Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 // | |
| 5 // Author: markus@chromium.org | |
| 6 | |
| 7 #include "base/strings/safe_string_printf.h" | |
| 8 | |
| 9 #include <limits> | |
| 10 | |
| 11 #if !defined(NDEBUG) | |
| 12 // In debug builds, we use RAW_CHECK() to print useful error messages, if | |
| 13 // SafeSPrintf() is called with broken arguments. | |
| 14 // As our contract promises that SafeSPrintf() can be called from any | |
| 15 // restricted run-time context, it is not actually safe to call logging | |
| 16 // functions from it; and we only ever do so for debug builds and hope for the | |
| 17 // best. We should _never_ call any logging function other than RAW_CHECK(), | |
| 18 // and we should _never_ include any logging code that is active in production | |
| 19 // builds. Most notably, we should not include these logging functions in | |
| 20 // unofficial release builds, even though those builds would otherwise have | |
| 21 // DCHECKS() enabled. | |
| 22 // In other words; please do not remove the #ifdef around this #include. | |
| 23 // Instead, in production builds we opt for returning a degraded result, | |
| 24 // whenever an error is encountered. | |
| 25 // E.g. The broken function call | |
| 26 // SafeSPrintf("errno = %d (%x)", errno, strerror(errno)) | |
| 27 // will print something like | |
| 28 // errno = 13, (%x) | |
| 29 // instead of | |
| 30 // errno = 13 (Access denied) | |
| 31 // In most of the anticipated use cases, that's probably the preferred | |
| 32 // behavior. | |
| 33 #include "base/logging.h" | |
| 34 #define DEBUG_CHECK RAW_CHECK | |
| 35 #else | |
| 36 #define DEBUG_CHECK(x) do { if (x) { } } while (0) | |
| 37 #endif | |
| 38 | |
| 39 namespace base { | |
| 40 namespace strings { | |
| 41 | |
| 42 // The code in this file is extremely careful to be async-signal-safe. | |
| 43 // | |
| 44 // Most obviously, we avoid calling any code that could dynamically allocate | |
| 45 // memory. Doing so would almost certainly result in bugs and dead-locks. | |
| 46 // We also avoid calling any other STL functions that could have unintended | |
| 47 // side-effects involving memory allocation or access to other shared | |
| 48 // resources. | |
| 49 // | |
| 50 // But on top of that, we also avoid calling other library functions, as many | |
| 51 // of them have the side-effect of calling getenv() (in order to deal with | |
| 52 // localization) or accessing errno. The latter sounds benign, but there are | |
| 53 // several execution contexts where it isn't even possible to safely read let | |
| 54 // alone write errno. | |
| 55 // | |
| 56 // The stated design goal of the SafeSPrintf() function is that it can be | |
| 57 // called from any context that can safely call C or C++ code (i.e. anything | |
| 58 // that doesn't require assembly code). | |
| 59 // | |
| 60 // For a brief overview of some but not all of the issues with async-signal- | |
| 61 // safety, refer to: | |
| 62 // http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html | |
| 63 | |
| 64 namespace { | |
| 65 const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1; | |
|
willchan no longer on Chromium
2013/08/15 07:36:18
No indentation needed
Markus (顧孟勤)
2013/08/15 08:20:46
Done.
| |
| 66 | |
| 67 const char kUpCaseHexDigits[] = "0123456789ABCDEF"; | |
| 68 const char kDownCaseHexDigits[] = "0123456789abcdef"; | |
| 69 } | |
| 70 | |
| 71 #if defined(NDEBUG) | |
|
willchan no longer on Chromium
2013/08/15 07:36:18
Why don't these preprocessor blocks just move into
Markus (顧孟勤)
2013/08/15 08:20:46
The #else clause has blocks that need to be in the
| |
| 72 // We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(), | |
| 73 // but C++ doesn't allow us to do that for constants. Instead, we have to | |
| 74 // use careful casting and shifting. We later use a COMPILE_ASSERT to | |
| 75 // verify that this worked correctly. | |
| 76 namespace { | |
| 77 const size_t kSSizeMax = kSSizeMaxConst; | |
| 78 } | |
| 79 #else // defined(NDEBUG) | |
| 80 // For efficiency, we really need kSSizeMax to be a constant. But for unit | |
| 81 // tests, it should be adjustable. This allows us to verify edge cases without | |
| 82 // having to fill the entire available address space. As a compromise, we make | |
| 83 // kSSizeMax adjustable in debug builds, and then only compile that particular | |
| 84 // part of the unit test in debug builds. | |
| 85 namespace { | |
| 86 static size_t kSSizeMax = kSSizeMaxConst; | |
| 87 } | |
| 88 | |
| 89 namespace internal { | |
| 90 void SetSafeSPrintfSSizeMax(size_t max) { | |
| 91 kSSizeMax = max; | |
| 92 } | |
| 93 | |
| 94 size_t GetSafeSPrintfSSizeMax() { | |
| 95 return kSSizeMax; | |
| 96 } | |
| 97 } | |
| 98 #endif // defined(NDEBUG) | |
| 99 | |
| 100 namespace { | |
| 101 class Buffer { | |
| 102 public: | |
| 103 // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It | |
| 104 // has |size| bytes of writable storage. It is the caller's responsibility | |
| 105 // to ensure that the buffer is at least one byte in size, so that it fits | |
| 106 // the trailing NUL that will be added by the destructor. The buffer also | |
| 107 // must be smaller or equal to kSSizeMax in size. | |
| 108 Buffer(char* buffer, size_t size) | |
| 109 : buffer_(buffer), | |
| 110 size_(size - 1), // Account for trailing NUL byte | |
| 111 count_(0) { | |
| 112 // This test should work on all C++11 compilers, but apparently something is | |
| 113 // not working on all versions of clang just yet (e.g. on Mac, IOS, and | |
| 114 // Android). We are conservative and exclude all of clang for the time being. | |
| 115 // TODO(markus): Check if this restriction can be lifted. | |
| 116 #if __cplusplus >= 201103 && !defined(__clang__) | |
| 117 COMPILE_ASSERT(kSSizeMaxConst == std::numeric_limits<ssize_t>::max(), | |
| 118 kSSizeMax_is_the_max_value_of_an_ssize_t); | |
| 119 #endif | |
| 120 DEBUG_CHECK(size > 0); | |
| 121 DEBUG_CHECK(size <= kSSizeMax); | |
| 122 } | |
| 123 | |
| 124 ~Buffer() { | |
| 125 // The code calling the constructor guaranteed that there was enough space | |
| 126 // to store a trailing NUL -- and in debug builds, we are actually | |
| 127 // verifying this with DEBUG_CHECK()s in the constructor. So, we can | |
| 128 // always unconditionally write the NUL byte in the destructor. We do not | |
| 129 // need to adjust the count_, as SafeSPrintf() copies snprintf() in not | |
| 130 // including the NUL byte in its return code. | |
| 131 *GetInsertionPoint() = '\000'; | |
| 132 } | |
| 133 | |
| 134 // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The | |
| 135 // caller can now stop adding more data, as GetCount() has reached its | |
| 136 // maximum possible value. | |
| 137 inline bool OutOfAddressableSpace() const { | |
| 138 return count_ == static_cast<size_t>(kSSizeMax - 1); | |
| 139 } | |
| 140 | |
| 141 // Returns the number of bytes that would have been emitted to |buffer_| | |
| 142 // if it was sized sufficiently large. This number can be larger than | |
| 143 // |size_|, if the caller provided an insufficiently large output buffer. | |
| 144 // But it will never be bigger than |kSSizeMax-1|. | |
| 145 inline ssize_t GetCount() const { | |
| 146 DEBUG_CHECK(count_ < kSSizeMax); | |
| 147 return static_cast<ssize_t>(count_); | |
| 148 } | |
| 149 | |
| 150 // Emits one |ch| character into the |buffer_| and updates the |count_| of | |
| 151 // characters that are currently supposed to be in the buffer. | |
| 152 // Returns "false", iff the buffer was already full. | |
| 153 // N.B. |count_| increases even if no characters have been written. This is | |
| 154 // needed so that GetCount() can return the number of bytes that should | |
| 155 // have been allocated for the |buffer_|. | |
| 156 inline bool Out(char ch) { | |
| 157 if (size_ >= 1 && count_ < size_) { | |
| 158 buffer_[count_] = ch; | |
| 159 return IncrementCountByOne(); | |
| 160 } | |
| 161 // |count_| still needs to be updated, even if the buffer has been | |
| 162 // filled completely. This allows SafeSPrintf() to return the number of | |
| 163 // bytes that should have been emitted. | |
| 164 IncrementCountByOne(); | |
| 165 return false; | |
| 166 } | |
| 167 | |
| 168 // Inserts |padding|-|len| bytes worth of padding into the |buffer_|. | |
| 169 // |count_| will also be incremented by the number of bytes that were meant | |
| 170 // to be emitted. The |pad| character is typically either a ' ' space | |
| 171 // or a '0' zero, but other non-NUL values are legal. | |
| 172 // Returns "false", iff the the |buffer_| filled up (i.e. |count_| | |
| 173 // overflowed |size_|) at any time during padding. | |
| 174 inline bool Pad(char pad, size_t padding, size_t len) { | |
| 175 DEBUG_CHECK(pad); | |
| 176 DEBUG_CHECK(padding >= 0 && padding <= kSSizeMax); | |
| 177 DEBUG_CHECK(len >= 0); | |
| 178 for (; padding > len; --padding) { | |
| 179 if (!Out(pad)) { | |
| 180 if (--padding) { | |
| 181 IncrementCount(padding-len); | |
| 182 } | |
| 183 return false; | |
| 184 } | |
| 185 } | |
| 186 return true; | |
| 187 } | |
| 188 | |
| 189 // POSIX doesn't define any async-signal-safe function for converting | |
| 190 // an integer to ASCII. Define our own version. | |
| 191 // | |
| 192 // This also gives us the ability to make the function a little more | |
| 193 // powerful and have it deal with |padding|, with truncation, and with | |
| 194 // predicting the length of the untruncated output. | |
| 195 // | |
| 196 // IToASCII() converts an integer |i| to ASCII. | |
| 197 // | |
| 198 // Unlike similar functions in the standard C library, it never appends a | |
| 199 // NUL character. This is left for the caller to do. | |
| 200 // | |
| 201 // While the function signature takes a signed int64_t, the code decides at | |
| 202 // run-time whether to treat the argument as signed (int64_t) or as unsigned | |
| 203 // (uint64_t) based on the value of |sign|. | |
| 204 // | |
| 205 // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have | |
| 206 // a |sign|. Otherwise, |i| is treated as unsigned. | |
| 207 // | |
| 208 // For bases larger than 10, |upcase| decides whether lower-case or upper- | |
| 209 // case letters should be used to designate digits greater than 10. | |
| 210 // | |
| 211 // Padding can be done with either '0' zeros or ' ' spaces. Padding has to | |
| 212 // be positive and will always be applied to the left of the output. | |
| 213 // | |
| 214 // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to | |
| 215 // the left of |padding|, if |pad| is '0'; and to the right of |padding| | |
| 216 // if |pad| is ' '. | |
| 217 // | |
| 218 // Returns "false", if the |buffer_| overflowed at any time. | |
| 219 bool IToASCII(bool sign, bool upcase, int64_t i, int base, | |
| 220 char pad, size_t padding, const char* prefix); | |
| 221 | |
| 222 private: | |
| 223 // Increments |count_| by |inc| unless this would cause |count_| to | |
| 224 // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected; | |
| 225 // it then clamps |count_| to |kSSizeMax-1|. | |
| 226 inline bool IncrementCount(size_t inc) { | |
| 227 // "inc" is either 1 or a "padding" value. Padding is clamped at | |
| 228 // run-time to at most kSSizeMax-1. So, we know that "inc" is always in | |
| 229 // the range 1..kSSizeMax-1. | |
| 230 // This allows us to compute "kSSizeMax - 1 - inc" without incurring any | |
| 231 // integer overflows. | |
| 232 DEBUG_CHECK(inc <= kSSizeMax - 1); | |
| 233 if (count_ > kSSizeMax - 1 - inc) { | |
| 234 count_ = kSSizeMax - 1; | |
| 235 return false; | |
| 236 } else { | |
| 237 count_ += inc; | |
| 238 return true; | |
| 239 } | |
| 240 } | |
| 241 | |
| 242 // Convenience method for the common case of incrementing |count_| by one. | |
| 243 inline bool IncrementCountByOne() { | |
| 244 return IncrementCount(1); | |
| 245 } | |
| 246 | |
| 247 // Return the current insertion point into the buffer. This is typically | |
| 248 // at |buffer_| + |count_|, but could be before that if truncation | |
| 249 // happened. It always points to one byte past the last byte that was | |
| 250 // successfully placed into the |buffer_|. | |
| 251 inline char* GetInsertionPoint() const { | |
| 252 size_t idx = count_; | |
| 253 if (idx > size_) { | |
| 254 idx = size_; | |
| 255 } | |
| 256 return buffer_ + idx; | |
| 257 } | |
| 258 | |
| 259 // User-provided buffer that will receive the fully formatted output string. | |
| 260 char* buffer_; | |
| 261 | |
| 262 // Number of bytes that are available in the buffer excluding the trailing | |
| 263 // NUL byte that will be added by the destructor. | |
| 264 const size_t size_; | |
| 265 | |
| 266 // Number of bytes that would have been emitted to the buffer, if the buffer | |
| 267 // was sufficiently big. This number always excludes the trailing NUL byte | |
| 268 // and it is guaranteed to never grow bigger than kSSizeMax-1. | |
| 269 size_t count_; | |
| 270 | |
| 271 DISALLOW_COPY_AND_ASSIGN(Buffer); | |
| 272 }; | |
| 273 | |
| 274 | |
| 275 bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base, | |
| 276 char pad, size_t padding, const char* prefix) { | |
| 277 // Sanity check for parameters. None of these should ever fail, but see | |
| 278 // above for the rationale why we can't call CHECK(). | |
| 279 DEBUG_CHECK(base >= 2); | |
| 280 DEBUG_CHECK(base <= 16); | |
| 281 DEBUG_CHECK(!sign || base == 10); | |
| 282 DEBUG_CHECK(pad == '0' || pad == ' '); | |
| 283 DEBUG_CHECK(padding >= 0); | |
| 284 DEBUG_CHECK(padding <= kSSizeMax); | |
| 285 DEBUG_CHECK(!(sign && prefix && *prefix)); | |
| 286 | |
| 287 // Handle negative numbers, if the caller indicated that |i| should be | |
| 288 // treated as a signed number; otherwise treat |i| as unsigned (even if the | |
| 289 // MSB is set!) | |
| 290 // Details are tricky, because of limited data-types, but equivalent pseudo- | |
| 291 // code would look like: | |
| 292 // if (sign && i < 0) | |
| 293 // prefix = "-"; | |
| 294 // num = abs(i); | |
| 295 int minint = 0; | |
| 296 uint64_t num; | |
| 297 if (sign && i < 0) { | |
| 298 prefix = "-"; | |
| 299 | |
| 300 // Turn our number positive. | |
| 301 if (i == std::numeric_limits<int64_t>::min()) { | |
| 302 // The most negative integer needs special treatment. | |
| 303 minint = 1; | |
| 304 num = static_cast<uint64_t>(-(i + 1)); | |
| 305 } else { | |
| 306 // "Normal" negative numbers are easy. | |
| 307 num = static_cast<uint64_t>(-i); | |
| 308 } | |
| 309 } else { | |
| 310 num = static_cast<uint64_t>(i); | |
| 311 } | |
| 312 | |
| 313 // If padding with '0' zero, emit the prefix or '-' character now. Otherwise, | |
| 314 // make the prefix accessible in reverse order, so that we can later output | |
| 315 // it right between padding and the number. | |
| 316 // We cannot choose the easier approach of just reversing the number, as that | |
| 317 // fails in situations where we need to truncate numbers that have padding | |
| 318 // and/or prefixes. | |
| 319 const char* reverse_prefix = NULL; | |
| 320 if (prefix && *prefix) { | |
| 321 if (pad == '0') { | |
| 322 while (*prefix) { | |
| 323 if (padding) { | |
| 324 --padding; | |
| 325 } | |
| 326 Out(*prefix++); | |
| 327 } | |
| 328 prefix = NULL; | |
| 329 } else { | |
| 330 for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) { | |
| 331 } | |
| 332 } | |
| 333 } else | |
| 334 prefix = NULL; | |
| 335 const size_t prefix_length = reverse_prefix - prefix; | |
| 336 | |
| 337 // Loop until we have converted the entire number. Output at least one | |
| 338 // character (i.e. '0'). | |
| 339 size_t start = count_; | |
| 340 size_t discarded = 0; | |
| 341 bool started = false; | |
| 342 do { | |
| 343 // Make sure there is still enough space left in our output buffer. | |
| 344 if (count_ >= size_) { | |
| 345 if (start < size_) { | |
| 346 // It is rare that we need to output a partial number. But if asked | |
| 347 // to do so, we will still make sure we output the correct number of | |
| 348 // leading digits. | |
| 349 // Since we are generating the digits in reverse order, we actually | |
| 350 // have to discard digits in the order that we have already emitted | |
| 351 // them. This is essentially equivalent to: | |
| 352 // memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1) | |
| 353 for (char* move = buffer_ + start, *end = buffer_ + size_ - 1; | |
| 354 move < end; | |
| 355 ++move) { | |
| 356 *move = move[1]; | |
| 357 } | |
| 358 ++discarded; | |
| 359 --count_; | |
| 360 } else if (count_ - size_ > 1) { | |
| 361 // Need to increment either |count_| or |discarded| to make progress. | |
| 362 // The latter is more efficient, as it eventually triggers fast | |
| 363 // handling of padding. But we have to ensure we don't accidentally | |
| 364 // change the overall state (i.e. switch the state-machine from | |
| 365 // discarding to non-discarding). |count_| needs to always stay | |
| 366 // bigger than |size_|. | |
| 367 --count_; | |
| 368 ++discarded; | |
| 369 } | |
| 370 } | |
| 371 | |
| 372 // Output the next digit and (if necessary) compensate for the most | |
| 373 // negative integer needing special treatment. This works because, | |
| 374 // no matter the bit width of the integer, the lowest-most decimal | |
| 375 // integer always ends in 2, 4, 6, or 8. | |
| 376 if (!num && started) { | |
| 377 if (reverse_prefix > prefix) { | |
| 378 Out(*--reverse_prefix); | |
| 379 } else { | |
| 380 Out(pad); | |
| 381 } | |
| 382 } else { | |
| 383 started = true; | |
| 384 Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]); | |
| 385 } | |
| 386 | |
| 387 minint = 0; | |
| 388 num /= base; | |
| 389 | |
| 390 // Add padding, if requested. | |
| 391 if (padding > 0) { | |
| 392 --padding; | |
| 393 | |
| 394 // Performance optimization for when we are asked to output excessive | |
| 395 // padding, but our output buffer is limited in size. Even if we output | |
| 396 // a 64bit number in binary, we would never write more than 64 plus | |
| 397 // prefix non-padding characters. So, once this limit has been passed, | |
| 398 // any further state change can be computed arithmetically; we know that | |
| 399 // by this time, our entire final output consists of padding characters | |
| 400 // that have all already been output. | |
| 401 if (discarded > 8*sizeof(num) + prefix_length) { | |
| 402 IncrementCount(padding); | |
| 403 padding = 0; | |
| 404 } | |
| 405 } | |
| 406 } while (num || padding || (reverse_prefix > prefix)); | |
| 407 | |
| 408 // Conversion to ASCII actually resulted in the digits being in reverse | |
| 409 // order. We can't easily generate them in forward order, as we can't tell | |
| 410 // the number of characters needed until we are done converting. | |
| 411 // So, now, we reverse the string (except for the possible '-' sign). | |
| 412 char* front = buffer_ + start; | |
| 413 char* back = GetInsertionPoint(); | |
| 414 while (--back > front) { | |
| 415 char ch = *back; | |
| 416 *back = *front; | |
| 417 *front++ = ch; | |
| 418 } | |
| 419 | |
| 420 IncrementCount(discarded); | |
| 421 return !discarded; | |
| 422 } | |
| 423 | |
| 424 } // anonymous namespace | |
| 425 | |
| 426 ssize_t internal::SafeSNPrintf(char* buf, size_t sz, const char* fmt, | |
|
willchan no longer on Chromium
2013/08/15 07:36:18
Hah, news to me that this syntax of namespace::fn
Markus (顧孟勤)
2013/08/15 08:20:46
Done.
It hadn't even occurred to me that this was
| |
| 427 const Arg* args, const size_t max_args) { | |
| 428 // Make sure that at least one NUL byte can be written, and that the buffer | |
| 429 // never overflows kSSizeMax. Not only does that use up most or all of the | |
| 430 // address space, it also would result in a return code that cannot be | |
| 431 // represented. | |
| 432 if (static_cast<ssize_t>(sz) < 1) { | |
| 433 return -1; | |
| 434 } else if (sz > kSSizeMax) { | |
| 435 sz = kSSizeMax; | |
| 436 } | |
| 437 | |
| 438 // Iterate over format string and interpret '%' arguments as they are | |
| 439 // encountered. | |
| 440 Buffer buffer(buf, sz); | |
| 441 size_t padding; | |
| 442 char pad; | |
| 443 for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) { | |
| 444 if (*fmt++ == '%') { | |
| 445 padding = 0; | |
| 446 pad = ' '; | |
| 447 char ch = *fmt++; | |
| 448 format_character_found: | |
| 449 switch (ch) { | |
| 450 case '0': case '1': case '2': case '3': case '4': | |
| 451 case '5': case '6': case '7': case '8': case '9': | |
| 452 // Found a width parameter. Convert to an integer value and store in | |
| 453 // "padding". If the leading digit is a zero, change the padding | |
| 454 // character from a space ' ' to a zero '0'. | |
| 455 pad = ch == '0' ? '0' : ' '; | |
| 456 for (;;) { | |
| 457 // The maximum allowed padding fills all the available address | |
| 458 // space and leaves just enough space to insert the trailing NUL. | |
| 459 const size_t max_padding = kSSizeMax - 1; | |
| 460 if (padding > max_padding/10 || | |
| 461 10*padding > max_padding - (ch - '0')) { | |
| 462 DEBUG_CHECK(padding <= max_padding/10 && | |
| 463 10*padding <= max_padding - (ch - '0')); | |
| 464 // Integer overflow detected. Skip the rest of the width until | |
| 465 // we find the format character, then do the normal error handling. | |
| 466 padding_overflow: | |
| 467 padding = max_padding; | |
| 468 while ((ch = *fmt++) >= '0' && ch <= '9') { | |
| 469 } | |
| 470 if (cur_arg < max_args) { | |
| 471 ++cur_arg; | |
| 472 } | |
| 473 goto fail_to_expand; | |
| 474 } | |
| 475 padding = 10*padding + ch - '0'; | |
| 476 if (padding > max_padding) { | |
| 477 // This doesn't happen for "sane" values of kSSizeMax. But once | |
| 478 // kSSizeMax gets smaller than about 10, our earlier range checks | |
| 479 // are incomplete. Unittests do trigger this artificial corner | |
| 480 // case. | |
| 481 DEBUG_CHECK(padding <= max_padding); | |
| 482 goto padding_overflow; | |
| 483 } | |
| 484 ch = *fmt++; | |
| 485 if (ch < '0' || ch > '9') { | |
| 486 // Reached the end of the width parameter. This is where the format | |
| 487 // character is found. | |
| 488 goto format_character_found; | |
| 489 } | |
| 490 } | |
| 491 break; | |
| 492 case 'c': { // Output an ASCII character. | |
| 493 // Check that there are arguments left to be inserted. | |
| 494 if (cur_arg >= max_args) { | |
| 495 DEBUG_CHECK(cur_arg < max_args); | |
| 496 goto fail_to_expand; | |
| 497 } | |
| 498 | |
| 499 // Check that the argument has the expected type. | |
| 500 const Arg& arg = args[cur_arg++]; | |
| 501 if (arg.type_ != Arg::INT && | |
| 502 arg.type_ != Arg::UINT) { | |
| 503 DEBUG_CHECK(arg.type_ == Arg::INT || | |
| 504 arg.type_ == Arg::UINT); | |
| 505 goto fail_to_expand; | |
| 506 } | |
| 507 | |
| 508 // Apply padding, if needed. | |
| 509 buffer.Pad(' ', padding, 1); | |
| 510 | |
| 511 // Convert the argument to an ASCII character and output it. | |
| 512 char ch = static_cast<char>(arg.i_); | |
| 513 if (!ch) { | |
| 514 goto end_of_output_buffer; | |
| 515 } | |
| 516 buffer.Out(ch); | |
| 517 break; } | |
| 518 case 'd': // Output a possibly signed decimal value. | |
| 519 case 'o': // Output an unsigned octal value. | |
| 520 case 'x': // Output an unsigned hexadecimal value. | |
| 521 case 'X': | |
| 522 case 'p': { // Output a pointer value. | |
| 523 // Check that there are arguments left to be inserted. | |
| 524 if (cur_arg >= max_args) { | |
| 525 DEBUG_CHECK(cur_arg < max_args); | |
| 526 goto fail_to_expand; | |
| 527 } | |
| 528 | |
| 529 const Arg& arg = args[cur_arg++]; | |
| 530 int64_t i; | |
| 531 const char* prefix = NULL; | |
| 532 if (ch != 'p') { | |
| 533 // Check that the argument has the expected type. | |
| 534 if (arg.type_ != Arg::INT && | |
| 535 arg.type_ != Arg::UINT) { | |
| 536 DEBUG_CHECK(arg.type_ == Arg::INT || | |
| 537 arg.type_ == Arg::UINT); | |
| 538 goto fail_to_expand; | |
| 539 } | |
| 540 i = arg.i_; | |
| 541 | |
| 542 if (ch != 'd') { | |
| 543 // The Arg() constructor automatically performed sign expansion on | |
| 544 // signed parameters. This is great when outputting a %d decimal | |
| 545 // number, but can result in unexpected leading 0xFF bytes when | |
| 546 // outputting a %x hexadecimal number. Mask bits, if necessary. | |
| 547 // We have to do this here, instead of in the Arg() constructor, as | |
| 548 // the Arg() constructor cannot tell whether we will output a %d | |
| 549 // or a %x. Only the latter should experience masking. | |
| 550 if (arg.width_ < sizeof(int64_t)) { | |
| 551 i &= (1LL << (8*arg.width_)) - 1; | |
| 552 } | |
| 553 } | |
| 554 } else { | |
| 555 // Pointer values require an actual pointer or a string. | |
| 556 if (arg.type_ == Arg::POINTER) { | |
| 557 i = reinterpret_cast<uintptr_t>(arg.ptr_); | |
| 558 } else if (arg.type_ == Arg::STRING) { | |
| 559 i = reinterpret_cast<uintptr_t>(arg.s_); | |
| 560 } else if (arg.type_ == Arg::INT && arg.width_ == sizeof(void *) && | |
| 561 arg.i_ == 0) { // Allow C++'s version of NULL | |
| 562 i = 0; | |
| 563 } else { | |
| 564 DEBUG_CHECK(arg.type_ == Arg::POINTER || | |
| 565 arg.type_ == Arg::STRING); | |
| 566 goto fail_to_expand; | |
| 567 } | |
| 568 | |
| 569 // Pointers always include the "0x" prefix. | |
| 570 prefix = "0x"; | |
| 571 } | |
| 572 | |
| 573 // Use IToASCII() to convert to ASCII representation. For decimal | |
| 574 // numbers, optionally print a sign. For hexadecimal numbers, | |
| 575 // distinguish between upper and lower case. %p addresses are always | |
| 576 // printed as upcase. Supports base 8, 10, and 16. Prints padding | |
| 577 // and/or prefixes, if so requested. | |
| 578 buffer.IToASCII(ch == 'd' && arg.type_ == Arg::INT, | |
| 579 ch != 'x', i, | |
| 580 ch == 'o' ? 8 : ch == 'd' ? 10 : 16, | |
| 581 pad, padding, prefix); | |
| 582 break; } | |
| 583 case 's': { | |
| 584 // Check that there are arguments left to be inserted. | |
| 585 if (cur_arg >= max_args) { | |
| 586 DEBUG_CHECK(cur_arg < max_args); | |
| 587 goto fail_to_expand; | |
| 588 } | |
| 589 | |
| 590 // Check that the argument has the expected type. | |
| 591 const Arg& arg = args[cur_arg++]; | |
| 592 const char *s; | |
| 593 if (arg.type_ == Arg::STRING) | |
| 594 s = arg.s_ ? arg.s_ : "<NULL>"; | |
| 595 else if (arg.type_ == Arg::INT && arg.width_ == sizeof(void *) && | |
| 596 arg.i_ == 0) { // Allow C++'s version of NULL | |
| 597 s = "<NULL>"; | |
| 598 } else { | |
| 599 DEBUG_CHECK(arg.type_ == Arg::STRING); | |
| 600 goto fail_to_expand; | |
| 601 } | |
| 602 | |
| 603 // Apply padding, if needed. This requires us to first check the | |
| 604 // length of the string that we are outputting. | |
| 605 if (padding) { | |
| 606 size_t len = 0; | |
| 607 for (const char* src = s; *src++; ) { | |
| 608 ++len; | |
| 609 } | |
| 610 buffer.Pad(' ', padding, len); | |
| 611 } | |
| 612 | |
| 613 // Printing a string involves nothing more than copying it into the | |
| 614 // output buffer and making sure we don't output more bytes than | |
| 615 // available space; Out() takes care of doing that. | |
| 616 for (const char* src = s; *src; ) { | |
| 617 buffer.Out(*src++); | |
| 618 } | |
| 619 break; } | |
| 620 case '%': | |
| 621 // Quoted percent '%' character. | |
| 622 goto copy_verbatim; | |
| 623 fail_to_expand: | |
| 624 // C++ gives us tools to do type checking -- something that snprintf() | |
| 625 // could never really do. So, whenever we see arguments that don't | |
| 626 // match up with the format string, we refuse to output them. But | |
| 627 // since we have to be extremely conservative about being async- | |
| 628 // signal-safe, we are limited in the type of error handling that we | |
| 629 // can do in production builds (in debug builds we can use | |
| 630 // DEBUG_CHECK() and hope for the best). So, all we do is pass the | |
| 631 // format string unchanged. That should eventually get the user's | |
| 632 // attention; and in the meantime, it hopefully doesn't lose too much | |
| 633 // data. | |
| 634 default: | |
| 635 // Unknown or unsupported format character. Just copy verbatim to | |
| 636 // output. | |
| 637 buffer.Out('%'); | |
| 638 DEBUG_CHECK(ch); | |
| 639 if (!ch) { | |
| 640 goto end_of_format_string; | |
| 641 } | |
| 642 buffer.Out(ch); | |
| 643 break; | |
| 644 } | |
| 645 } else { | |
| 646 copy_verbatim: | |
| 647 buffer.Out(fmt[-1]); | |
| 648 } | |
| 649 } | |
| 650 end_of_format_string: | |
| 651 end_of_output_buffer: | |
| 652 return buffer.GetCount(); | |
| 653 } | |
| 654 | |
| 655 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) { | |
| 656 // Make sure that at least one NUL byte can be written, and that the buffer | |
| 657 // never overflows kSSizeMax. Not only does that use up most or all of the | |
| 658 // address space, it also would result in a return code that cannot be | |
| 659 // represented. | |
| 660 if (static_cast<ssize_t>(sz) < 1) { | |
| 661 return -1; | |
| 662 } else if (sz > kSSizeMax) { | |
| 663 sz = kSSizeMax; | |
| 664 } | |
| 665 | |
| 666 Buffer buffer(buf, sz); | |
| 667 | |
| 668 // In the slow-path, we deal with errors by copying the contents of | |
| 669 // "fmt" unexpanded. This means, if there are no arguments passed, the | |
| 670 // SafeSPrintf() function always degenerates to a version of strncpy() that | |
| 671 // de-duplicates '%' characters. | |
| 672 const char* src = fmt; | |
| 673 for (; *src; ++src) { | |
| 674 buffer.Out(*src); | |
| 675 DEBUG_CHECK(src[0] != '%' || src[1] == '%'); | |
| 676 if (src[0] == '%' && src[1] == '%') { | |
| 677 ++src; | |
| 678 } | |
| 679 } | |
| 680 return buffer.GetCount(); | |
| 681 } | |
| 682 | |
| 683 } // namespace strings | |
| 684 } // namespace base | |
| OLD | NEW |