OLD | NEW |
1 // Copyright 2013 the V8 project authors. All rights reserved. | 1 // Copyright 2013 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 372 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
383 | 383 |
384 size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa); | 384 size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa); |
385 for (size_t i = 0; i < nr_test_cases; ++i) { | 385 for (size_t i = 0; i < nr_test_cases; ++i) { |
386 uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa); | 386 uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa); |
387 PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res, | 387 PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res, |
388 tc[i].rt, tc[i].rs, tc[i].sa); | 388 tc[i].rt, tc[i].rs, tc[i].sa); |
389 CHECK_EQ(tc[i].expected_res, res); | 389 CHECK_EQ(tc[i].expected_res, res); |
390 } | 390 } |
391 } | 391 } |
392 | 392 |
393 static const std::vector<uint32_t> uint32_test_values() { | 393 static const std::vector<uint32_t> cvt_trunc_uint32_test_values() { |
394 static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00ffff00, | 394 static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00ffff00, |
395 0x7fffffff, 0x80000000, 0x80000001, | 395 0x7fffffff, 0x80000000, 0x80000001, |
396 0x80ffff00, 0x8fffffff, 0xffffffff}; | 396 0x80ffff00, 0x8fffffff, 0xffffffff}; |
397 return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]); | 397 return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]); |
398 } | 398 } |
399 | 399 |
400 static const std::vector<int32_t> int32_test_values() { | 400 static const std::vector<int32_t> cvt_trunc_int32_test_values() { |
401 static const int32_t kValues[] = { | 401 static const int32_t kValues[] = { |
402 static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001), | 402 static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001), |
403 static_cast<int32_t>(0x00ffff00), static_cast<int32_t>(0x7fffffff), | 403 static_cast<int32_t>(0x00ffff00), static_cast<int32_t>(0x7fffffff), |
404 static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001), | 404 static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001), |
405 static_cast<int32_t>(0x80ffff00), static_cast<int32_t>(0x8fffffff), | 405 static_cast<int32_t>(0x80ffff00), static_cast<int32_t>(0x8fffffff), |
406 static_cast<int32_t>(0xffffffff)}; | 406 static_cast<int32_t>(0xffffffff)}; |
407 return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]); | 407 return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]); |
408 } | 408 } |
409 | 409 |
410 // Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... } | 410 // Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... } |
411 #define FOR_INPUTS(ctype, itype, var) \ | 411 #define FOR_INPUTS(ctype, itype, var, test_vector) \ |
412 std::vector<ctype> var##_vec = itype##_test_values(); \ | 412 std::vector<ctype> var##_vec = test_vector(); \ |
413 for (std::vector<ctype>::iterator var = var##_vec.begin(); \ | 413 for (std::vector<ctype>::iterator var = var##_vec.begin(); \ |
414 var != var##_vec.end(); ++var) | 414 var != var##_vec.end(); ++var) |
415 | 415 |
416 #define FOR_UINT32_INPUTS(var) FOR_INPUTS(uint32_t, uint32, var) | 416 #define FOR_ENUM_INPUTS(var, type, test_vector) \ |
417 #define FOR_INT32_INPUTS(var) FOR_INPUTS(int32_t, int32, var) | 417 FOR_INPUTS(enum type, type, var, test_vector) |
| 418 #define FOR_STRUCT_INPUTS(var, type, test_vector) \ |
| 419 FOR_INPUTS(struct type, type, var, test_vector) |
| 420 #define FOR_UINT32_INPUTS(var, test_vector) \ |
| 421 FOR_INPUTS(uint32_t, uint32, var, test_vector) |
| 422 #define FOR_INT32_INPUTS(var, test_vector) \ |
| 423 FOR_INPUTS(int32_t, int32, var, test_vector) |
418 | 424 |
419 template <typename RET_TYPE, typename IN_TYPE, typename Func> | 425 template <typename RET_TYPE, typename IN_TYPE, typename Func> |
420 RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) { | 426 RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) { |
421 typedef RET_TYPE (*F_CVT)(IN_TYPE x0, int x1, int x2, int x3, int x4); | 427 typedef RET_TYPE (*F_CVT)(IN_TYPE x0, int x1, int x2, int x3, int x4); |
422 | 428 |
423 Isolate* isolate = CcTest::i_isolate(); | 429 Isolate* isolate = CcTest::i_isolate(); |
424 HandleScope scope(isolate); | 430 HandleScope scope(isolate); |
425 MacroAssembler assm(isolate, nullptr, 0, | 431 MacroAssembler assm(isolate, nullptr, 0, |
426 v8::internal::CodeObjectRequired::kYes); | 432 v8::internal::CodeObjectRequired::kYes); |
427 MacroAssembler* masm = &assm; | 433 MacroAssembler* masm = &assm; |
(...skipping 10 matching lines...) Expand all Loading... |
438 desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); | 444 desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); |
439 | 445 |
440 F_CVT f = FUNCTION_CAST<F_CVT>(code->entry()); | 446 F_CVT f = FUNCTION_CAST<F_CVT>(code->entry()); |
441 | 447 |
442 return reinterpret_cast<RET_TYPE>( | 448 return reinterpret_cast<RET_TYPE>( |
443 CALL_GENERATED_CODE(isolate, f, x, 0, 0, 0, 0)); | 449 CALL_GENERATED_CODE(isolate, f, x, 0, 0, 0, 0)); |
444 } | 450 } |
445 | 451 |
446 TEST(cvt_s_w_Trunc_uw_s) { | 452 TEST(cvt_s_w_Trunc_uw_s) { |
447 CcTest::InitializeVM(); | 453 CcTest::InitializeVM(); |
448 FOR_UINT32_INPUTS(i) { | 454 FOR_UINT32_INPUTS(i, cvt_trunc_uint32_test_values) { |
449 uint32_t input = *i; | 455 uint32_t input = *i; |
450 CHECK_EQ(static_cast<float>(input), | 456 CHECK_EQ(static_cast<float>(input), |
451 run_Cvt<uint32_t>(input, [](MacroAssembler* masm) { | 457 run_Cvt<uint32_t>(input, [](MacroAssembler* masm) { |
452 __ cvt_s_w(f0, f4); | 458 __ cvt_s_w(f0, f4); |
453 __ Trunc_uw_s(f2, f0, f1); | 459 __ Trunc_uw_s(f2, f0, f1); |
454 })); | 460 })); |
455 } | 461 } |
456 } | 462 } |
457 | 463 |
458 TEST(cvt_d_w_Trunc_w_d) { | 464 TEST(cvt_d_w_Trunc_w_d) { |
459 CcTest::InitializeVM(); | 465 CcTest::InitializeVM(); |
460 FOR_INT32_INPUTS(i) { | 466 FOR_INT32_INPUTS(i, cvt_trunc_int32_test_values) { |
461 int32_t input = *i; | 467 int32_t input = *i; |
462 CHECK_EQ(static_cast<double>(input), | 468 CHECK_EQ(static_cast<double>(input), |
463 run_Cvt<int32_t>(input, [](MacroAssembler* masm) { | 469 run_Cvt<int32_t>(input, [](MacroAssembler* masm) { |
464 __ cvt_d_w(f0, f4); | 470 __ cvt_d_w(f0, f4); |
465 __ Trunc_w_d(f2, f0); | 471 __ Trunc_w_d(f2, f0); |
466 })); | 472 })); |
467 } | 473 } |
468 } | 474 } |
469 | 475 |
| 476 static const std::vector<int32_t> overflow_int32_test_values() { |
| 477 static const int32_t kValues[] = { |
| 478 static_cast<int32_t>(0xf0000000), static_cast<int32_t>(0x00000001), |
| 479 static_cast<int32_t>(0xff000000), static_cast<int32_t>(0x0000f000), |
| 480 static_cast<int32_t>(0x0f000000), static_cast<int32_t>(0x991234ab), |
| 481 static_cast<int32_t>(0xb0ffff01), static_cast<int32_t>(0x00006fff), |
| 482 static_cast<int32_t>(0xffffffff)}; |
| 483 return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]); |
| 484 } |
| 485 |
| 486 enum OverflowBranchType { |
| 487 kAddBranchOverflow, |
| 488 kSubBranchOverflow, |
| 489 }; |
| 490 |
| 491 struct OverflowRegisterCombination { |
| 492 Register dst; |
| 493 Register left; |
| 494 Register right; |
| 495 Register scratch; |
| 496 }; |
| 497 |
| 498 static const std::vector<enum OverflowBranchType> overflow_branch_type() { |
| 499 static const enum OverflowBranchType kValues[] = {kAddBranchOverflow, |
| 500 kSubBranchOverflow}; |
| 501 return std::vector<enum OverflowBranchType>(&kValues[0], |
| 502 &kValues[arraysize(kValues)]); |
| 503 } |
| 504 |
| 505 static const std::vector<struct OverflowRegisterCombination> |
| 506 overflow_register_combination() { |
| 507 static const struct OverflowRegisterCombination kValues[] = { |
| 508 {t0, t1, t2, t3}, {t0, t0, t2, t3}, {t0, t1, t0, t3}, {t0, t1, t1, t3}}; |
| 509 return std::vector<struct OverflowRegisterCombination>( |
| 510 &kValues[0], &kValues[arraysize(kValues)]); |
| 511 } |
| 512 |
| 513 template <typename T> |
| 514 static bool IsAddOverflow(T x, T y) { |
| 515 DCHECK(std::numeric_limits<T>::is_integer); |
| 516 T max = std::numeric_limits<T>::max(); |
| 517 T min = std::numeric_limits<T>::min(); |
| 518 |
| 519 return (x > 0 && y > (max - x)) || (x < 0 && y < (min - x)); |
| 520 } |
| 521 |
| 522 template <typename T> |
| 523 static bool IsSubOverflow(T x, T y) { |
| 524 DCHECK(std::numeric_limits<T>::is_integer); |
| 525 T max = std::numeric_limits<T>::max(); |
| 526 T min = std::numeric_limits<T>::min(); |
| 527 |
| 528 return (y > 0 && x < (min + y)) || (y < 0 && x > (max + y)); |
| 529 } |
| 530 |
| 531 template <typename IN_TYPE, typename Func> |
| 532 static bool runOverflow(IN_TYPE valLeft, IN_TYPE valRight, |
| 533 Func GenerateOverflowInstructions) { |
| 534 typedef int32_t (*F_CVT)(char* x0, int x1, int x2, int x3, int x4); |
| 535 |
| 536 Isolate* isolate = CcTest::i_isolate(); |
| 537 HandleScope scope(isolate); |
| 538 MacroAssembler assm(isolate, nullptr, 0, |
| 539 v8::internal::CodeObjectRequired::kYes); |
| 540 MacroAssembler* masm = &assm; |
| 541 |
| 542 GenerateOverflowInstructions(masm, valLeft, valRight); |
| 543 __ jr(ra); |
| 544 __ nop(); |
| 545 |
| 546 CodeDesc desc; |
| 547 assm.GetCode(&desc); |
| 548 Handle<Code> code = isolate->factory()->NewCode( |
| 549 desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); |
| 550 |
| 551 F_CVT f = FUNCTION_CAST<F_CVT>(code->entry()); |
| 552 |
| 553 int32_t r = |
| 554 reinterpret_cast<int32_t>(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); |
| 555 |
| 556 DCHECK(r == 0 || r == 1); |
| 557 return r; |
| 558 } |
| 559 |
| 560 TEST(BranchOverflowInt32BothLabels) { |
| 561 FOR_INT32_INPUTS(i, overflow_int32_test_values) { |
| 562 FOR_INT32_INPUTS(j, overflow_int32_test_values) { |
| 563 FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) { |
| 564 FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination, |
| 565 overflow_register_combination) { |
| 566 int32_t ii = *i; |
| 567 int32_t jj = *j; |
| 568 enum OverflowBranchType branchType = *br; |
| 569 struct OverflowRegisterCombination rc = *regComb; |
| 570 |
| 571 // If left and right register are same then left and right |
| 572 // test values must also be same, otherwise we skip the test |
| 573 if (rc.left.code() == rc.right.code()) { |
| 574 if (ii != jj) { |
| 575 continue; |
| 576 } |
| 577 } |
| 578 |
| 579 bool res1 = runOverflow<int32_t>( |
| 580 ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, |
| 581 int32_t valRight) { |
| 582 Label overflow, no_overflow, end; |
| 583 __ li(rc.left, valLeft); |
| 584 __ li(rc.right, valRight); |
| 585 switch (branchType) { |
| 586 case kAddBranchOverflow: |
| 587 __ AddBranchOvf(rc.dst, rc.left, rc.right, &overflow, |
| 588 &no_overflow, rc.scratch); |
| 589 break; |
| 590 case kSubBranchOverflow: |
| 591 __ SubBranchOvf(rc.dst, rc.left, rc.right, &overflow, |
| 592 &no_overflow, rc.scratch); |
| 593 break; |
| 594 } |
| 595 __ li(v0, 2); |
| 596 __ Branch(&end); |
| 597 __ bind(&overflow); |
| 598 __ li(v0, 1); |
| 599 __ Branch(&end); |
| 600 __ bind(&no_overflow); |
| 601 __ li(v0, 0); |
| 602 __ bind(&end); |
| 603 }); |
| 604 |
| 605 bool res2 = runOverflow<int32_t>( |
| 606 ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, |
| 607 int32_t valRight) { |
| 608 Label overflow, no_overflow, end; |
| 609 __ li(rc.left, valLeft); |
| 610 switch (branchType) { |
| 611 case kAddBranchOverflow: |
| 612 __ AddBranchOvf(rc.dst, rc.left, Operand(valRight), |
| 613 &overflow, &no_overflow, rc.scratch); |
| 614 break; |
| 615 case kSubBranchOverflow: |
| 616 __ SubBranchOvf(rc.dst, rc.left, Operand(valRight), |
| 617 &overflow, &no_overflow, rc.scratch); |
| 618 break; |
| 619 } |
| 620 __ li(v0, 2); |
| 621 __ Branch(&end); |
| 622 __ bind(&overflow); |
| 623 __ li(v0, 1); |
| 624 __ Branch(&end); |
| 625 __ bind(&no_overflow); |
| 626 __ li(v0, 0); |
| 627 __ bind(&end); |
| 628 }); |
| 629 |
| 630 switch (branchType) { |
| 631 case kAddBranchOverflow: |
| 632 CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res1); |
| 633 CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res2); |
| 634 break; |
| 635 case kSubBranchOverflow: |
| 636 CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res1); |
| 637 CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res2); |
| 638 break; |
| 639 default: |
| 640 UNREACHABLE(); |
| 641 } |
| 642 } |
| 643 } |
| 644 } |
| 645 } |
| 646 } |
| 647 |
| 648 TEST(BranchOverflowInt32LeftLabel) { |
| 649 FOR_INT32_INPUTS(i, overflow_int32_test_values) { |
| 650 FOR_INT32_INPUTS(j, overflow_int32_test_values) { |
| 651 FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) { |
| 652 FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination, |
| 653 overflow_register_combination) { |
| 654 int32_t ii = *i; |
| 655 int32_t jj = *j; |
| 656 enum OverflowBranchType branchType = *br; |
| 657 struct OverflowRegisterCombination rc = *regComb; |
| 658 |
| 659 // If left and right register are same then left and right |
| 660 // test values must also be same, otherwise we skip the test |
| 661 if (rc.left.code() == rc.right.code()) { |
| 662 if (ii != jj) { |
| 663 continue; |
| 664 } |
| 665 } |
| 666 |
| 667 bool res1 = runOverflow<int32_t>( |
| 668 ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, |
| 669 int32_t valRight) { |
| 670 Label overflow, end; |
| 671 __ li(rc.left, valLeft); |
| 672 __ li(rc.right, valRight); |
| 673 switch (branchType) { |
| 674 case kAddBranchOverflow: |
| 675 __ AddBranchOvf(rc.dst, rc.left, rc.right, &overflow, NULL, |
| 676 rc.scratch); |
| 677 break; |
| 678 case kSubBranchOverflow: |
| 679 __ SubBranchOvf(rc.dst, rc.left, rc.right, &overflow, NULL, |
| 680 rc.scratch); |
| 681 break; |
| 682 } |
| 683 __ li(v0, 0); |
| 684 __ Branch(&end); |
| 685 __ bind(&overflow); |
| 686 __ li(v0, 1); |
| 687 __ bind(&end); |
| 688 }); |
| 689 |
| 690 bool res2 = runOverflow<int32_t>( |
| 691 ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, |
| 692 int32_t valRight) { |
| 693 Label overflow, end; |
| 694 __ li(rc.left, valLeft); |
| 695 switch (branchType) { |
| 696 case kAddBranchOverflow: |
| 697 __ AddBranchOvf(rc.dst, rc.left, Operand(valRight), |
| 698 &overflow, NULL, rc.scratch); |
| 699 break; |
| 700 case kSubBranchOverflow: |
| 701 __ SubBranchOvf(rc.dst, rc.left, Operand(valRight), |
| 702 &overflow, NULL, rc.scratch); |
| 703 break; |
| 704 } |
| 705 __ li(v0, 0); |
| 706 __ Branch(&end); |
| 707 __ bind(&overflow); |
| 708 __ li(v0, 1); |
| 709 __ bind(&end); |
| 710 }); |
| 711 |
| 712 switch (branchType) { |
| 713 case kAddBranchOverflow: |
| 714 CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res1); |
| 715 CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res2); |
| 716 break; |
| 717 case kSubBranchOverflow: |
| 718 CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res1); |
| 719 CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res2); |
| 720 break; |
| 721 default: |
| 722 UNREACHABLE(); |
| 723 } |
| 724 } |
| 725 } |
| 726 } |
| 727 } |
| 728 } |
| 729 |
| 730 TEST(BranchOverflowInt32RightLabel) { |
| 731 FOR_INT32_INPUTS(i, overflow_int32_test_values) { |
| 732 FOR_INT32_INPUTS(j, overflow_int32_test_values) { |
| 733 FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) { |
| 734 FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination, |
| 735 overflow_register_combination) { |
| 736 int32_t ii = *i; |
| 737 int32_t jj = *j; |
| 738 enum OverflowBranchType branchType = *br; |
| 739 struct OverflowRegisterCombination rc = *regComb; |
| 740 |
| 741 // If left and right register are same then left and right |
| 742 // test values must also be same, otherwise we skip the test |
| 743 if (rc.left.code() == rc.right.code()) { |
| 744 if (ii != jj) { |
| 745 continue; |
| 746 } |
| 747 } |
| 748 |
| 749 bool res1 = runOverflow<int32_t>( |
| 750 ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, |
| 751 int32_t valRight) { |
| 752 Label no_overflow, end; |
| 753 __ li(rc.left, valLeft); |
| 754 __ li(rc.right, valRight); |
| 755 switch (branchType) { |
| 756 case kAddBranchOverflow: |
| 757 __ AddBranchOvf(rc.dst, rc.left, rc.right, NULL, |
| 758 &no_overflow, rc.scratch); |
| 759 break; |
| 760 case kSubBranchOverflow: |
| 761 __ SubBranchOvf(rc.dst, rc.left, rc.right, NULL, |
| 762 &no_overflow, rc.scratch); |
| 763 break; |
| 764 } |
| 765 __ li(v0, 1); |
| 766 __ Branch(&end); |
| 767 __ bind(&no_overflow); |
| 768 __ li(v0, 0); |
| 769 __ bind(&end); |
| 770 }); |
| 771 |
| 772 bool res2 = runOverflow<int32_t>( |
| 773 ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, |
| 774 int32_t valRight) { |
| 775 Label no_overflow, end; |
| 776 __ li(rc.left, valLeft); |
| 777 switch (branchType) { |
| 778 case kAddBranchOverflow: |
| 779 __ AddBranchOvf(rc.dst, rc.left, Operand(valRight), NULL, |
| 780 &no_overflow, rc.scratch); |
| 781 break; |
| 782 case kSubBranchOverflow: |
| 783 __ SubBranchOvf(rc.dst, rc.left, Operand(valRight), NULL, |
| 784 &no_overflow, rc.scratch); |
| 785 break; |
| 786 } |
| 787 __ li(v0, 1); |
| 788 __ Branch(&end); |
| 789 __ bind(&no_overflow); |
| 790 __ li(v0, 0); |
| 791 __ bind(&end); |
| 792 }); |
| 793 |
| 794 switch (branchType) { |
| 795 case kAddBranchOverflow: |
| 796 CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res1); |
| 797 CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res2); |
| 798 break; |
| 799 case kSubBranchOverflow: |
| 800 CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res1); |
| 801 CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res2); |
| 802 break; |
| 803 default: |
| 804 UNREACHABLE(); |
| 805 } |
| 806 } |
| 807 } |
| 808 } |
| 809 } |
| 810 } |
| 811 |
470 TEST(min_max_nan) { | 812 TEST(min_max_nan) { |
471 CcTest::InitializeVM(); | 813 CcTest::InitializeVM(); |
472 Isolate* isolate = CcTest::i_isolate(); | 814 Isolate* isolate = CcTest::i_isolate(); |
473 HandleScope scope(isolate); | 815 HandleScope scope(isolate); |
474 MacroAssembler assembler(isolate, nullptr, 0, | 816 MacroAssembler assembler(isolate, nullptr, 0, |
475 v8::internal::CodeObjectRequired::kYes); | 817 v8::internal::CodeObjectRequired::kYes); |
476 MacroAssembler* masm = &assembler; | 818 MacroAssembler* masm = &assembler; |
477 | 819 |
478 struct TestFloat { | 820 struct TestFloat { |
479 double a; | 821 double a; |
(...skipping 91 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
571 CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0); | 913 CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0); |
572 | 914 |
573 CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c))); | 915 CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c))); |
574 CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d))); | 916 CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d))); |
575 CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g))); | 917 CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g))); |
576 CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h))); | 918 CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h))); |
577 } | 919 } |
578 } | 920 } |
579 | 921 |
580 #undef __ | 922 #undef __ |
OLD | NEW |