Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(745)

Side by Side Diff: src/wasm/wasm-external-refs.cc

Issue 1853123002: [wasm] Refactoring of wasm-external-refs. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Created 4 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 // Copyright 2016 the V8 project authors. All rights reserved. 1 // Copyright 2016 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #ifndef WASM_EXTERNAL_REFS_H 5 #include <math.h>
6 #define WASM_EXTERNAL_REFS_H 6 #include <stdint.h>
7 #include <stdlib.h>
8 #include <limits>
9
10 #include "src/wasm/wasm-external-refs.h"
7 11
8 namespace v8 { 12 namespace v8 {
9 namespace internal { 13 namespace internal {
10 namespace wasm { 14 namespace wasm {
11 15
12 static void f32_trunc_wrapper(float* param) { *param = truncf(*param); } 16 void f32_trunc_wrapper(float* param) { *param = truncf(*param); }
13 17
14 static void f32_floor_wrapper(float* param) { *param = floorf(*param); } 18 void f32_floor_wrapper(float* param) { *param = floorf(*param); }
15 19
16 static void f32_ceil_wrapper(float* param) { *param = ceilf(*param); } 20 void f32_ceil_wrapper(float* param) { *param = ceilf(*param); }
17 21
18 static void f32_nearest_int_wrapper(float* param) { 22 void f32_nearest_int_wrapper(float* param) { *param = nearbyintf(*param); }
19 *param = nearbyintf(*param);
20 }
21 23
22 static void f64_trunc_wrapper(double* param) { *param = trunc(*param); } 24 void f64_trunc_wrapper(double* param) { *param = trunc(*param); }
23 25
24 static void f64_floor_wrapper(double* param) { *param = floor(*param); } 26 void f64_floor_wrapper(double* param) { *param = floor(*param); }
25 27
26 static void f64_ceil_wrapper(double* param) { *param = ceil(*param); } 28 void f64_ceil_wrapper(double* param) { *param = ceil(*param); }
27 29
28 static void f64_nearest_int_wrapper(double* param) { 30 void f64_nearest_int_wrapper(double* param) { *param = nearbyint(*param); }
29 *param = nearbyint(*param);
30 }
31 31
32 static void int64_to_float32_wrapper(int64_t* input, float* output) { 32 void int64_to_float32_wrapper(int64_t* input, float* output) {
33 *output = static_cast<float>(*input); 33 *output = static_cast<float>(*input);
34 } 34 }
35 35
36 static void uint64_to_float32_wrapper(uint64_t* input, float* output) { 36 void uint64_to_float32_wrapper(uint64_t* input, float* output) {
37 #if V8_CC_MSVC 37 #if V8_CC_MSVC
38 // With MSVC we use static_cast<float>(uint32_t) instead of 38 // With MSVC we use static_cast<float>(uint32_t) instead of
39 // static_cast<float>(uint64_t) to achieve round-to-nearest-ties-even 39 // static_cast<float>(uint64_t) to achieve round-to-nearest-ties-even
40 // semantics. The idea is to calculate 40 // semantics. The idea is to calculate
41 // static_cast<float>(high_word) * 2^32 + static_cast<float>(low_word). To 41 // static_cast<float>(high_word) * 2^32 + static_cast<float>(low_word). To
42 // achieve proper rounding in all cases we have to adjust the high_word 42 // achieve proper rounding in all cases we have to adjust the high_word
43 // with a "rounding bit" sometimes. The rounding bit is stored in the LSB of 43 // with a "rounding bit" sometimes. The rounding bit is stored in the LSB of
44 // the high_word if the low_word may affect the rounding of the high_word. 44 // the high_word if the low_word may affect the rounding of the high_word.
45 uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff); 45 uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff);
46 uint32_t high_word = static_cast<uint32_t>(*input >> 32); 46 uint32_t high_word = static_cast<uint32_t>(*input >> 32);
(...skipping 13 matching lines...) Expand all
60 float result = static_cast<float>(high_word); 60 float result = static_cast<float>(high_word);
61 result *= shift; 61 result *= shift;
62 result += static_cast<float>(low_word); 62 result += static_cast<float>(low_word);
63 *output = result; 63 *output = result;
64 64
65 #else 65 #else
66 *output = static_cast<float>(*input); 66 *output = static_cast<float>(*input);
67 #endif 67 #endif
68 } 68 }
69 69
70 static void int64_to_float64_wrapper(int64_t* input, double* output) { 70 void int64_to_float64_wrapper(int64_t* input, double* output) {
71 *output = static_cast<double>(*input); 71 *output = static_cast<double>(*input);
72 } 72 }
73 73
74 static void uint64_to_float64_wrapper(uint64_t* input, double* output) { 74 void uint64_to_float64_wrapper(uint64_t* input, double* output) {
75 #if V8_CC_MSVC 75 #if V8_CC_MSVC
76 // With MSVC we use static_cast<double>(uint32_t) instead of 76 // With MSVC we use static_cast<double>(uint32_t) instead of
77 // static_cast<double>(uint64_t) to achieve round-to-nearest-ties-even 77 // static_cast<double>(uint64_t) to achieve round-to-nearest-ties-even
78 // semantics. The idea is to calculate 78 // semantics. The idea is to calculate
79 // static_cast<double>(high_word) * 2^32 + static_cast<double>(low_word). 79 // static_cast<double>(high_word) * 2^32 + static_cast<double>(low_word).
80 uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff); 80 uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff);
81 uint32_t high_word = static_cast<uint32_t>(*input >> 32); 81 uint32_t high_word = static_cast<uint32_t>(*input >> 32);
82 82
83 double shift = static_cast<double>(1ull << 32); 83 double shift = static_cast<double>(1ull << 32);
84 84
85 double result = static_cast<double>(high_word); 85 double result = static_cast<double>(high_word);
86 result *= shift; 86 result *= shift;
87 result += static_cast<double>(low_word); 87 result += static_cast<double>(low_word);
88 *output = result; 88 *output = result;
89 89
90 #else 90 #else
91 *output = static_cast<double>(*input); 91 *output = static_cast<double>(*input);
92 #endif 92 #endif
93 } 93 }
94 94
95 static int32_t float32_to_int64_wrapper(float* input, int64_t* output) { 95 int32_t float32_to_int64_wrapper(float* input, int64_t* output) {
96 // We use "<" here to check the upper bound because of rounding problems: With 96 // We use "<" here to check the upper bound because of rounding problems: With
97 // "<=" some inputs would be considered within int64 range which are actually 97 // "<=" some inputs would be considered within int64 range which are actually
98 // not within int64 range. 98 // not within int64 range.
99 if (*input >= static_cast<float>(std::numeric_limits<int64_t>::min()) && 99 if (*input >= static_cast<float>(std::numeric_limits<int64_t>::min()) &&
100 *input < static_cast<float>(std::numeric_limits<int64_t>::max())) { 100 *input < static_cast<float>(std::numeric_limits<int64_t>::max())) {
101 *output = static_cast<int64_t>(*input); 101 *output = static_cast<int64_t>(*input);
102 return 1; 102 return 1;
103 } 103 }
104 return 0; 104 return 0;
105 } 105 }
106 106
107 static int32_t float32_to_uint64_wrapper(float* input, uint64_t* output) { 107 int32_t float32_to_uint64_wrapper(float* input, uint64_t* output) {
108 // We use "<" here to check the upper bound because of rounding problems: With 108 // We use "<" here to check the upper bound because of rounding problems: With
109 // "<=" some inputs would be considered within uint64 range which are actually 109 // "<=" some inputs would be considered within uint64 range which are actually
110 // not within uint64 range. 110 // not within uint64 range.
111 if (*input > -1.0 && 111 if (*input > -1.0 &&
112 *input < static_cast<float>(std::numeric_limits<uint64_t>::max())) { 112 *input < static_cast<float>(std::numeric_limits<uint64_t>::max())) {
113 *output = static_cast<uint64_t>(*input); 113 *output = static_cast<uint64_t>(*input);
114 return 1; 114 return 1;
115 } 115 }
116 return 0; 116 return 0;
117 } 117 }
118 118
119 static int32_t float64_to_int64_wrapper(double* input, int64_t* output) { 119 int32_t float64_to_int64_wrapper(double* input, int64_t* output) {
120 // We use "<" here to check the upper bound because of rounding problems: With 120 // We use "<" here to check the upper bound because of rounding problems: With
121 // "<=" some inputs would be considered within int64 range which are actually 121 // "<=" some inputs would be considered within int64 range which are actually
122 // not within int64 range. 122 // not within int64 range.
123 if (*input >= static_cast<double>(std::numeric_limits<int64_t>::min()) && 123 if (*input >= static_cast<double>(std::numeric_limits<int64_t>::min()) &&
124 *input < static_cast<double>(std::numeric_limits<int64_t>::max())) { 124 *input < static_cast<double>(std::numeric_limits<int64_t>::max())) {
125 *output = static_cast<int64_t>(*input); 125 *output = static_cast<int64_t>(*input);
126 return 1; 126 return 1;
127 } 127 }
128 return 0; 128 return 0;
129 } 129 }
130 130
131 static int32_t float64_to_uint64_wrapper(double* input, uint64_t* output) { 131 int32_t float64_to_uint64_wrapper(double* input, uint64_t* output) {
132 // We use "<" here to check the upper bound because of rounding problems: With 132 // We use "<" here to check the upper bound because of rounding problems: With
133 // "<=" some inputs would be considered within uint64 range which are actually 133 // "<=" some inputs would be considered within uint64 range which are actually
134 // not within uint64 range. 134 // not within uint64 range.
135 if (*input > -1.0 && 135 if (*input > -1.0 &&
136 *input < static_cast<double>(std::numeric_limits<uint64_t>::max())) { 136 *input < static_cast<double>(std::numeric_limits<uint64_t>::max())) {
137 *output = static_cast<uint64_t>(*input); 137 *output = static_cast<uint64_t>(*input);
138 return 1; 138 return 1;
139 } 139 }
140 return 0; 140 return 0;
141 } 141 }
142 142
143 static int32_t int64_div_wrapper(int64_t* dst, int64_t* src) { 143 int32_t int64_div_wrapper(int64_t* dst, int64_t* src) {
144 if (*src == 0) { 144 if (*src == 0) {
145 return 0; 145 return 0;
146 } 146 }
147 if (*src == -1 && *dst == std::numeric_limits<int64_t>::min()) { 147 if (*src == -1 && *dst == std::numeric_limits<int64_t>::min()) {
148 return -1; 148 return -1;
149 } 149 }
150 *dst /= *src; 150 *dst /= *src;
151 return 1; 151 return 1;
152 } 152 }
153 153
154 static int32_t int64_mod_wrapper(int64_t* dst, int64_t* src) { 154 int32_t int64_mod_wrapper(int64_t* dst, int64_t* src) {
155 if (*src == 0) { 155 if (*src == 0) {
156 return 0; 156 return 0;
157 } 157 }
158 *dst %= *src; 158 *dst %= *src;
159 return 1; 159 return 1;
160 } 160 }
161 161
162 static int32_t uint64_div_wrapper(uint64_t* dst, uint64_t* src) { 162 int32_t uint64_div_wrapper(uint64_t* dst, uint64_t* src) {
163 if (*src == 0) { 163 if (*src == 0) {
164 return 0; 164 return 0;
165 } 165 }
166 *dst /= *src; 166 *dst /= *src;
167 return 1; 167 return 1;
168 } 168 }
169 169
170 static int32_t uint64_mod_wrapper(uint64_t* dst, uint64_t* src) { 170 int32_t uint64_mod_wrapper(uint64_t* dst, uint64_t* src) {
171 if (*src == 0) { 171 if (*src == 0) {
172 return 0; 172 return 0;
173 } 173 }
174 *dst %= *src; 174 *dst %= *src;
175 return 1; 175 return 1;
176 } 176 }
177 } // namespace wasm 177 } // namespace wasm
178 } // namespace internal 178 } // namespace internal
179 } // namespace v8 179 } // namespace v8
180
181 #endif
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698