| Index: third_party/WebKit/Source/platform/animation/UnitBezier.h
|
| diff --git a/third_party/WebKit/Source/platform/animation/UnitBezier.h b/third_party/WebKit/Source/platform/animation/UnitBezier.h
|
| index dc0db721161a5544d088f649185943b22ddc60a6..df950ab469c7f33657f4473ca8b55bc9e25e4547 100644
|
| --- a/third_party/WebKit/Source/platform/animation/UnitBezier.h
|
| +++ b/third_party/WebKit/Source/platform/animation/UnitBezier.h
|
| @@ -1,169 +1,48 @@
|
| -/*
|
| - * Copyright (C) 2008 Apple Inc. All Rights Reserved.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions
|
| - * are met:
|
| - * 1. Redistributions of source code must retain the above copyright
|
| - * notice, this list of conditions and the following disclaimer.
|
| - * 2. Redistributions in binary form must reproduce the above copyright
|
| - * notice, this list of conditions and the following disclaimer in the
|
| - * documentation and/or other materials provided with the distribution.
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
|
| - * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
| - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
|
| - * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
| - * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
| - * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
| - * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
| - * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| - */
|
| +// Copyright 2016 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
|
|
| #ifndef UnitBezier_h
|
| #define UnitBezier_h
|
|
|
| -#include "platform/PlatformExport.h"
|
| +#include "ui/gfx/geometry/cubic_bezier.h"
|
| #include "wtf/Allocator.h"
|
| -#include "wtf/Assertions.h"
|
| -
|
| -#include <algorithm>
|
| -#include <cmath>
|
|
|
| namespace blink {
|
|
|
| -struct PLATFORM_EXPORT UnitBezier {
|
| +struct UnitBezier {
|
| USING_FAST_MALLOC(UnitBezier);
|
| public:
|
| - UnitBezier(double p1x, double p1y, double p2x, double p2y);
|
| -
|
| - static const double kBezierEpsilon;
|
| -
|
| - double sampleCurveX(double t) const
|
| - {
|
| - // `ax t^3 + bx t^2 + cx t' expanded using Horner's rule.
|
| - return ((ax * t + bx) * t + cx) * t;
|
| - }
|
| -
|
| - double sampleCurveY(double t) const
|
| + UnitBezier(double p1x, double p1y, double p2x, double p2y)
|
| + : m_cubicBezier(p1x, p1y, p2x, p2y)
|
| {
|
| - return ((ay * t + by) * t + cy) * t;
|
| }
|
|
|
| - double sampleCurveDerivativeX(double t) const
|
| + double sampleCurveX(double t) const
|
| {
|
| - return (3.0 * ax * t + 2.0 * bx) * t + cx;
|
| + return m_cubicBezier.SampleCurveX(t);
|
| }
|
|
|
| - double sampleCurveDerivativeY(double t) const
|
| + double sampleCurveY(double t) const
|
| {
|
| - return (3.0 * ay * t + 2.0 * by) * t + cy;
|
| - }
|
| -
|
| - // Given an x value, find a parametric value it came from.
|
| - double solveCurveX(double x, double epsilon) const
|
| - {
|
| - ASSERT(x >= 0.0);
|
| - ASSERT(x <= 1.0);
|
| -
|
| - double t0;
|
| - double t1;
|
| - double t2;
|
| - double x2;
|
| - double d2;
|
| - int i;
|
| -
|
| - // First try a few iterations of Newton's method -- normally very fast.
|
| - for (t2 = x, i = 0; i < 8; i++) {
|
| - x2 = sampleCurveX(t2) - x;
|
| - if (fabs (x2) < epsilon)
|
| - return t2;
|
| - d2 = sampleCurveDerivativeX(t2);
|
| - if (fabs(d2) < 1e-6)
|
| - break;
|
| - t2 = t2 - x2 / d2;
|
| - }
|
| -
|
| - // Fall back to the bisection method for reliability.
|
| - t0 = 0.0;
|
| - t1 = 1.0;
|
| - t2 = x;
|
| -
|
| - while (t0 < t1) {
|
| - x2 = sampleCurveX(t2);
|
| - if (fabs(x2 - x) < epsilon)
|
| - return t2;
|
| - if (x > x2)
|
| - t0 = t2;
|
| - else
|
| - t1 = t2;
|
| - t2 = (t1 - t0) * .5 + t0;
|
| - }
|
| -
|
| - // Failure.
|
| - return t2;
|
| + return m_cubicBezier.SampleCurveY(t);
|
| }
|
|
|
| // Evaluates y at the given x.
|
| double solve(double x) const
|
| {
|
| - return solveWithEpsilon(x, kBezierEpsilon);
|
| + return m_cubicBezier.Solve(x);
|
| }
|
|
|
| // Evaluates y at the given x. The epsilon parameter provides a hint as to the required
|
| // accuracy and is not guaranteed.
|
| double solveWithEpsilon(double x, double epsilon) const
|
| {
|
| - if (x < 0.0)
|
| - return 0.0 + m_startGradient * x;
|
| - if (x > 1.0)
|
| - return 1.0 + m_endGradient * (x - 1.0);
|
| - return sampleCurveY(solveCurveX(x, epsilon));
|
| - }
|
| -
|
| - // Returns an approximation of dy/dx at the given x.
|
| - double slope(double x) const
|
| - {
|
| - return slopeWithEpsilon(x, kBezierEpsilon);
|
| - }
|
| -
|
| - double slopeWithEpsilon(double x, double epsilon) const
|
| - {
|
| - double t = solveCurveX(x, epsilon);
|
| - double dx = sampleCurveDerivativeX(t);
|
| - double dy = sampleCurveDerivativeY(t);
|
| - return dy / dx;
|
| - }
|
| -
|
| - // Sets |min| and |max| to the bezier's minimum and maximium y values in the
|
| - // interval [0, 1].
|
| - void range(double* min, double* max) const
|
| - {
|
| - *min = m_rangeMin;
|
| - *max = m_rangeMax;
|
| + return m_cubicBezier.SolveWithEpsilon(x, epsilon);
|
| }
|
|
|
| private:
|
| - void initCoefficients(double p1x, double p1y, double p2x, double p2y);
|
| - void initGradients(double p1x, double p1y, double p2x, double p2y);
|
| - void initRange(double p1y, double p2y);
|
| -
|
| - double ax;
|
| - double bx;
|
| - double cx;
|
| -
|
| - double ay;
|
| - double by;
|
| - double cy;
|
| -
|
| - double m_startGradient;
|
| - double m_endGradient;
|
| -
|
| - double m_rangeMin;
|
| - double m_rangeMax;
|
| + gfx::CubicBezier m_cubicBezier;
|
| };
|
|
|
| } // namespace blink
|
|
|