Index: src/core/SkLinearBitmapPipeline_tile.h |
diff --git a/src/core/SkLinearBitmapPipeline_tile.h b/src/core/SkLinearBitmapPipeline_tile.h |
index 60cc2a5ef09acb8eb01f4f71d1f5608ebe0484f3..997ab65c4730cd11dd475edb96c8ad6b6d584859 100644 |
--- a/src/core/SkLinearBitmapPipeline_tile.h |
+++ b/src/core/SkLinearBitmapPipeline_tile.h |
@@ -234,6 +234,95 @@ private: |
const Sk4s fXsInvMax; |
}; |
+// The XRepeatUnitScaleStrategy exploits the situation where dx = 1.0. The main advantage is that |
+// the relationship between the sample points and the source pixels does not change from tile to |
+// repeated tile. This allows the tiler to calculate the span once and re-use it for each |
+// repeated tile. This is later exploited by some samplers to avoid converting pixels to linear |
+// space allowing the use of memmove to place pixel in the destination. |
+class XRepeatUnitScaleStrategy { |
+public: |
+ XRepeatUnitScaleStrategy(int32_t max) |
+ : fXMax{SkScalar(max)} |
+ , fXsMax{SkScalar(max)} |
+ , fXsCap{SkScalar(nextafterf(SkScalar(max), 0.0f))} |
+ , fXsInvMax{1.0f / SkScalar(max)} { } |
+ |
+ void tileXPoints(Sk4s* xs) { |
+ Sk4s divX = *xs * fXsInvMax; |
+ Sk4s modX = *xs - divX.floor() * fXsMax; |
+ *xs = Sk4s::Min(fXsCap, modX); |
+ SkASSERT(0 <= (*xs)[0] && (*xs)[0] < fXMax); |
+ SkASSERT(0 <= (*xs)[1] && (*xs)[1] < fXMax); |
+ SkASSERT(0 <= (*xs)[2] && (*xs)[2] < fXMax); |
+ SkASSERT(0 <= (*xs)[3] && (*xs)[3] < fXMax); |
+ } |
+ |
+ template<typename Next> |
+ bool maybeProcessSpan(Span originalSpan, Next* next) { |
+ SkASSERT(!originalSpan.isEmpty()); |
+ SkPoint start; SkScalar length; int count; |
+ std::tie(start, length, count) = originalSpan; |
+ // Make x and y in range on the tile. |
+ SkScalar x = tile_mod(X(start), fXMax); |
+ SkScalar y = Y(start); |
+ |
+ // No need trying to go fast because the steps are larger than a tile or there is one point. |
+ if (fXMax == 1 || count <= 1) { |
+ return false; |
+ } |
+ |
+ // x should be on the tile. |
+ SkASSERT(0.0f <= x && x < fXMax); |
+ Span span({x, y}, length, count); |
+ |
+ if (SkScalarFloorToScalar(x) != 0.0f) { |
+ Span toDraw = span.breakAt(fXMax, 1.0f); |
+ SkASSERT(0.0f <= toDraw.startX() && toDraw.endX() < fXMax); |
+ next->pointSpan(toDraw); |
+ span.offset(-fXMax); |
+ } |
+ |
+ // All of the span could have been on the first tile. If so, then no work to do. |
+ if (span.isEmpty()) return true; |
+ |
+ // At this point the span should be aligned to zero. |
+ SkASSERT(SkScalarFloorToScalar(span.startX()) == 0.0f); |
+ |
+ // Note: The span length has an unintuitive relation to the tile width. The tile width is |
+ // a half open interval [tb, te), but the span is a closed interval [sb, se]. In order to |
+ // compare the two, you need to convert the span to a half open interval. This is done by |
+ // adding dx to se. So, the span becomes: [sb, se + dx). Hence the + 1.0f below. |
+ SkScalar div = (span.length() + 1.0f) / fXMax; |
+ int32_t repeatCount = SkScalarFloorToInt(div); |
+ Span repeatableSpan{{0.0f, y}, fXMax - 1.0f, SkScalarFloorToInt(fXMax)}; |
+ |
+ // Repeat the center section. |
+ SkASSERT(0.0f <= repeatableSpan.startX() && repeatableSpan.endX() < fXMax); |
+ next->repeatSpan(repeatableSpan, repeatCount); |
+ |
+ // Calculate the advance past the center portion. |
+ SkScalar advance = SkScalar(repeatCount) * fXMax; |
+ |
+ // There may be some of the span left over. |
+ span.breakAt(advance, 1.0f); |
+ |
+ // All on a single tile. |
+ if (!span.isEmpty()) { |
+ span.offset(-advance); |
+ SkASSERT(0.0f <= span.startX() && span.endX() < fXMax); |
+ next->pointSpan(span); |
+ } |
+ |
+ return true; |
+ } |
+ |
+private: |
+ const SkScalar fXMax; |
+ const Sk4s fXsMax; |
+ const Sk4s fXsCap; |
+ const Sk4s fXsInvMax; |
+}; |
+ |
class YRepeatStrategy { |
public: |
YRepeatStrategy(int32_t max) |