| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (C) 2015 Google Inc. All rights reserved. | 2 * Copyright (C) 2015 Google Inc. All rights reserved. |
| 3 * | 3 * |
| 4 * Redistribution and use in source and binary forms, with or without | 4 * Redistribution and use in source and binary forms, with or without |
| 5 * modification, are permitted provided that the following conditions are | 5 * modification, are permitted provided that the following conditions are |
| 6 * met: | 6 * met: |
| 7 * | 7 * |
| 8 * * Redistributions of source code must retain the above copyright | 8 * * Redistributions of source code must retain the above copyright |
| 9 * notice, this list of conditions and the following disclaimer. | 9 * notice, this list of conditions and the following disclaimer. |
| 10 * * Redistributions in binary form must reproduce the above | 10 * * Redistributions in binary form must reproduce the above |
| (...skipping 11 matching lines...) Expand all Loading... |
| 22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 */ | 29 */ |
| 30 | 30 |
| 31 #include "platform/image-decoders/FastSharedBufferReader.h" | 31 #include "platform/image-decoders/FastSharedBufferReader.h" |
| 32 #include "platform/image-decoders/SegmentReader.h" | |
| 33 | 32 |
| 34 #include "testing/gtest/include/gtest/gtest.h" | 33 #include "testing/gtest/include/gtest/gtest.h" |
| 35 | 34 |
| 36 namespace blink { | 35 namespace blink { |
| 37 | 36 |
| 38 namespace { | 37 namespace { |
| 39 | 38 |
| 40 const unsigned kDefaultTestSize = 4 * SharedBuffer::kSegmentSize; | 39 const unsigned kDefaultTestSize = 4 * SharedBuffer::kSegmentSize; |
| 41 | 40 |
| 42 void prepareReferenceData(char* buffer, size_t size) | 41 void prepareReferenceData(char* buffer, size_t size) |
| 43 { | 42 { |
| 44 for (size_t i = 0; i < size; ++i) | 43 for (size_t i = 0; i < size; ++i) |
| 45 buffer[i] = static_cast<char>(i); | 44 buffer[i] = static_cast<char>(i); |
| 46 } | 45 } |
| 47 | 46 |
| 48 PassRefPtr<SegmentReader> copyToROBufferSegmentReader(PassRefPtr<SegmentReader>
input) | |
| 49 { | |
| 50 SkRWBuffer rwBuffer; | |
| 51 const char* segment = 0; | |
| 52 size_t position = 0; | |
| 53 while (size_t length = input->getSomeData(segment, position)) { | |
| 54 rwBuffer.append(segment, length); | |
| 55 position += length; | |
| 56 } | |
| 57 return SegmentReader::createFromSkROBuffer(adoptRef(rwBuffer.newRBufferSnaps
hot())); | |
| 58 } | |
| 59 | |
| 60 PassRefPtr<SegmentReader> copyToDataSegmentReader(PassRefPtr<SegmentReader> inpu
t) | |
| 61 { | |
| 62 return SegmentReader::createFromSkData(input->getAsSkData()); | |
| 63 } | |
| 64 | |
| 65 struct SegmentReaders { | |
| 66 RefPtr<SegmentReader> segmentReaders[3]; | |
| 67 | |
| 68 SegmentReaders(PassRefPtr<SharedBuffer> input) | |
| 69 { | |
| 70 segmentReaders[0] = SegmentReader::createFromSharedBuffer(input); | |
| 71 segmentReaders[1] = copyToROBufferSegmentReader(segmentReaders[0]); | |
| 72 segmentReaders[2] = copyToDataSegmentReader(segmentReaders[0]); | |
| 73 } | |
| 74 }; | |
| 75 | |
| 76 } // namespace | 47 } // namespace |
| 77 | 48 |
| 78 TEST(FastSharedBufferReaderTest, nonSequentialReads) | 49 TEST(FastSharedBufferReaderTest, nonSequentialReads) |
| 79 { | 50 { |
| 80 char referenceData[kDefaultTestSize]; | 51 char referenceData[kDefaultTestSize]; |
| 81 prepareReferenceData(referenceData, sizeof(referenceData)); | 52 prepareReferenceData(referenceData, sizeof(referenceData)); |
| 82 RefPtr<SharedBuffer> data = SharedBuffer::create(); | 53 RefPtr<SharedBuffer> data = SharedBuffer::create(); |
| 83 data->append(referenceData, sizeof(referenceData)); | 54 data->append(referenceData, sizeof(referenceData)); |
| 84 | 55 |
| 85 SegmentReaders readerStruct(data); | 56 FastSharedBufferReader reader(data); |
| 86 for (auto segmentReader : readerStruct.segmentReaders) { | 57 |
| 87 FastSharedBufferReader reader(segmentReader); | 58 // Read size is prime such there will be a segment-spanning |
| 88 // Read size is prime such there will be a segment-spanning | 59 // read eventually. |
| 89 // read eventually. | 60 char tempBuffer[17]; |
| 90 char tempBuffer[17]; | 61 for (size_t dataPosition = 0; dataPosition + sizeof(tempBuffer) < sizeof(ref
erenceData); dataPosition += sizeof(tempBuffer)) { |
| 91 for (size_t dataPosition = 0; dataPosition + sizeof(tempBuffer) < sizeof
(referenceData); dataPosition += sizeof(tempBuffer)) { | 62 const char* block = reader.getConsecutiveData( |
| 92 const char* block = reader.getConsecutiveData( | 63 dataPosition, sizeof(tempBuffer), tempBuffer); |
| 93 dataPosition, sizeof(tempBuffer), tempBuffer); | 64 ASSERT_FALSE(memcmp(block, referenceData + dataPosition, sizeof(tempBuff
er))); |
| 94 ASSERT_FALSE(memcmp(block, referenceData + dataPosition, sizeof(temp
Buffer))); | |
| 95 } | |
| 96 } | 65 } |
| 97 } | 66 } |
| 98 | 67 |
| 99 TEST(FastSharedBufferReaderTest, readBackwards) | 68 TEST(FastSharedBufferReaderTest, readBackwards) |
| 100 { | 69 { |
| 101 char referenceData[kDefaultTestSize]; | 70 char referenceData[kDefaultTestSize]; |
| 102 prepareReferenceData(referenceData, sizeof(referenceData)); | 71 prepareReferenceData(referenceData, sizeof(referenceData)); |
| 103 RefPtr<SharedBuffer> data = SharedBuffer::create(); | 72 RefPtr<SharedBuffer> data = SharedBuffer::create(); |
| 104 data->append(referenceData, sizeof(referenceData)); | 73 data->append(referenceData, sizeof(referenceData)); |
| 105 | 74 |
| 106 SegmentReaders readerStruct(data); | 75 FastSharedBufferReader reader(data); |
| 107 for (auto segmentReader : readerStruct.segmentReaders) { | 76 |
| 108 FastSharedBufferReader reader(segmentReader); | 77 // Read size is prime such there will be a segment-spanning |
| 109 // Read size is prime such there will be a segment-spanning | 78 // read eventually. |
| 110 // read eventually. | 79 char tempBuffer[17]; |
| 111 char tempBuffer[17]; | 80 for (size_t dataOffset = sizeof(tempBuffer); dataOffset < sizeof(referenceDa
ta); dataOffset += sizeof(tempBuffer)) { |
| 112 for (size_t dataOffset = sizeof(tempBuffer); dataOffset < sizeof(referen
ceData); dataOffset += sizeof(tempBuffer)) { | 81 const char* block = reader.getConsecutiveData( |
| 113 const char* block = reader.getConsecutiveData( | 82 sizeof(referenceData) - dataOffset, sizeof(tempBuffer), tempBuffer); |
| 114 sizeof(referenceData) - dataOffset, sizeof(tempBuffer), tempBuff
er); | 83 ASSERT_FALSE(memcmp(block, referenceData + sizeof(referenceData) - dataO
ffset, sizeof(tempBuffer))); |
| 115 ASSERT_FALSE(memcmp(block, referenceData + sizeof(referenceData) - d
ataOffset, sizeof(tempBuffer))); | |
| 116 } | |
| 117 } | 84 } |
| 118 } | 85 } |
| 119 | 86 |
| 120 TEST(FastSharedBufferReaderTest, byteByByte) | 87 TEST(FastSharedBufferReaderTest, byteByByte) |
| 121 { | 88 { |
| 122 char referenceData[kDefaultTestSize]; | 89 char referenceData[kDefaultTestSize]; |
| 123 prepareReferenceData(referenceData, sizeof(referenceData)); | 90 prepareReferenceData(referenceData, sizeof(referenceData)); |
| 124 RefPtr<SharedBuffer> data = SharedBuffer::create(); | 91 RefPtr<SharedBuffer> data = SharedBuffer::create(); |
| 125 data->append(referenceData, sizeof(referenceData)); | 92 data->append(referenceData, sizeof(referenceData)); |
| 126 | 93 |
| 127 SegmentReaders readerStruct(data); | 94 FastSharedBufferReader reader(data); |
| 128 for (auto segmentReader : readerStruct.segmentReaders) { | 95 for (size_t i = 0; i < sizeof(referenceData); ++i) { |
| 129 FastSharedBufferReader reader(segmentReader); | 96 ASSERT_EQ(referenceData[i], reader.getOneByte(i)); |
| 130 for (size_t i = 0; i < sizeof(referenceData); ++i) { | |
| 131 ASSERT_EQ(referenceData[i], reader.getOneByte(i)); | |
| 132 } | |
| 133 } | 97 } |
| 134 } | 98 } |
| 135 | 99 |
| 136 // Tests that a read from inside the penultimate segment to the very end of the | 100 // Tests that a read from inside the penultimate segment to the very end of the |
| 137 // buffer doesn't try to read off the end of the buffer. | 101 // buffer doesn't try to read off the end of the buffer. |
| 138 TEST(FastSharedBufferReaderTest, readAllOverlappingLastSegmentBoundary) | 102 TEST(FastSharedBufferReaderTest, readAllOverlappingLastSegmentBoundary) |
| 139 { | 103 { |
| 140 const unsigned dataSize = 2 * SharedBuffer::kSegmentSize; | 104 const unsigned dataSize = 2 * SharedBuffer::kSegmentSize; |
| 141 char referenceData[dataSize]; | 105 char referenceData[dataSize]; |
| 142 prepareReferenceData(referenceData, dataSize); | 106 prepareReferenceData(referenceData, dataSize); |
| 143 RefPtr<SharedBuffer> data = SharedBuffer::create(); | 107 RefPtr<SharedBuffer> data = SharedBuffer::create(); |
| 144 data->append(referenceData, dataSize); | 108 data->append(referenceData, dataSize); |
| 145 | 109 |
| 146 SegmentReaders readerStruct(data); | 110 char buffer[dataSize]; |
| 147 for (auto segmentReader : readerStruct.segmentReaders) { | 111 FastSharedBufferReader reader(data); |
| 148 FastSharedBufferReader reader(segmentReader); | 112 reader.getConsecutiveData(0, dataSize, buffer); |
| 149 char buffer[dataSize]; | |
| 150 reader.getConsecutiveData(0, dataSize, buffer); | |
| 151 ASSERT_FALSE(memcmp(buffer, referenceData, dataSize)); | |
| 152 } | |
| 153 } | |
| 154 | 113 |
| 155 // Verify that reading past the end of the buffer does not break future reads. | 114 ASSERT_FALSE(memcmp(buffer, referenceData, dataSize)); |
| 156 TEST(SegmentReaderTest, readPastEndThenRead) | |
| 157 { | |
| 158 const unsigned dataSize = 2 * SharedBuffer::kSegmentSize; | |
| 159 char referenceData[dataSize]; | |
| 160 prepareReferenceData(referenceData, dataSize); | |
| 161 RefPtr<SharedBuffer> data = SharedBuffer::create(); | |
| 162 data->append(referenceData, dataSize); | |
| 163 | |
| 164 SegmentReaders readerStruct(data); | |
| 165 for (auto segmentReader : readerStruct.segmentReaders) { | |
| 166 const char* contents; | |
| 167 size_t length = segmentReader->getSomeData(contents, dataSize); | |
| 168 EXPECT_EQ(0u, length); | |
| 169 | |
| 170 length = segmentReader->getSomeData(contents, 0); | |
| 171 EXPECT_LE(SharedBuffer::kSegmentSize, length); | |
| 172 } | |
| 173 } | |
| 174 | |
| 175 TEST(SegmentReaderTest, getAsSkData) | |
| 176 { | |
| 177 const unsigned dataSize = 4 * SharedBuffer::kSegmentSize; | |
| 178 char referenceData[dataSize]; | |
| 179 prepareReferenceData(referenceData, dataSize); | |
| 180 RefPtr<SharedBuffer> data = SharedBuffer::create(); | |
| 181 data->append(referenceData, dataSize); | |
| 182 | |
| 183 SegmentReaders readerStruct(data); | |
| 184 for (auto segmentReader : readerStruct.segmentReaders) { | |
| 185 RefPtr<SkData> skdata = segmentReader->getAsSkData(); | |
| 186 EXPECT_EQ(data->size(), skdata->size()); | |
| 187 | |
| 188 const char* segment; | |
| 189 size_t position = 0; | |
| 190 for (size_t length = segmentReader->getSomeData(segment, position); | |
| 191 length; length = segmentReader->getSomeData(segment, position)) { | |
| 192 ASSERT_FALSE(memcmp(segment, skdata->bytes() + position, length)); | |
| 193 position += length; | |
| 194 } | |
| 195 EXPECT_EQ(position, dataSize); | |
| 196 } | |
| 197 } | |
| 198 | |
| 199 TEST(SegmentReaderTest, variableSegments) | |
| 200 { | |
| 201 const size_t dataSize = 3.5 * SharedBuffer::kSegmentSize; | |
| 202 char referenceData[dataSize]; | |
| 203 prepareReferenceData(referenceData, dataSize); | |
| 204 | |
| 205 RefPtr<SegmentReader> segmentReader; | |
| 206 { | |
| 207 // Create a SegmentReader with difference sized segments, to test that | |
| 208 // the SkROBuffer implementation works when two consecutive segments | |
| 209 // are not the same size. This test relies on knowledge of the | |
| 210 // internals of SkRWBuffer: it ensures that each segment is at least | |
| 211 // 4096 (though the actual data may be smaller, if it has not been | |
| 212 // written to yet), but when appending a larger amount it may create a | |
| 213 // larger segment. | |
| 214 SkRWBuffer rwBuffer; | |
| 215 rwBuffer.append(referenceData, SharedBuffer::kSegmentSize); | |
| 216 rwBuffer.append(referenceData + SharedBuffer::kSegmentSize, 2 * SharedBu
ffer::kSegmentSize); | |
| 217 rwBuffer.append(referenceData + 3 * SharedBuffer::kSegmentSize, .5 * Sha
redBuffer::kSegmentSize); | |
| 218 | |
| 219 segmentReader = SegmentReader::createFromSkROBuffer(adoptRef(rwBuffer.ne
wRBufferSnapshot())); | |
| 220 } | |
| 221 | |
| 222 const char* segment; | |
| 223 size_t position = 0; | |
| 224 size_t lastLength = 0; | |
| 225 for (size_t length = segmentReader->getSomeData(segment, position); | |
| 226 length; length = segmentReader->getSomeData(segment, position)) { | |
| 227 // It is not a bug to have consecutive segments of the same length, but | |
| 228 // it does mean that the following test does not actually test what it | |
| 229 // is intended to test. | |
| 230 ASSERT_NE(length, lastLength); | |
| 231 lastLength = length; | |
| 232 | |
| 233 ASSERT_FALSE(memcmp(segment, referenceData + position, length)); | |
| 234 position += length; | |
| 235 } | |
| 236 EXPECT_EQ(position, dataSize); | |
| 237 } | 115 } |
| 238 | 116 |
| 239 } // namespace blink | 117 } // namespace blink |
| OLD | NEW |