Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(3511)

Unified Diff: base/strings/safe_sprintf.cc

Issue 18656004: Added a new SafeSPrintf() function that implements snprintf() in an async-safe-fashion (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: Minor nits Created 7 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « base/strings/safe_sprintf.h ('k') | base/strings/safe_sprintf_unittest.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: base/strings/safe_sprintf.cc
diff --git a/base/strings/safe_sprintf.cc b/base/strings/safe_sprintf.cc
new file mode 100644
index 0000000000000000000000000000000000000000..55ab09a36d79a10e61dd210d32912c97e3252ca4
--- /dev/null
+++ b/base/strings/safe_sprintf.cc
@@ -0,0 +1,681 @@
+// Copyright (c) 2013 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "base/strings/safe_sprintf.h"
+
+#include <limits>
+
+#if !defined(NDEBUG)
+// In debug builds, we use RAW_CHECK() to print useful error messages, if
+// SafeSPrintf() is called with broken arguments.
+// As our contract promises that SafeSPrintf() can be called from any
+// restricted run-time context, it is not actually safe to call logging
+// functions from it; and we only ever do so for debug builds and hope for the
+// best. We should _never_ call any logging function other than RAW_CHECK(),
+// and we should _never_ include any logging code that is active in production
+// builds. Most notably, we should not include these logging functions in
+// unofficial release builds, even though those builds would otherwise have
+// DCHECKS() enabled.
+// In other words; please do not remove the #ifdef around this #include.
+// Instead, in production builds we opt for returning a degraded result,
+// whenever an error is encountered.
+// E.g. The broken function call
+// SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
+// will print something like
+// errno = 13, (%x)
+// instead of
+// errno = 13 (Access denied)
+// In most of the anticipated use cases, that's probably the preferred
+// behavior.
+#include "base/logging.h"
+#define DEBUG_CHECK RAW_CHECK
+#else
+#define DEBUG_CHECK(x) do { if (x) { } } while (0)
+#endif
+
+namespace base {
+namespace strings {
+
+// The code in this file is extremely careful to be async-signal-safe.
+//
+// Most obviously, we avoid calling any code that could dynamically allocate
+// memory. Doing so would almost certainly result in bugs and dead-locks.
+// We also avoid calling any other STL functions that could have unintended
+// side-effects involving memory allocation or access to other shared
+// resources.
+//
+// But on top of that, we also avoid calling other library functions, as many
+// of them have the side-effect of calling getenv() (in order to deal with
+// localization) or accessing errno. The latter sounds benign, but there are
+// several execution contexts where it isn't even possible to safely read let
+// alone write errno.
+//
+// The stated design goal of the SafeSPrintf() function is that it can be
+// called from any context that can safely call C or C++ code (i.e. anything
+// that doesn't require assembly code).
+//
+// For a brief overview of some but not all of the issues with async-signal-
+// safety, refer to:
+// http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
+
+namespace {
+const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
+
+const char kUpCaseHexDigits[] = "0123456789ABCDEF";
+const char kDownCaseHexDigits[] = "0123456789abcdef";
+}
+
+#if defined(NDEBUG)
+// We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
+// but C++ doesn't allow us to do that for constants. Instead, we have to
+// use careful casting and shifting. We later use a COMPILE_ASSERT to
+// verify that this worked correctly.
+namespace {
+const size_t kSSizeMax = kSSizeMaxConst;
+}
+#else // defined(NDEBUG)
+// For efficiency, we really need kSSizeMax to be a constant. But for unit
+// tests, it should be adjustable. This allows us to verify edge cases without
+// having to fill the entire available address space. As a compromise, we make
+// kSSizeMax adjustable in debug builds, and then only compile that particular
+// part of the unit test in debug builds.
+namespace {
+static size_t kSSizeMax = kSSizeMaxConst;
+}
+
+namespace internal {
+void SetSafeSPrintfSSizeMaxForTest(size_t max) {
+ kSSizeMax = max;
+}
+
+size_t GetSafeSPrintfSSizeMaxForTest() {
+ return kSSizeMax;
+}
+}
+#endif // defined(NDEBUG)
+
+namespace {
+class Buffer {
+ public:
+ // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
+ // has |size| bytes of writable storage. It is the caller's responsibility
+ // to ensure that the buffer is at least one byte in size, so that it fits
+ // the trailing NUL that will be added by the destructor. The buffer also
+ // must be smaller or equal to kSSizeMax in size.
+ Buffer(char* buffer, size_t size)
+ : buffer_(buffer),
+ size_(size - 1), // Account for trailing NUL byte
+ count_(0) {
+// This test should work on all C++11 compilers, but apparently something is
+// not working on all versions of clang just yet (e.g. on Mac, IOS, and
+// Android). We are conservative and exclude all of clang for the time being.
+// TODO(markus): Check if this restriction can be lifted.
+#if __cplusplus >= 201103 && !defined(__clang__)
+ COMPILE_ASSERT(kSSizeMaxConst == std::numeric_limits<ssize_t>::max(),
+ kSSizeMax_is_the_max_value_of_an_ssize_t);
+#endif
+ DEBUG_CHECK(size > 0);
+ DEBUG_CHECK(size <= kSSizeMax);
+ }
+
+ ~Buffer() {
+ // The code calling the constructor guaranteed that there was enough space
+ // to store a trailing NUL -- and in debug builds, we are actually
+ // verifying this with DEBUG_CHECK()s in the constructor. So, we can
+ // always unconditionally write the NUL byte in the destructor. We do not
+ // need to adjust the count_, as SafeSPrintf() copies snprintf() in not
+ // including the NUL byte in its return code.
+ *GetInsertionPoint() = '\000';
+ }
+
+ // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
+ // caller can now stop adding more data, as GetCount() has reached its
+ // maximum possible value.
+ inline bool OutOfAddressableSpace() const {
+ return count_ == static_cast<size_t>(kSSizeMax - 1);
+ }
+
+ // Returns the number of bytes that would have been emitted to |buffer_|
+ // if it was sized sufficiently large. This number can be larger than
+ // |size_|, if the caller provided an insufficiently large output buffer.
+ // But it will never be bigger than |kSSizeMax-1|.
+ inline ssize_t GetCount() const {
+ DEBUG_CHECK(count_ < kSSizeMax);
+ return static_cast<ssize_t>(count_);
+ }
+
+ // Emits one |ch| character into the |buffer_| and updates the |count_| of
+ // characters that are currently supposed to be in the buffer.
+ // Returns "false", iff the buffer was already full.
+ // N.B. |count_| increases even if no characters have been written. This is
+ // needed so that GetCount() can return the number of bytes that should
+ // have been allocated for the |buffer_|.
+ inline bool Out(char ch) {
+ if (size_ >= 1 && count_ < size_) {
+ buffer_[count_] = ch;
+ return IncrementCountByOne();
+ }
+ // |count_| still needs to be updated, even if the buffer has been
+ // filled completely. This allows SafeSPrintf() to return the number of
+ // bytes that should have been emitted.
+ IncrementCountByOne();
+ return false;
+ }
+
+ // Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
+ // |count_| will also be incremented by the number of bytes that were meant
+ // to be emitted. The |pad| character is typically either a ' ' space
+ // or a '0' zero, but other non-NUL values are legal.
+ // Returns "false", iff the the |buffer_| filled up (i.e. |count_|
+ // overflowed |size_|) at any time during padding.
+ inline bool Pad(char pad, size_t padding, size_t len) {
+ DEBUG_CHECK(pad);
+ DEBUG_CHECK(padding >= 0 && padding <= kSSizeMax);
+ DEBUG_CHECK(len >= 0);
+ for (; padding > len; --padding) {
+ if (!Out(pad)) {
+ if (--padding) {
+ IncrementCount(padding-len);
+ }
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // POSIX doesn't define any async-signal-safe function for converting
+ // an integer to ASCII. Define our own version.
+ //
+ // This also gives us the ability to make the function a little more
+ // powerful and have it deal with |padding|, with truncation, and with
+ // predicting the length of the untruncated output.
+ //
+ // IToASCII() converts an integer |i| to ASCII.
+ //
+ // Unlike similar functions in the standard C library, it never appends a
+ // NUL character. This is left for the caller to do.
+ //
+ // While the function signature takes a signed int64_t, the code decides at
+ // run-time whether to treat the argument as signed (int64_t) or as unsigned
+ // (uint64_t) based on the value of |sign|.
+ //
+ // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
+ // a |sign|. Otherwise, |i| is treated as unsigned.
+ //
+ // For bases larger than 10, |upcase| decides whether lower-case or upper-
+ // case letters should be used to designate digits greater than 10.
+ //
+ // Padding can be done with either '0' zeros or ' ' spaces. Padding has to
+ // be positive and will always be applied to the left of the output.
+ //
+ // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
+ // the left of |padding|, if |pad| is '0'; and to the right of |padding|
+ // if |pad| is ' '.
+ //
+ // Returns "false", if the |buffer_| overflowed at any time.
+ bool IToASCII(bool sign, bool upcase, int64_t i, int base,
+ char pad, size_t padding, const char* prefix);
+
+ private:
+ // Increments |count_| by |inc| unless this would cause |count_| to
+ // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
+ // it then clamps |count_| to |kSSizeMax-1|.
+ inline bool IncrementCount(size_t inc) {
+ // "inc" is either 1 or a "padding" value. Padding is clamped at
+ // run-time to at most kSSizeMax-1. So, we know that "inc" is always in
+ // the range 1..kSSizeMax-1.
+ // This allows us to compute "kSSizeMax - 1 - inc" without incurring any
+ // integer overflows.
+ DEBUG_CHECK(inc <= kSSizeMax - 1);
+ if (count_ > kSSizeMax - 1 - inc) {
+ count_ = kSSizeMax - 1;
+ return false;
+ } else {
+ count_ += inc;
+ return true;
+ }
+ }
+
+ // Convenience method for the common case of incrementing |count_| by one.
+ inline bool IncrementCountByOne() {
+ return IncrementCount(1);
+ }
+
+ // Return the current insertion point into the buffer. This is typically
+ // at |buffer_| + |count_|, but could be before that if truncation
+ // happened. It always points to one byte past the last byte that was
+ // successfully placed into the |buffer_|.
+ inline char* GetInsertionPoint() const {
+ size_t idx = count_;
+ if (idx > size_) {
+ idx = size_;
+ }
+ return buffer_ + idx;
+ }
+
+ // User-provided buffer that will receive the fully formatted output string.
+ char* buffer_;
+
+ // Number of bytes that are available in the buffer excluding the trailing
+ // NUL byte that will be added by the destructor.
+ const size_t size_;
+
+ // Number of bytes that would have been emitted to the buffer, if the buffer
+ // was sufficiently big. This number always excludes the trailing NUL byte
+ // and it is guaranteed to never grow bigger than kSSizeMax-1.
+ size_t count_;
+
+ DISALLOW_COPY_AND_ASSIGN(Buffer);
+};
+
+
+bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base,
+ char pad, size_t padding, const char* prefix) {
+ // Sanity check for parameters. None of these should ever fail, but see
+ // above for the rationale why we can't call CHECK().
+ DEBUG_CHECK(base >= 2);
+ DEBUG_CHECK(base <= 16);
+ DEBUG_CHECK(!sign || base == 10);
+ DEBUG_CHECK(pad == '0' || pad == ' ');
+ DEBUG_CHECK(padding >= 0);
+ DEBUG_CHECK(padding <= kSSizeMax);
+ DEBUG_CHECK(!(sign && prefix && *prefix));
+
+ // Handle negative numbers, if the caller indicated that |i| should be
+ // treated as a signed number; otherwise treat |i| as unsigned (even if the
+ // MSB is set!)
+ // Details are tricky, because of limited data-types, but equivalent pseudo-
+ // code would look like:
+ // if (sign && i < 0)
+ // prefix = "-";
+ // num = abs(i);
+ int minint = 0;
+ uint64_t num;
+ if (sign && i < 0) {
+ prefix = "-";
+
+ // Turn our number positive.
+ if (i == std::numeric_limits<int64_t>::min()) {
+ // The most negative integer needs special treatment.
+ minint = 1;
+ num = static_cast<uint64_t>(-(i + 1));
+ } else {
+ // "Normal" negative numbers are easy.
+ num = static_cast<uint64_t>(-i);
+ }
+ } else {
+ num = static_cast<uint64_t>(i);
+ }
+
+ // If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
+ // make the prefix accessible in reverse order, so that we can later output
+ // it right between padding and the number.
+ // We cannot choose the easier approach of just reversing the number, as that
+ // fails in situations where we need to truncate numbers that have padding
+ // and/or prefixes.
+ const char* reverse_prefix = NULL;
+ if (prefix && *prefix) {
+ if (pad == '0') {
+ while (*prefix) {
+ if (padding) {
+ --padding;
+ }
+ Out(*prefix++);
+ }
+ prefix = NULL;
+ } else {
+ for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
+ }
+ }
+ } else
+ prefix = NULL;
+ const size_t prefix_length = reverse_prefix - prefix;
+
+ // Loop until we have converted the entire number. Output at least one
+ // character (i.e. '0').
+ size_t start = count_;
+ size_t discarded = 0;
+ bool started = false;
+ do {
+ // Make sure there is still enough space left in our output buffer.
+ if (count_ >= size_) {
+ if (start < size_) {
+ // It is rare that we need to output a partial number. But if asked
+ // to do so, we will still make sure we output the correct number of
+ // leading digits.
+ // Since we are generating the digits in reverse order, we actually
+ // have to discard digits in the order that we have already emitted
+ // them. This is essentially equivalent to:
+ // memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
+ for (char* move = buffer_ + start, *end = buffer_ + size_ - 1;
+ move < end;
+ ++move) {
+ *move = move[1];
+ }
+ ++discarded;
+ --count_;
+ } else if (count_ - size_ > 1) {
+ // Need to increment either |count_| or |discarded| to make progress.
+ // The latter is more efficient, as it eventually triggers fast
+ // handling of padding. But we have to ensure we don't accidentally
+ // change the overall state (i.e. switch the state-machine from
+ // discarding to non-discarding). |count_| needs to always stay
+ // bigger than |size_|.
+ --count_;
+ ++discarded;
+ }
+ }
+
+ // Output the next digit and (if necessary) compensate for the most
+ // negative integer needing special treatment. This works because,
+ // no matter the bit width of the integer, the lowest-most decimal
+ // integer always ends in 2, 4, 6, or 8.
+ if (!num && started) {
+ if (reverse_prefix > prefix) {
+ Out(*--reverse_prefix);
+ } else {
+ Out(pad);
+ }
+ } else {
+ started = true;
+ Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]);
+ }
+
+ minint = 0;
+ num /= base;
+
+ // Add padding, if requested.
+ if (padding > 0) {
+ --padding;
+
+ // Performance optimization for when we are asked to output excessive
+ // padding, but our output buffer is limited in size. Even if we output
+ // a 64bit number in binary, we would never write more than 64 plus
+ // prefix non-padding characters. So, once this limit has been passed,
+ // any further state change can be computed arithmetically; we know that
+ // by this time, our entire final output consists of padding characters
+ // that have all already been output.
+ if (discarded > 8*sizeof(num) + prefix_length) {
+ IncrementCount(padding);
+ padding = 0;
+ }
+ }
+ } while (num || padding || (reverse_prefix > prefix));
+
+ // Conversion to ASCII actually resulted in the digits being in reverse
+ // order. We can't easily generate them in forward order, as we can't tell
+ // the number of characters needed until we are done converting.
+ // So, now, we reverse the string (except for the possible '-' sign).
+ char* front = buffer_ + start;
+ char* back = GetInsertionPoint();
+ while (--back > front) {
+ char ch = *back;
+ *back = *front;
+ *front++ = ch;
+ }
+
+ IncrementCount(discarded);
+ return !discarded;
+}
+
+} // anonymous namespace
+
+namespace internal {
+
+ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args,
+ const size_t max_args) {
+ // Make sure that at least one NUL byte can be written, and that the buffer
+ // never overflows kSSizeMax. Not only does that use up most or all of the
+ // address space, it also would result in a return code that cannot be
+ // represented.
+ if (static_cast<ssize_t>(sz) < 1) {
+ return -1;
+ } else if (sz > kSSizeMax) {
+ sz = kSSizeMax;
+ }
+
+ // Iterate over format string and interpret '%' arguments as they are
+ // encountered.
+ Buffer buffer(buf, sz);
+ size_t padding;
+ char pad;
+ for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) {
+ if (*fmt++ == '%') {
+ padding = 0;
+ pad = ' ';
+ char ch = *fmt++;
+ format_character_found:
+ switch (ch) {
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ // Found a width parameter. Convert to an integer value and store in
+ // "padding". If the leading digit is a zero, change the padding
+ // character from a space ' ' to a zero '0'.
+ pad = ch == '0' ? '0' : ' ';
+ for (;;) {
+ // The maximum allowed padding fills all the available address
+ // space and leaves just enough space to insert the trailing NUL.
+ const size_t max_padding = kSSizeMax - 1;
+ if (padding > max_padding/10 ||
+ 10*padding > max_padding - (ch - '0')) {
+ DEBUG_CHECK(padding <= max_padding/10 &&
+ 10*padding <= max_padding - (ch - '0'));
+ // Integer overflow detected. Skip the rest of the width until
+ // we find the format character, then do the normal error handling.
+ padding_overflow:
+ padding = max_padding;
+ while ((ch = *fmt++) >= '0' && ch <= '9') {
+ }
+ if (cur_arg < max_args) {
+ ++cur_arg;
+ }
+ goto fail_to_expand;
+ }
+ padding = 10*padding + ch - '0';
+ if (padding > max_padding) {
+ // This doesn't happen for "sane" values of kSSizeMax. But once
+ // kSSizeMax gets smaller than about 10, our earlier range checks
+ // are incomplete. Unittests do trigger this artificial corner
+ // case.
+ DEBUG_CHECK(padding <= max_padding);
+ goto padding_overflow;
+ }
+ ch = *fmt++;
+ if (ch < '0' || ch > '9') {
+ // Reached the end of the width parameter. This is where the format
+ // character is found.
+ goto format_character_found;
+ }
+ }
+ break;
+ case 'c': { // Output an ASCII character.
+ // Check that there are arguments left to be inserted.
+ if (cur_arg >= max_args) {
+ DEBUG_CHECK(cur_arg < max_args);
+ goto fail_to_expand;
+ }
+
+ // Check that the argument has the expected type.
+ const Arg& arg = args[cur_arg++];
+ if (arg.type != Arg::INT && arg.type != Arg::UINT) {
+ DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
+ goto fail_to_expand;
+ }
+
+ // Apply padding, if needed.
+ buffer.Pad(' ', padding, 1);
+
+ // Convert the argument to an ASCII character and output it.
+ char ch = static_cast<char>(arg.i);
+ if (!ch) {
+ goto end_of_output_buffer;
+ }
+ buffer.Out(ch);
+ break; }
+ case 'd': // Output a possibly signed decimal value.
+ case 'o': // Output an unsigned octal value.
+ case 'x': // Output an unsigned hexadecimal value.
+ case 'X':
+ case 'p': { // Output a pointer value.
+ // Check that there are arguments left to be inserted.
+ if (cur_arg >= max_args) {
+ DEBUG_CHECK(cur_arg < max_args);
+ goto fail_to_expand;
+ }
+
+ const Arg& arg = args[cur_arg++];
+ int64_t i;
+ const char* prefix = NULL;
+ if (ch != 'p') {
+ // Check that the argument has the expected type.
+ if (arg.type != Arg::INT && arg.type != Arg::UINT) {
+ DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
+ goto fail_to_expand;
+ }
+ i = arg.i;
+
+ if (ch != 'd') {
+ // The Arg() constructor automatically performed sign expansion on
+ // signed parameters. This is great when outputting a %d decimal
+ // number, but can result in unexpected leading 0xFF bytes when
+ // outputting a %x hexadecimal number. Mask bits, if necessary.
+ // We have to do this here, instead of in the Arg() constructor, as
+ // the Arg() constructor cannot tell whether we will output a %d
+ // or a %x. Only the latter should experience masking.
+ if (arg.width < sizeof(int64_t)) {
+ i &= (1LL << (8*arg.width)) - 1;
+ }
+ }
+ } else {
+ // Pointer values require an actual pointer or a string.
+ if (arg.type == Arg::POINTER) {
+ i = reinterpret_cast<uintptr_t>(arg.ptr);
+ } else if (arg.type == Arg::STRING) {
+ i = reinterpret_cast<uintptr_t>(arg.str);
+ } else if (arg.type == Arg::INT && arg.width == sizeof(void *) &&
+ arg.i == 0) { // Allow C++'s version of NULL
+ i = 0;
+ } else {
+ DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
+ goto fail_to_expand;
+ }
+
+ // Pointers always include the "0x" prefix.
+ prefix = "0x";
+ }
+
+ // Use IToASCII() to convert to ASCII representation. For decimal
+ // numbers, optionally print a sign. For hexadecimal numbers,
+ // distinguish between upper and lower case. %p addresses are always
+ // printed as upcase. Supports base 8, 10, and 16. Prints padding
+ // and/or prefixes, if so requested.
+ buffer.IToASCII(ch == 'd' && arg.type == Arg::INT,
+ ch != 'x', i,
+ ch == 'o' ? 8 : ch == 'd' ? 10 : 16,
+ pad, padding, prefix);
+ break; }
+ case 's': {
+ // Check that there are arguments left to be inserted.
+ if (cur_arg >= max_args) {
+ DEBUG_CHECK(cur_arg < max_args);
+ goto fail_to_expand;
+ }
+
+ // Check that the argument has the expected type.
+ const Arg& arg = args[cur_arg++];
+ const char *s;
+ if (arg.type == Arg::STRING)
+ s = arg.str ? arg.str : "<NULL>";
+ else if (arg.type == Arg::INT && arg.width == sizeof(void *) &&
+ arg.i == 0) { // Allow C++'s version of NULL
+ s = "<NULL>";
+ } else {
+ DEBUG_CHECK(arg.type == Arg::STRING);
+ goto fail_to_expand;
+ }
+
+ // Apply padding, if needed. This requires us to first check the
+ // length of the string that we are outputting.
+ if (padding) {
+ size_t len = 0;
+ for (const char* src = s; *src++; ) {
+ ++len;
+ }
+ buffer.Pad(' ', padding, len);
+ }
+
+ // Printing a string involves nothing more than copying it into the
+ // output buffer and making sure we don't output more bytes than
+ // available space; Out() takes care of doing that.
+ for (const char* src = s; *src; ) {
+ buffer.Out(*src++);
+ }
+ break; }
+ case '%':
+ // Quoted percent '%' character.
+ goto copy_verbatim;
+ fail_to_expand:
+ // C++ gives us tools to do type checking -- something that snprintf()
+ // could never really do. So, whenever we see arguments that don't
+ // match up with the format string, we refuse to output them. But
+ // since we have to be extremely conservative about being async-
+ // signal-safe, we are limited in the type of error handling that we
+ // can do in production builds (in debug builds we can use
+ // DEBUG_CHECK() and hope for the best). So, all we do is pass the
+ // format string unchanged. That should eventually get the user's
+ // attention; and in the meantime, it hopefully doesn't lose too much
+ // data.
+ default:
+ // Unknown or unsupported format character. Just copy verbatim to
+ // output.
+ buffer.Out('%');
+ DEBUG_CHECK(ch);
+ if (!ch) {
+ goto end_of_format_string;
+ }
+ buffer.Out(ch);
+ break;
+ }
+ } else {
+ copy_verbatim:
+ buffer.Out(fmt[-1]);
+ }
+ }
+ end_of_format_string:
+ end_of_output_buffer:
+ return buffer.GetCount();
+}
+
+} // namespace internal
+
+ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
+ // Make sure that at least one NUL byte can be written, and that the buffer
+ // never overflows kSSizeMax. Not only does that use up most or all of the
+ // address space, it also would result in a return code that cannot be
+ // represented.
+ if (static_cast<ssize_t>(sz) < 1) {
+ return -1;
+ } else if (sz > kSSizeMax) {
+ sz = kSSizeMax;
+ }
+
+ Buffer buffer(buf, sz);
+
+ // In the slow-path, we deal with errors by copying the contents of
+ // "fmt" unexpanded. This means, if there are no arguments passed, the
+ // SafeSPrintf() function always degenerates to a version of strncpy() that
+ // de-duplicates '%' characters.
+ const char* src = fmt;
+ for (; *src; ++src) {
+ buffer.Out(*src);
+ DEBUG_CHECK(src[0] != '%' || src[1] == '%');
+ if (src[0] == '%' && src[1] == '%') {
+ ++src;
+ }
+ }
+ return buffer.GetCount();
+}
+
+} // namespace strings
+} // namespace base
« no previous file with comments | « base/strings/safe_sprintf.h ('k') | base/strings/safe_sprintf_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698