| Index: src/core/SkLinearBitmapPipeline_tile.h
|
| diff --git a/src/core/SkLinearBitmapPipeline_tile.h b/src/core/SkLinearBitmapPipeline_tile.h
|
| index 60cc2a5ef09acb8eb01f4f71d1f5608ebe0484f3..997ab65c4730cd11dd475edb96c8ad6b6d584859 100644
|
| --- a/src/core/SkLinearBitmapPipeline_tile.h
|
| +++ b/src/core/SkLinearBitmapPipeline_tile.h
|
| @@ -234,6 +234,95 @@ private:
|
| const Sk4s fXsInvMax;
|
| };
|
|
|
| +// The XRepeatUnitScaleStrategy exploits the situation where dx = 1.0. The main advantage is that
|
| +// the relationship between the sample points and the source pixels does not change from tile to
|
| +// repeated tile. This allows the tiler to calculate the span once and re-use it for each
|
| +// repeated tile. This is later exploited by some samplers to avoid converting pixels to linear
|
| +// space allowing the use of memmove to place pixel in the destination.
|
| +class XRepeatUnitScaleStrategy {
|
| +public:
|
| + XRepeatUnitScaleStrategy(int32_t max)
|
| + : fXMax{SkScalar(max)}
|
| + , fXsMax{SkScalar(max)}
|
| + , fXsCap{SkScalar(nextafterf(SkScalar(max), 0.0f))}
|
| + , fXsInvMax{1.0f / SkScalar(max)} { }
|
| +
|
| + void tileXPoints(Sk4s* xs) {
|
| + Sk4s divX = *xs * fXsInvMax;
|
| + Sk4s modX = *xs - divX.floor() * fXsMax;
|
| + *xs = Sk4s::Min(fXsCap, modX);
|
| + SkASSERT(0 <= (*xs)[0] && (*xs)[0] < fXMax);
|
| + SkASSERT(0 <= (*xs)[1] && (*xs)[1] < fXMax);
|
| + SkASSERT(0 <= (*xs)[2] && (*xs)[2] < fXMax);
|
| + SkASSERT(0 <= (*xs)[3] && (*xs)[3] < fXMax);
|
| + }
|
| +
|
| + template<typename Next>
|
| + bool maybeProcessSpan(Span originalSpan, Next* next) {
|
| + SkASSERT(!originalSpan.isEmpty());
|
| + SkPoint start; SkScalar length; int count;
|
| + std::tie(start, length, count) = originalSpan;
|
| + // Make x and y in range on the tile.
|
| + SkScalar x = tile_mod(X(start), fXMax);
|
| + SkScalar y = Y(start);
|
| +
|
| + // No need trying to go fast because the steps are larger than a tile or there is one point.
|
| + if (fXMax == 1 || count <= 1) {
|
| + return false;
|
| + }
|
| +
|
| + // x should be on the tile.
|
| + SkASSERT(0.0f <= x && x < fXMax);
|
| + Span span({x, y}, length, count);
|
| +
|
| + if (SkScalarFloorToScalar(x) != 0.0f) {
|
| + Span toDraw = span.breakAt(fXMax, 1.0f);
|
| + SkASSERT(0.0f <= toDraw.startX() && toDraw.endX() < fXMax);
|
| + next->pointSpan(toDraw);
|
| + span.offset(-fXMax);
|
| + }
|
| +
|
| + // All of the span could have been on the first tile. If so, then no work to do.
|
| + if (span.isEmpty()) return true;
|
| +
|
| + // At this point the span should be aligned to zero.
|
| + SkASSERT(SkScalarFloorToScalar(span.startX()) == 0.0f);
|
| +
|
| + // Note: The span length has an unintuitive relation to the tile width. The tile width is
|
| + // a half open interval [tb, te), but the span is a closed interval [sb, se]. In order to
|
| + // compare the two, you need to convert the span to a half open interval. This is done by
|
| + // adding dx to se. So, the span becomes: [sb, se + dx). Hence the + 1.0f below.
|
| + SkScalar div = (span.length() + 1.0f) / fXMax;
|
| + int32_t repeatCount = SkScalarFloorToInt(div);
|
| + Span repeatableSpan{{0.0f, y}, fXMax - 1.0f, SkScalarFloorToInt(fXMax)};
|
| +
|
| + // Repeat the center section.
|
| + SkASSERT(0.0f <= repeatableSpan.startX() && repeatableSpan.endX() < fXMax);
|
| + next->repeatSpan(repeatableSpan, repeatCount);
|
| +
|
| + // Calculate the advance past the center portion.
|
| + SkScalar advance = SkScalar(repeatCount) * fXMax;
|
| +
|
| + // There may be some of the span left over.
|
| + span.breakAt(advance, 1.0f);
|
| +
|
| + // All on a single tile.
|
| + if (!span.isEmpty()) {
|
| + span.offset(-advance);
|
| + SkASSERT(0.0f <= span.startX() && span.endX() < fXMax);
|
| + next->pointSpan(span);
|
| + }
|
| +
|
| + return true;
|
| + }
|
| +
|
| +private:
|
| + const SkScalar fXMax;
|
| + const Sk4s fXsMax;
|
| + const Sk4s fXsCap;
|
| + const Sk4s fXsInvMax;
|
| +};
|
| +
|
| class YRepeatStrategy {
|
| public:
|
| YRepeatStrategy(int32_t max)
|
|
|