Index: src/wasm/wasm-external-refs.h |
diff --git a/src/wasm/wasm-external-refs.h b/src/wasm/wasm-external-refs.h |
index 4aa452bbf58b1647a500e38d022993580ae688a5..d7752aa24d96bcce6674e68df30ea79df94db408 100644 |
--- a/src/wasm/wasm-external-refs.h |
+++ b/src/wasm/wasm-external-refs.h |
@@ -2,6 +2,8 @@ |
// Use of this source code is governed by a BSD-style license that can be |
// found in the LICENSE file. |
+#include <stdint.h> |
+ |
#ifndef WASM_EXTERNAL_REFS_H |
#define WASM_EXTERNAL_REFS_H |
@@ -9,171 +11,45 @@ namespace v8 { |
namespace internal { |
namespace wasm { |
-static void f32_trunc_wrapper(float* param) { *param = truncf(*param); } |
+void f32_trunc_wrapper(float* param); |
-static void f32_floor_wrapper(float* param) { *param = floorf(*param); } |
+void f32_floor_wrapper(float* param); |
-static void f32_ceil_wrapper(float* param) { *param = ceilf(*param); } |
+void f32_ceil_wrapper(float* param); |
-static void f32_nearest_int_wrapper(float* param) { |
- *param = nearbyintf(*param); |
-} |
+void f32_nearest_int_wrapper(float* param); |
-static void f64_trunc_wrapper(double* param) { *param = trunc(*param); } |
+void f64_trunc_wrapper(double* param); |
-static void f64_floor_wrapper(double* param) { *param = floor(*param); } |
+void f64_floor_wrapper(double* param); |
-static void f64_ceil_wrapper(double* param) { *param = ceil(*param); } |
+void f64_ceil_wrapper(double* param); |
-static void f64_nearest_int_wrapper(double* param) { |
- *param = nearbyint(*param); |
-} |
+void f64_nearest_int_wrapper(double* param); |
-static void int64_to_float32_wrapper(int64_t* input, float* output) { |
- *output = static_cast<float>(*input); |
-} |
+void int64_to_float32_wrapper(int64_t* input, float* output); |
-static void uint64_to_float32_wrapper(uint64_t* input, float* output) { |
-#if V8_CC_MSVC |
- // With MSVC we use static_cast<float>(uint32_t) instead of |
- // static_cast<float>(uint64_t) to achieve round-to-nearest-ties-even |
- // semantics. The idea is to calculate |
- // static_cast<float>(high_word) * 2^32 + static_cast<float>(low_word). To |
- // achieve proper rounding in all cases we have to adjust the high_word |
- // with a "rounding bit" sometimes. The rounding bit is stored in the LSB of |
- // the high_word if the low_word may affect the rounding of the high_word. |
- uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff); |
- uint32_t high_word = static_cast<uint32_t>(*input >> 32); |
+void uint64_to_float32_wrapper(uint64_t* input, float* output); |
- float shift = static_cast<float>(1ull << 32); |
- // If the MSB of the high_word is set, then we make space for a rounding bit. |
- if (high_word < 0x80000000) { |
- high_word <<= 1; |
- shift = static_cast<float>(1ull << 31); |
- } |
+void int64_to_float64_wrapper(int64_t* input, double* output); |
- if ((high_word & 0xfe000000) && low_word) { |
- // Set the rounding bit. |
- high_word |= 1; |
- } |
+void uint64_to_float64_wrapper(uint64_t* input, double* output); |
- float result = static_cast<float>(high_word); |
- result *= shift; |
- result += static_cast<float>(low_word); |
- *output = result; |
+int32_t float32_to_int64_wrapper(float* input, int64_t* output); |
-#else |
- *output = static_cast<float>(*input); |
-#endif |
-} |
- |
-static void int64_to_float64_wrapper(int64_t* input, double* output) { |
- *output = static_cast<double>(*input); |
-} |
- |
-static void uint64_to_float64_wrapper(uint64_t* input, double* output) { |
-#if V8_CC_MSVC |
- // With MSVC we use static_cast<double>(uint32_t) instead of |
- // static_cast<double>(uint64_t) to achieve round-to-nearest-ties-even |
- // semantics. The idea is to calculate |
- // static_cast<double>(high_word) * 2^32 + static_cast<double>(low_word). |
- uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff); |
- uint32_t high_word = static_cast<uint32_t>(*input >> 32); |
- |
- double shift = static_cast<double>(1ull << 32); |
- |
- double result = static_cast<double>(high_word); |
- result *= shift; |
- result += static_cast<double>(low_word); |
- *output = result; |
- |
-#else |
- *output = static_cast<double>(*input); |
-#endif |
-} |
- |
-static int32_t float32_to_int64_wrapper(float* input, int64_t* output) { |
- // We use "<" here to check the upper bound because of rounding problems: With |
- // "<=" some inputs would be considered within int64 range which are actually |
- // not within int64 range. |
- if (*input >= static_cast<float>(std::numeric_limits<int64_t>::min()) && |
- *input < static_cast<float>(std::numeric_limits<int64_t>::max())) { |
- *output = static_cast<int64_t>(*input); |
- return 1; |
- } |
- return 0; |
-} |
- |
-static int32_t float32_to_uint64_wrapper(float* input, uint64_t* output) { |
- // We use "<" here to check the upper bound because of rounding problems: With |
- // "<=" some inputs would be considered within uint64 range which are actually |
- // not within uint64 range. |
- if (*input > -1.0 && |
- *input < static_cast<float>(std::numeric_limits<uint64_t>::max())) { |
- *output = static_cast<uint64_t>(*input); |
- return 1; |
- } |
- return 0; |
-} |
- |
-static int32_t float64_to_int64_wrapper(double* input, int64_t* output) { |
- // We use "<" here to check the upper bound because of rounding problems: With |
- // "<=" some inputs would be considered within int64 range which are actually |
- // not within int64 range. |
- if (*input >= static_cast<double>(std::numeric_limits<int64_t>::min()) && |
- *input < static_cast<double>(std::numeric_limits<int64_t>::max())) { |
- *output = static_cast<int64_t>(*input); |
- return 1; |
- } |
- return 0; |
-} |
- |
-static int32_t float64_to_uint64_wrapper(double* input, uint64_t* output) { |
- // We use "<" here to check the upper bound because of rounding problems: With |
- // "<=" some inputs would be considered within uint64 range which are actually |
- // not within uint64 range. |
- if (*input > -1.0 && |
- *input < static_cast<double>(std::numeric_limits<uint64_t>::max())) { |
- *output = static_cast<uint64_t>(*input); |
- return 1; |
- } |
- return 0; |
-} |
- |
-static int32_t int64_div_wrapper(int64_t* dst, int64_t* src) { |
- if (*src == 0) { |
- return 0; |
- } |
- if (*src == -1 && *dst == std::numeric_limits<int64_t>::min()) { |
- return -1; |
- } |
- *dst /= *src; |
- return 1; |
-} |
- |
-static int32_t int64_mod_wrapper(int64_t* dst, int64_t* src) { |
- if (*src == 0) { |
- return 0; |
- } |
- *dst %= *src; |
- return 1; |
-} |
- |
-static int32_t uint64_div_wrapper(uint64_t* dst, uint64_t* src) { |
- if (*src == 0) { |
- return 0; |
- } |
- *dst /= *src; |
- return 1; |
-} |
- |
-static int32_t uint64_mod_wrapper(uint64_t* dst, uint64_t* src) { |
- if (*src == 0) { |
- return 0; |
- } |
- *dst %= *src; |
- return 1; |
-} |
+int32_t float32_to_uint64_wrapper(float* input, uint64_t* output); |
+ |
+int32_t float64_to_int64_wrapper(double* input, int64_t* output); |
+ |
+int32_t float64_to_uint64_wrapper(double* input, uint64_t* output); |
+ |
+int32_t int64_div_wrapper(int64_t* dst, int64_t* src); |
+ |
+int32_t int64_mod_wrapper(int64_t* dst, int64_t* src); |
+ |
+int32_t uint64_div_wrapper(uint64_t* dst, uint64_t* src); |
+ |
+int32_t uint64_mod_wrapper(uint64_t* dst, uint64_t* src); |
} // namespace wasm |
} // namespace internal |
} // namespace v8 |