
1322
1323 Node* CodeStubAssembler::TruncateFloat64ToInt32(Node* value) {
1324 return raw_assembler_->TruncateFloat64ToInt32(TruncationMode::kJavaScript,
1325 value);
1326 }
1327
1328 void CodeStubAssembler::BranchIf(Node* condition, Label* if_true,
1329 Label* if_false) {
1330 Label if_condition_is_true(this), if_condition_is_false(this);
1331 Branch(condition, &if_condition_is_true, &if_condition_is_false);
1332 Bind(&if_condition_is_true);
1333 Goto(if_true);
1334 Bind(&if_condition_is_false);
1335 Goto(if_false);
1336 }
1337
1338 Node* CodeStubAssembler::CallN(CallDescriptor* descriptor, Node* code_target,
1339 Node** args) {
1340 CallPrologue();
1341 Node* return_value = raw_assembler_->CallN(descriptor, code_target, args);
1342 CallEpilogue();
1343 return return_value;
1344 }
1345
1346
1347 Node* CodeStubAssembler::TailCallN(CallDescriptor* descriptor,
1348 Node* code_target, Node** args) {
1349 return raw_assembler_->TailCallN(descriptor, code_target, args);
1350 }
1351
1352 Node* CodeStubAssembler::CallRuntime(Runtime::FunctionId function_id,
1353 Node* context) {
1354 CallPrologue();
1355 Node* return_value = raw_assembler_->CallRuntime0(function_id, context);
1356 CallEpilogue();
1357 return return_value;
1358 }
1359
1360 Node* CodeStubAssembler::CallRuntime(Runtime::FunctionId function_id,
1361 Node* context, Node* arg1) {
1362 CallPrologue();
1363 Node* return_value = raw_assembler_->CallRuntime1(function_id, arg1, context);
1364 CallEpilogue();
1365 return return_value;
1366 }
1367
1368 Node* CodeStubAssembler::CallRuntime(Runtime::FunctionId function_id,
1369 Node* context, Node* arg1, Node* arg2) {
1370 CallPrologue();
1371 Node* return_value =
1372 raw_assembler_->CallRuntime2(function_id, arg1, arg2, context);
1373 CallEpilogue();
1374 return return_value;
1375 }
1376
1377 Node* CodeStubAssembler::CallRuntime(Runtime::FunctionId function_id,
1378 Node* context, Node* arg1, Node* arg2,
1379 Node* arg3) {
1380 CallPrologue();
1381 Node* return_value =
1382 raw_assembler_->CallRuntime3(function_id, arg1, arg2, arg3, context);
1383 CallEpilogue();
1384 return return_value;
1385 }
1386
1387 Node* CodeStubAssembler::CallRuntime(Runtime::FunctionId function_id,
1388 Node* context, Node* arg1, Node* arg2,
1389 Node* arg3, Node* arg4) {
1390 CallPrologue();
1391 Node* return_value = raw_assembler_->CallRuntime4(function_id, arg1, arg2,
1392 arg3, arg4, context);
1393 CallEpilogue();
1394 return return_value;
1395 }
1396
1397 Node* CodeStubAssembler::TailCallRuntime(Runtime::FunctionId function_id,
1398 Node* context) {
1399 return raw_assembler_->TailCallRuntime0(function_id, context);
1400 }
1401
1402 Node* CodeStubAssembler::TailCallRuntime(Runtime::FunctionId function_id,
1403 Node* context, Node* arg1) {
1404 return raw_assembler_->TailCallRuntime1(function_id, arg1, context);
1405 }
1406
1407 Node* CodeStubAssembler::TailCallRuntime(Runtime::FunctionId function_id,
1408 Node* context, Node* arg1,
1409 Node* arg2) {
1410 return raw_assembler_->TailCallRuntime2(function_id, arg1, arg2, context);
1411 }
1412
1413 Node* CodeStubAssembler::TailCallRuntime(Runtime::FunctionId function_id,
1414 Node* context, Node* arg1, Node* arg2,
1415 Node* arg3) {
1416 return raw_assembler_->TailCallRuntime3(function_id, arg1, arg2, arg3,
1417 context);
1418 }
1419
1420 Node* CodeStubAssembler::TailCallRuntime(Runtime::FunctionId function_id,
1421 Node* context, Node* arg1, Node* arg2,
1422 Node* arg3, Node* arg4) {
1423 return raw_assembler_->TailCallRuntime4(function_id, arg1, arg2, arg3, arg4,
1424 context);
1425 }
1426
1427 Node* CodeStubAssembler::CallStub(Callable const& callable, Node* context,
1428 Node* arg1, size_t result_size) {
1429 Node* target = HeapConstant(callable.code());
1430 return CallStub(callable.descriptor(), target, context, arg1, result_size);
1431 }
1432
1433 Node* CodeStubAssembler::CallStub(Callable const& callable, Node* context,
1434 Node* arg1, Node* arg2, size_t result_size) {
1435 Node* target = HeapConstant(callable.code());
1436 return CallStub(callable.descriptor(), target, context, arg1, arg2,
1437 result_size);
1438 }
1439
1440 Node* CodeStubAssembler::CallStub(Callable const& callable, Node* context,
1441 Node* arg1, Node* arg2, Node* arg3,
1442 size_t result_size) {
1443 Node* target = HeapConstant(callable.code());
1444 return CallStub(callable.descriptor(), target, context, arg1, arg2, arg3,
1445 result_size);
1446 }
1447
1448 Node* CodeStubAssembler::CallStub(const CallInterfaceDescriptor& descriptor,
1449 Node* target, Node* context, Node* arg1,
1450 size_t result_size) {
1451 CallDescriptor* call_descriptor = Linkage::GetStubCallDescriptor(
1452 isolate(), zone(), descriptor, descriptor.GetStackParameterCount(),
1453 CallDescriptor::kNoFlags, Operator::kNoProperties,
1454 MachineType::AnyTagged(), result_size);
1455
1456 Node** args = zone()->NewArray<Node*>(2);
1457 args[0] = arg1;
1458 args[1] = context;
1459
1460 return CallN(call_descriptor, target, args);
1461 }
1462
1463 Node* CodeStubAssembler::CallStub(const CallInterfaceDescriptor& descriptor,
1464 Node* target, Node* context, Node* arg1,
1465 Node* arg2, size_t result_size) {
1466 CallDescriptor* call_descriptor = Linkage::GetStubCallDescriptor(
1467 isolate(), zone(), descriptor, descriptor.GetStackParameterCount(),
1468 CallDescriptor::kNoFlags, Operator::kNoProperties,
1469 MachineType::AnyTagged(), result_size);
1470
1471 Node** args = zone()->NewArray<Node*>(3);
1472 args[0] = arg1;
1473 args[1] = arg2;
1474 args[2] = context;
1475
1476 return CallN(call_descriptor, target, args);
1477 }
1478
1479 Node* CodeStubAssembler::CallStub(const CallInterfaceDescriptor& descriptor,
1480 Node* target, Node* context, Node* arg1,
1481 Node* arg2, Node* arg3, size_t result_size) {
1482 CallDescriptor* call_descriptor = Linkage::GetStubCallDescriptor(
1483 isolate(), zone(), descriptor, descriptor.GetStackParameterCount(),
1484 CallDescriptor::kNoFlags, Operator::kNoProperties,
1485 MachineType::AnyTagged(), result_size);
1486
1487 Node** args = zone()->NewArray<Node*>(4);
1488 args[0] = arg1;
1489 args[1] = arg2;
1490 args[2] = arg3;
1491 args[3] = context;
1492
1493 return CallN(call_descriptor, target, args);
1494 }
1495
1496 Node* CodeStubAssembler::CallStub(const CallInterfaceDescriptor& descriptor,
1497 Node* target, Node* context, Node* arg1,
1498 Node* arg2, Node* arg3, Node* arg4,
1499 size_t result_size) {
1500 CallDescriptor* call_descriptor = Linkage::GetStubCallDescriptor(
1501 isolate(), zone(), descriptor, descriptor.GetStackParameterCount(),
1502 CallDescriptor::kNoFlags, Operator::kNoProperties,
1503 MachineType::AnyTagged(), result_size);
1504
1505 Node** args = zone()->NewArray<Node*>(5);
1506 args[0] = arg1;
1507 args[1] = arg2;
1508 args[2] = arg3;
1509 args[3] = arg4;
1510 args[4] = context;
1511
1512 return CallN(call_descriptor, target, args);
1513 }
1514
1515 Node* CodeStubAssembler::CallStub(const CallInterfaceDescriptor& descriptor,
1516 Node* target, Node* context, Node* arg1,
1517 Node* arg2, Node* arg3, Node* arg4,
1518 Node* arg5, size_t result_size) {
1519 CallDescriptor* call_descriptor = Linkage::GetStubCallDescriptor(
1520 isolate(), zone(), descriptor, descriptor.GetStackParameterCount(),
1521 CallDescriptor::kNoFlags, Operator::kNoProperties,
1522 MachineType::AnyTagged(), result_size);
1523
1524 Node** args = zone()->NewArray<Node*>(6);
1525 args[0] = arg1;
1526 args[1] = arg2;
1527 args[2] = arg3;
1528 args[3] = arg4;
1529 args[4] = arg5;
1530 args[5] = context;
1531
1532 return CallN(call_descriptor, target, args);
1533 }
1534
1535 Node* CodeStubAssembler::TailCallStub(Callable const& callable, Node* context,
1536 Node* arg1, Node* arg2,
1537 size_t result_size) {
1538 Node* target = HeapConstant(callable.code());
1539 return TailCallStub(callable.descriptor(), target, context, arg1, arg2,
1540 result_size);
1541 }
1542
1543 Node* CodeStubAssembler::TailCallStub(const CallInterfaceDescriptor& descriptor,
1544 Node* target, Node* context, Node* arg1,
1545 Node* arg2, size_t result_size) {
1546 CallDescriptor* call_descriptor = Linkage::GetStubCallDescriptor(
1547 isolate(), zone(), descriptor, descriptor.GetStackParameterCount(),
1548 CallDescriptor::kSupportsTailCalls, Operator::kNoProperties,
1549 MachineType::AnyTagged(), result_size);
1550
1551 Node** args = zone()->NewArray<Node*>(3);
1552 args[0] = arg1;
1553 args[1] = arg2;
1554 args[2] = context;
1555
1556 return raw_assembler_->TailCallN(call_descriptor, target, args);
1557 }
1558
1559 Node* CodeStubAssembler::TailCallBytecodeDispatch(
1560 const CallInterfaceDescriptor& interface_descriptor,
1561 Node* code_target_address, Node** args) {
1562 CallDescriptor* descriptor = Linkage::GetBytecodeDispatchCallDescriptor(
1563 isolate(), zone(), interface_descriptor,
1564 interface_descriptor.GetStackParameterCount());
1565 return raw_assembler_->TailCallN(descriptor, code_target_address, args);
1566 }
1567
1568 void CodeStubAssembler::Goto(CodeStubAssembler::Label* label) {
1569 label->MergeVariables();
1570 raw_assembler_->Goto(label->label_);
1571 }
1572
1573 void CodeStubAssembler::GotoIf(Node* condition, Label* true_label) {
1574 Label false_label(this);
1575 Branch(condition, true_label, &false_label);
1576 Bind(&false_label);
1577 }
1578
1579 void CodeStubAssembler::GotoUnless(Node* condition, Label* false_label) {
1580 Label true_label(this);
1581 Branch(condition, &true_label, false_label);
1582 Bind(&true_label);
1583 }
1584
1585 void CodeStubAssembler::Branch(Node* condition,
1586 CodeStubAssembler::Label* true_label,
1587 CodeStubAssembler::Label* false_label) {
1588 true_label->MergeVariables();
1589 false_label->MergeVariables();
1590 return raw_assembler_->Branch(condition, true_label->label_,
1591 false_label->label_);
1592 }
1593
1594 void CodeStubAssembler::Switch(Node* index, Label* default_label,
1595 int32_t* case_values, Label** case_labels,
1596 size_t case_count) {
1597 RawMachineLabel** labels =
1598 new (zone()->New(sizeof(RawMachineLabel*) * case_count))
1599 RawMachineLabel*[case_count];
1600 for (size_t i = 0; i < case_count; ++i) {
1601 labels[i] = case_labels[i]->label_;
1602 case_labels[i]->MergeVariables();
1603 default_label->MergeVariables();
1604 }
1605 return raw_assembler_->Switch(index, default_label->label_, case_values,
1606 labels, case_count);
1607 }
1608
1609 // RawMachineAssembler delegate helpers:
1610 Isolate* CodeStubAssembler::isolate() const {
1611 return raw_assembler_->isolate();
1612 }
1613
1614 Factory* CodeStubAssembler::factory() const { return isolate()->factory(); }
1615
1616 Graph* CodeStubAssembler::graph() const { return raw_assembler_->graph(); }
1617
1618 Zone* CodeStubAssembler::zone() const { return raw_assembler_->zone(); }
1619
1620 // The core implementation of Variable is stored through an indirection so
1621 // that it can outlive the often block-scoped Variable declarations. This is
1622 // needed to ensure that variable binding and merging through phis can
1623 // properly be verified.
1624 class CodeStubAssembler::Variable::Impl : public ZoneObject {
1625 public:
1626 explicit Impl(MachineRepresentation rep) : value_(nullptr), rep_(rep) {}
1627 Node* value_;
1628 MachineRepresentation rep_;
1629 };
1630
1631 CodeStubAssembler::Variable::Variable(CodeStubAssembler* assembler,
1632 MachineRepresentation rep)
1633 : impl_(new (assembler->zone()) Impl(rep)) {
1634 assembler->variables_.push_back(impl_);
1635 }
1636
1637 void CodeStubAssembler::Variable::Bind(Node* value) { impl_->value_ = value; }
1638
1639 Node* CodeStubAssembler::Variable::value() const {
1640 DCHECK_NOT_NULL(impl_->value_);
1641 return impl_->value_;
1642 }
1643
1644 MachineRepresentation CodeStubAssembler::Variable::rep() const {
1645 return impl_->rep_;
1646 }
1647
1648 bool CodeStubAssembler::Variable::IsBound() const {
1649 return impl_->value_ != nullptr;
1650 }
1651
1652 CodeStubAssembler::Label::Label(CodeStubAssembler* assembler,
1653 int merged_value_count,
1654 CodeStubAssembler::Variable** merged_variables,
1655 CodeStubAssembler::Label::Type type)
1656 : bound_(false), merge_count_(0), assembler_(assembler), label_(nullptr) {
1657 void* buffer = assembler->zone()->New(sizeof(RawMachineLabel));
1658 label_ = new (buffer)
1659 RawMachineLabel(type == kDeferred ? RawMachineLabel::kDeferred
1660 : RawMachineLabel::kNonDeferred);
1661 for (int i = 0; i < merged_value_count; ++i) {
1662 variable_phis_[merged_variables[i]->impl_] = nullptr;
1663 }
1664 }
1665
1666 void CodeStubAssembler::Label::MergeVariables() {
1667 ++merge_count_;
1668 for (auto var : assembler_->variables_) {
1669 size_t count = 0;
1670 Node* node = var->value_;
1671 if (node != nullptr) {
1672 auto i = variable_merges_.find(var);
1673 if (i != variable_merges_.end()) {
1674 i->second.push_back(node);
1675 count = i->second.size();
1676 } else {
1677 count = 1;
1678 variable_merges_[var] = std::vector<Node*>(1, node);
1679 }
1680 }
1681 // If the following asserts, then you've jumped to a label without a bound
1682 // variable along that path that expects to merge its value into a phi.
1683 DCHECK(variable_phis_.find(var) == variable_phis_.end() ||
1684 count == merge_count_);
1685 USE(count);
1686
1687 // If the label is already bound, we already know the set of variables to
1688 // merge and phi nodes have already been created.
1689 if (bound_) {
1690 auto phi = variable_phis_.find(var);
1691 if (phi != variable_phis_.end()) {
1692 DCHECK_NOT_NULL(phi->second);
1693 assembler_->raw_assembler_->AppendPhiInput(phi->second, node);
1694 } else {
1695 auto i = variable_merges_.find(var);
1696 if (i != variable_merges_.end()) {
1697 // If the following assert fires, then you've declared a variable that
1698 // has the same bound value along all paths up until the point you
1699 // bound this label, but then later merged a path with a new value for
1700 // the variable after the label bind (it's not possible to add phis to
1701 // the bound label after the fact, just make sure to list the variable
1702 // in the label's constructor's list of merged variables).
1703 DCHECK(find_if(i->second.begin(), i->second.end(),
1704 [node](Node* e) -> bool { return node != e; }) ==
1705 i->second.end());
1706 }
1707 }
1708 }
1709 }
1710 }
1711
1712 void CodeStubAssembler::Label::Bind() {
1713 DCHECK(!bound_);
1714 assembler_->raw_assembler_->Bind(label_);
1715
1716 // Make sure that all variables that have changed along any path up to this
1717 // point are marked as merge variables.
1718 for (auto var : assembler_->variables_) {
1719 Node* shared_value = nullptr;
1720 auto i = variable_merges_.find(var);
1721 if (i != variable_merges_.end()) {
1722 for (auto value : i->second) {
1723 DCHECK(value != nullptr);
1724 if (value != shared_value) {
1725 if (shared_value == nullptr) {
1726 shared_value = value;
1727 } else {
1728 variable_phis_[var] = nullptr;
1729 }
1730 }
1731 }
1732 }
1733 }
1734
1735 for (auto var : variable_phis_) {
1736 CodeStubAssembler::Variable::Impl* var_impl = var.first;
1737 auto i = variable_merges_.find(var_impl);
1738 // If the following assert fires, then a variable that has been marked as
1739 // being merged at the label--either by explicitly marking it so in the
1740 // label constructor or by having seen different bound values at branches
1741 // into the label--doesn't have a bound value along all of the paths that
1742 // have been merged into the label up to this point.
1743 DCHECK(i != variable_merges_.end() && i->second.size() == merge_count_);
1744 Node* phi = assembler_->raw_assembler_->Phi(
1745 var.first->rep_, static_cast<int>(merge_count_), &(i->second[0]));
1746 variable_phis_[var_impl] = phi;
1747 }
1748
1749 // Bind all variables to a merge phi, the common value along all paths or
1750 // null.
1751 for (auto var : assembler_->variables_) {
1752 auto i = variable_phis_.find(var);
1753 if (i != variable_phis_.end()) {
1754 var->value_ = i->second;
1755 } else {
1756 auto j = variable_merges_.find(var);
1757 if (j != variable_merges_.end() && j->second.size() == merge_count_) {
1758 var->value_ = j->second.back();
1759 } else {
1760 var->value_ = nullptr;
1761 }
1762 }
1763 }
1764
1765 bound_ = true;
1766 }
1767
1768 } // namespace compiler
1769 } // namespace internal
1770 } // namespace v8
OLDNEW
« no previous file with comments | « src/compiler/code-stub-assembler.h ('k') | src/fast-accessor-assembler.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698