| OLD | NEW |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include "crypto/secure_hash.h" | 5 #include "crypto/secure_hash.h" |
| 6 | 6 |
| 7 #include <stddef.h> | 7 #include <stddef.h> |
| 8 #include <stdint.h> | 8 #include <stdint.h> |
| 9 | 9 |
| 10 #include <memory> |
| 10 #include <string> | 11 #include <string> |
| 11 | 12 |
| 12 #include "base/memory/scoped_ptr.h" | |
| 13 #include "crypto/sha2.h" | 13 #include "crypto/sha2.h" |
| 14 #include "testing/gtest/include/gtest/gtest.h" | 14 #include "testing/gtest/include/gtest/gtest.h" |
| 15 | 15 |
| 16 TEST(SecureHashTest, TestUpdate) { | 16 TEST(SecureHashTest, TestUpdate) { |
| 17 // Example B.3 from FIPS 180-2: long message. | 17 // Example B.3 from FIPS 180-2: long message. |
| 18 std::string input3(500000, 'a'); // 'a' repeated half a million times | 18 std::string input3(500000, 'a'); // 'a' repeated half a million times |
| 19 const int kExpectedHashOfInput3[] = { | 19 const int kExpectedHashOfInput3[] = { |
| 20 0xcd, 0xc7, 0x6e, 0x5c, 0x99, 0x14, 0xfb, 0x92, 0x81, 0xa1, 0xc7, | 20 0xcd, 0xc7, 0x6e, 0x5c, 0x99, 0x14, 0xfb, 0x92, 0x81, 0xa1, 0xc7, |
| 21 0xe2, 0x84, 0xd7, 0x3e, 0x67, 0xf1, 0x80, 0x9a, 0x48, 0xa4, 0x97, | 21 0xe2, 0x84, 0xd7, 0x3e, 0x67, 0xf1, 0x80, 0x9a, 0x48, 0xa4, 0x97, |
| 22 0x20, 0x0e, 0x04, 0x6d, 0x39, 0xcc, 0xc7, 0x11, 0x2c, 0xd0}; | 22 0x20, 0x0e, 0x04, 0x6d, 0x39, 0xcc, 0xc7, 0x11, 0x2c, 0xd0}; |
| 23 | 23 |
| 24 uint8_t output3[crypto::kSHA256Length]; | 24 uint8_t output3[crypto::kSHA256Length]; |
| 25 | 25 |
| 26 scoped_ptr<crypto::SecureHash> ctx(crypto::SecureHash::Create( | 26 std::unique_ptr<crypto::SecureHash> ctx( |
| 27 crypto::SecureHash::SHA256)); | 27 crypto::SecureHash::Create(crypto::SecureHash::SHA256)); |
| 28 ctx->Update(input3.data(), input3.size()); | 28 ctx->Update(input3.data(), input3.size()); |
| 29 ctx->Update(input3.data(), input3.size()); | 29 ctx->Update(input3.data(), input3.size()); |
| 30 | 30 |
| 31 ctx->Finish(output3, sizeof(output3)); | 31 ctx->Finish(output3, sizeof(output3)); |
| 32 for (size_t i = 0; i < crypto::kSHA256Length; i++) | 32 for (size_t i = 0; i < crypto::kSHA256Length; i++) |
| 33 EXPECT_EQ(kExpectedHashOfInput3[i], static_cast<int>(output3[i])); | 33 EXPECT_EQ(kExpectedHashOfInput3[i], static_cast<int>(output3[i])); |
| 34 } | 34 } |
| 35 | 35 |
| 36 TEST(SecureHashTest, TestClone) { | 36 TEST(SecureHashTest, TestClone) { |
| 37 std::string input1(10001, 'a'); // 'a' repeated 10001 times | 37 std::string input1(10001, 'a'); // 'a' repeated 10001 times |
| 38 std::string input2(10001, 'd'); // 'd' repeated 10001 times | 38 std::string input2(10001, 'd'); // 'd' repeated 10001 times |
| 39 | 39 |
| 40 const uint8_t kExpectedHashOfInput1[crypto::kSHA256Length] = { | 40 const uint8_t kExpectedHashOfInput1[crypto::kSHA256Length] = { |
| 41 0x0c, 0xab, 0x99, 0xa0, 0x58, 0x60, 0x0f, 0xfa, 0xad, 0x12, 0x92, | 41 0x0c, 0xab, 0x99, 0xa0, 0x58, 0x60, 0x0f, 0xfa, 0xad, 0x12, 0x92, |
| 42 0xd0, 0xc5, 0x3c, 0x05, 0x48, 0xeb, 0xaf, 0x88, 0xdd, 0x1d, 0x01, | 42 0xd0, 0xc5, 0x3c, 0x05, 0x48, 0xeb, 0xaf, 0x88, 0xdd, 0x1d, 0x01, |
| 43 0x03, 0x03, 0x45, 0x70, 0x5f, 0x01, 0x8a, 0x81, 0x39, 0x09}; | 43 0x03, 0x03, 0x45, 0x70, 0x5f, 0x01, 0x8a, 0x81, 0x39, 0x09}; |
| 44 const uint8_t kExpectedHashOfInput1And2[crypto::kSHA256Length] = { | 44 const uint8_t kExpectedHashOfInput1And2[crypto::kSHA256Length] = { |
| 45 0x4c, 0x8e, 0x26, 0x5a, 0xc3, 0x85, 0x1f, 0x1f, 0xa5, 0x04, 0x1c, | 45 0x4c, 0x8e, 0x26, 0x5a, 0xc3, 0x85, 0x1f, 0x1f, 0xa5, 0x04, 0x1c, |
| 46 0xc7, 0x88, 0x53, 0x1c, 0xc7, 0x80, 0x47, 0x15, 0xfb, 0x47, 0xff, | 46 0xc7, 0x88, 0x53, 0x1c, 0xc7, 0x80, 0x47, 0x15, 0xfb, 0x47, 0xff, |
| 47 0x72, 0xb1, 0x28, 0x37, 0xb0, 0x4d, 0x6e, 0x22, 0x2e, 0x4d}; | 47 0x72, 0xb1, 0x28, 0x37, 0xb0, 0x4d, 0x6e, 0x22, 0x2e, 0x4d}; |
| 48 | 48 |
| 49 uint8_t output1[crypto::kSHA256Length]; | 49 uint8_t output1[crypto::kSHA256Length]; |
| 50 uint8_t output2[crypto::kSHA256Length]; | 50 uint8_t output2[crypto::kSHA256Length]; |
| 51 uint8_t output3[crypto::kSHA256Length]; | 51 uint8_t output3[crypto::kSHA256Length]; |
| 52 | 52 |
| 53 scoped_ptr<crypto::SecureHash> ctx1(crypto::SecureHash::Create( | 53 std::unique_ptr<crypto::SecureHash> ctx1( |
| 54 crypto::SecureHash::SHA256)); | 54 crypto::SecureHash::Create(crypto::SecureHash::SHA256)); |
| 55 ctx1->Update(input1.data(), input1.size()); | 55 ctx1->Update(input1.data(), input1.size()); |
| 56 | 56 |
| 57 scoped_ptr<crypto::SecureHash> ctx2(ctx1->Clone()); | 57 std::unique_ptr<crypto::SecureHash> ctx2(ctx1->Clone()); |
| 58 scoped_ptr<crypto::SecureHash> ctx3(ctx2->Clone()); | 58 std::unique_ptr<crypto::SecureHash> ctx3(ctx2->Clone()); |
| 59 // At this point, ctx1, ctx2, and ctx3 are all equivalent and represent the | 59 // At this point, ctx1, ctx2, and ctx3 are all equivalent and represent the |
| 60 // state after hashing input1. | 60 // state after hashing input1. |
| 61 | 61 |
| 62 // Updating ctx1 and ctx2 with input2 should produce equivalent results. | 62 // Updating ctx1 and ctx2 with input2 should produce equivalent results. |
| 63 ctx1->Update(input2.data(), input2.size()); | 63 ctx1->Update(input2.data(), input2.size()); |
| 64 ctx1->Finish(output1, sizeof(output1)); | 64 ctx1->Finish(output1, sizeof(output1)); |
| 65 | 65 |
| 66 ctx2->Update(input2.data(), input2.size()); | 66 ctx2->Update(input2.data(), input2.size()); |
| 67 ctx2->Finish(output2, sizeof(output2)); | 67 ctx2->Finish(output2, sizeof(output2)); |
| 68 | 68 |
| 69 EXPECT_EQ(0, memcmp(output1, output2, crypto::kSHA256Length)); | 69 EXPECT_EQ(0, memcmp(output1, output2, crypto::kSHA256Length)); |
| 70 EXPECT_EQ(0, | 70 EXPECT_EQ(0, |
| 71 memcmp(output1, kExpectedHashOfInput1And2, crypto::kSHA256Length)); | 71 memcmp(output1, kExpectedHashOfInput1And2, crypto::kSHA256Length)); |
| 72 | 72 |
| 73 // Finish() ctx3, which should produce the hash of input1. | 73 // Finish() ctx3, which should produce the hash of input1. |
| 74 ctx3->Finish(&output3, sizeof(output3)); | 74 ctx3->Finish(&output3, sizeof(output3)); |
| 75 EXPECT_EQ(0, memcmp(output3, kExpectedHashOfInput1, crypto::kSHA256Length)); | 75 EXPECT_EQ(0, memcmp(output3, kExpectedHashOfInput1, crypto::kSHA256Length)); |
| 76 } | 76 } |
| 77 | 77 |
| 78 TEST(SecureHashTest, TestLength) { | 78 TEST(SecureHashTest, TestLength) { |
| 79 scoped_ptr<crypto::SecureHash> ctx( | 79 std::unique_ptr<crypto::SecureHash> ctx( |
| 80 crypto::SecureHash::Create(crypto::SecureHash::SHA256)); | 80 crypto::SecureHash::Create(crypto::SecureHash::SHA256)); |
| 81 EXPECT_EQ(crypto::kSHA256Length, ctx->GetHashLength()); | 81 EXPECT_EQ(crypto::kSHA256Length, ctx->GetHashLength()); |
| 82 } | 82 } |
| OLD | NEW |